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1. Introduction

1.1. The term “information theory’”’ which has become fashionable during the
last decade has as yet no unique interpretation. In technical and cybernetics
literature, information theory is usually taken to mean the totality of the appli-
cations of mathematical methods to the problem of input, processing, storage,
and transmission of information. From the mathematical point of view these
applications have little in common since they are based on methods belonging
to very diverse branches of mathematics. Such an interpretation of information
theory covers the whole of mathematical statistics, much of the theory of random
processes, the recently developed investigations into the power of the e-net in
functional spaces [54], which is regarded as an estimate of the quantity of infor-
mation given by an element of this space, estimates of the ‘“complexity’ of the
algorithms of mathematical analysis [2] and [96], and so on.

But within information theory, in the wide sense of this term, an important
place is occupied by a young discipline which is also (particularly in mathemati-
cal literature) often called information theory. To be explicit, we shall call it the
Shannon theory of optimal coding of information. The reason is that everything
in this discipline is the direct development of ideas contained in the remarkable
and fundamental work of C. E. Shannon [78], and that the Shannon theory
investigates means of transmitting information based on an optimal choice of
methods of coding and decoding information. Moreover, the special character-
istic of this theory is the possibility of greatly varying the method of coding
information. In those cases where the coding method is rigidly fixed, the Shannon
theory is not best suited to the problem, but rather the more usual methods of
contemporary mathematical statistics should be employed. This is the case,
for example, in the majority of statistical problems, when it is not within the
power of the statistician to alter the procedure by which the relevant information
was selected, and the only question which arises is the choice of an optimal
decoding method (‘“‘the decision rule’”).

1.2. It has recently become clear that the Shannon theory of coding infor-
mation may be of interest to mathematicians not only because of the importance
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in applications, but also because it gives rise to many original mathematical
problems which are interesting quite apart from their technical applicability.
Unexpected points of contact between information theory and other mathe-
matical sciences have been discovered. Thus, the methods of group theory have
proved useful in constructing codes (see section 5), and a connection between
the general problems of information theory and of inference in stochastic proc-
esses has been clarified (see the work of M. Pinsker [72]).

Work under the leadership of A. N. Kolmogorov has shown that the ideas of
the Shannon information theory are also useful in the classical domain of math-
ematical analysis—in the theory of dynamical systems [52], [53], and the theory
of functions [54]. As is often the case in young branches of mathematics, some
of the problems of Shannon information theory are completely elementary in
their formulation, but their solution proves to be nontrivial (and sometimes
extremely difficult). On the other hand, attempts to carry out a precise examina-
tion of the Shannon information theory under sufficiently general conditions
result in a complicated and rather unwieldy structure which is based, as is
always the case in probability theory, on abstract methods of set theory and
measure theory. The unwieldiness of these structures even led some mathemati-
cians to wonder, as in [22], whether it would not be wiser to abandon the axio-
matization of information theory. It seems that the necessity of a precise founda-
tion for the ideas of the Shannon information theory is no less unavoidable
than, for example, its comparable necessity in the theory of stochastic processes;
and that even the most general constructions of information theory are no more
complicated and abstract than, say, the constructions of the contemporary
theory of Markov processes (see in particular [23]). The doubts in this respect
may perhaps be explained by the fact that, while the original theory of Markov
chains has taken about fifty years to reach the present state of development of
the theory of Markov processes, the Shannon information theory has covered a
comparable distance in at most ten years. This rapid development is a reflection
of the general tempo of contemporary science.

1.3. The aim of this paper is to give a survey of the basic directions of the
Shannon theory of optimal coding of information from the common point of
view. Naturally the author cannot hope to clarify all the important questions to
the same extent. Most attention will be paid to questions connected with the
author’s work, including his most recent research. At the same time, some no
less important questions will remain on the second plane. Particular attention
will be devoted to publicizing questions of the Shannon information theory
which are awaiting solution and which vary greatly in their difficulty and in
the concreteness of their formulation. In order to single them out in the text,
without encumbering the exposition, Roman numerals are used at the left
margin. '

The bibliography at the end of the article is fairly complete as far as articles
published in mathematical journals are concerned. From the enormous tech-
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nical literature only that which bears directly on the content of this paper has
been selected.

2. The fundamental Shannon problem

2.1. We shall start with a formulation of the fundamental problem solved by
C. E. Shannon, using as a basis the presentation proposed by A. N. Kolmogorov
[51], and developed in the author’s papers, [19], and preliminary publications
[15], [18]. We feel that Kolmogorov’s concept differs from previous work on the
subject (A. Feinstein [29]; A. 1. Khinchin [49]; M. Rosenblatt [76]; J. Nedoma
[62]; J. Wolfowitz [97], [98], [100]; D. Blackwell, L. Breiman, A. J. Thomasian
[8]) in that it is sufficiently general to encompass all the cases of practical interest
and at the same time simpler and physically more natural than, for example,
the concept proposed by A. Perez [65].

2.2. The following terminology and notation will be used. We shall denote by
X, Y, Z, --- sets of elements, and by Sx, Sy, Sz, : - - o-fields of subsets of X, Y,
Z, --- respectively. A measurable space consists of a couple (X, Sx); and a
measurable space (X, Sx) will be called a real line if X is the real line R! and
Sx is the Borel o-field in X. A random variable ¢ taking on values in a measur-
able space (X, Sx) is a function defined on some probability space (Z, Sz, P)
whose range is tn X and is Sx measurable, that is, for any set A & Sx, the set
£F1(A) isin Sz.

2.3. The transmitling system or transmatter (Q, V) will be described by specify-
ing the following three elements.

1) Two measurable spaces (Y, Sy), (¥, S7). We shall call them the spaces of
input and output signals of the transmitter.

2) A function Q(y, 4), defined forally € Y and A & Sy which is Sy measur-
able for every fixed A € Sy and is a probability measure on S§ for every fixed
y € Y. We shall call Q(y, A) the transition function.

3) A subset V of the set of all probability measures on the product o-field
Sy X S7. This subset will be called the restriction on the distribution of the signals.

(Sometimes, for example, in the author’s paper [15], what is defined above as
a transmitting system is referred to as a channel. We prefer to reserve the term
channel for a somewhat different concept to be encountered later.) We shall
say that two random variables 9 and 4 are connected by the transmitter if 5 and 7
take on values in (¥, Sy), and (¥, Sy) respectively, the joint distribution of 7
and 7 is in V, and for any A € Sy, the conditional probability P{7 € A|n} is
given by

1 P{n € Aln} = Q(n, A)

with probability one.
From the intuitive point of view, Y is the totality of what is transmitted by
the transmitter and ¥ is the totality of what is received by the signal receiver.
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(In applications, the spaces ¥ and ¥ often coincide.) If the random value » of
the input signal is given, equation (1) enables us to find the conditional distri-
bution of the output signal 7. Thus Q(y, ) is the distribution of the output
signal if the signal y is the input. Finally, the introduction of the restriction V is
related to the fact that in many applications it is impossible to consider the
distribution of the input and output signals as arbitrary. Typical of this is the
case where it is assumed that the mean square value (average power) of the
input signal does not exceed a given constant. If, as occurred in most earlier
work, the researcher does not wish to introduce such a restriction, then V must be
taken to mean the totality of all the probability measures over (Y X ¥, 8y X S7).

In what follows the restriction V is not given arbitrarily, but it is assumed
that it is defined as follows: Given N real-valued, Sy X S# measurable function
mi(y, §) where y € Y and § € ¥, and a set V in the N-dimensional Euclidean
space, the distribution of (», 7) belongs to V only if the vector of the mathe-
matical expectations satisfies the condition:

@) (Emi(n, 7), Ema(n, 7), - -+, Eaw(n, 1) € V).

The assumption that the restriction V is given by equation (2) appears suffi-
cient for all particular cases which are interesting from the practical point of
view. The possible exceptions are of the following type. Let (Y, Sy) be the
space of real-valued functions y(t) where ¢ € [a, b] with the ordinary o-algebra
of measurable sets. Then the variable n with values in the space of the input
signals turns out to be the random process n(f) where ¢ € [a, b]. It is assumed
that condition V is reduced to the requirement E {#?(¢)} < p, for all ¢ € [a, b],
where p, is a given constant. A restriction of this kind corresponds to a con-

tinuum of functions (-, -) and cannot be given in the form (2).
I The proof of Shannon’s theorems, stated in section 3, applicable
to this and similar cases, still is an open problem.

Some important particular classes of transmitting systems are enumerated
below.

2.4. A transmitting system is called a segment of length n of a homogeneous
memoryless channel, if there exist measurable spaces (Yo, Sy,), (¥o, S7,) and a
transition function Qo(y, A) defined fory € Y,and A € Sy, such that the spaces
of the input and output signals of the transmitter are the nth powers (Yg, St.),

(Y2, 84 of the spaces (Yo, Sv,), (Yo, S7,), that is to say, products of n copies of

these spaces, and for any y = (y1, - - - , ¥a) € Y3 the transition function Q(y, - )
is given by
(3) Q(yy ) ) = Qo(yly ' ) X QO(yZy : ) X o X QO(yn, * )7

that is, it is the Cartesian product of the corresponding measures. Finally, the
set of distributions V, must be such that the distribution of the variables n =
(m, -+, ) and 7 = (41, * - - , 7s) belongs to V if and only if the pairs (n;, 7.)
have distributions belonging to V,, for all ¢ = 1, - - - | n. Intuitively this defini-
tion means that the th component #; of the output signal depends only on the
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7th component 5; of the input signal, and that the restriction is reduced to re-
strictions imposed on each pair of components. If the spaces Yo, ¥ consist of a
finite or denumerable set of elements, then the transition function @¢(- , -) can
be defined by the matrix of the transition probabilities (as happens in the theory
of Markov processes). In that case the restriction V is usually absent. Then the
memoryless channel is called finite (or, correspondingly, denumerable).

The particular case of the memoryless channel, which is by far the most
worked out and the most important in applications, is the memoryless channel
with additive noise. In this case (Yo, Sy,) and (Yo, S7,) are real lines, and Qo(y, - )
coincides with the distribution of the variable ¢ + y, where the noise ¢ has a
given distribution and where E{{?} = p, is called the noise power. In this case
the condition E{n3} < p, is usually taken for V, where p, is called the signal
rower. Such a channel is said to be Gaussian, if ¢ has a Gaussian distribution.

2.5. A considerably more general class of transmitters is to be found in the
concept of a homogeneous channel with discrete time. For the study of such a
channel it is necessary to specify the measurable spaces (Yo, Sy,) and (¥, S7,)
of the input and output signals at any time, as well as the measurable space
(F, Sr), called the state space of the channel, and the transition function
Qo(yo, f, A) of the channel defined for 5y € Yo, f © F, and A & S§ X Sr, which
is measurable with respect to Sy, X Sr for each fixed A and is a probability
measure on Yo X F for fixed y and f. Such a channel can be regarded from an
intuitive point of view as a pair of sequences of variables -- -, n_1, 70, m, - * ,
and -, 71, 70, 7, - - - , taking on values in the spaces (¥, Sy,) and (Yo, S.)
respectively, together with a sequence of variables - -, ¢_i1, ¢o, ¢1, - -+ Wwith
values in (F, Sr). Moreover given 5; = y and ¢,, = f, the conditional distri-
bution for the pairs 7;, ¢; is given by Qo(y, f, - ) and does not depend on further
information about ¢, i, 7 at earlier times. Thus the states of the channel de-
scribe its memory of the past.
~ More precisely, a transmitter, called a segment of length n of the homogeneous

channel with discrete time, is associated with each initial probability distribution
po( - ) on (F, Sp) and each integer n. Here the spaces of the input and output
signals of the transmitter are the powers (Y3, S%,) and (¥3, 8%). To avoid com-
plicating the exposition, the transition function Q(y, A) fory € Y3and A € S5,
will be constructed only in the particular case of a transmitter for which measures
u#.(A) on (Yo, S7,) and pr(B) on (F, Sr) exist, such that the transition function
Qo(yo, fo, A) is given by the formula

@) Qolwo, Jo, 4) = [ ao(vo, £, Gy )7 (Ao un(df’)

i
that is to say, Qo is determined by the density qo(vo, f, Fo, f/)- Then,
3) Qw, &) = [ o, 9)ut.(d9), VEYL§E TS

~

A
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where

(6) y=(yly"';yn)’ g=(gl?"';gn)
and

(7> Q(yh Tty Yny gl; Tt gn)

= [ [ aown o, @05 - 0oty Fucs, G PO fe)r () - - - me(df).
F F

From the intuitive point of view, representation (6) can be elucidated by
saying that the integrand in (6, is the density of the joint probability distri-
bution of the sequence of states of the channel and the sequence of output
signals of the channel, for a given sequence of input signals to the channel. This
density is averaged over all possible sequences of states of the channel. Further-
more, it is not difficult to give a more general definition of Q(- , -) for the case
when Q- , +) is not determined by a density. Finally, in a manner analogous
to that used in the theory of Markov processes, it is easy to extend the definition
of a segment of the channel to the case of channels which are not homogeneous
in time and to channels with continuous time (compare similar constructions
in [19], section 1.8).

If the state space F of the channel is finite, then the channel is said to have
a finite number of states. A memoryless channel (see section 2.4) can be inter-
preted as a channel in which the state space consists of a single element.

The definition given above was prompted by ideas from the contemporary
theory of automata, [86], and it is of sufficient generality to include a large
proportion of the physically interesting cases. For channels with a finite memory
and finite signal spaces a very similar definition was studied by D. Blackwell,
L. Breiman, and A. J. Thomasian [8]. An analogous definition was formulated
in 1957 by A. N. Kolmogorov in his seminar at Moscow University.

Note that our definition would not be any more general if we allowed the
output signal to depend also on the input and output signals at earlier instances
of time. In fact this dependence can always be avoided by extending the state
space of the channel, by defining as the state of the channel the totality con-
sisting of the previous state together with the values of the input and output
signals at all earlier times. (This idea is elaborated in [8], where a similar
method shows that channels with a finite memory in the Khinchin-Feinstein
sense [49], [31] are a special case of channels with a finite number of states.)
This method enables one to convert into a channel a wide class of transmitters
which operate in time and possess the property of lack of anticipation. (The
corresponding definition is given by analogy with the definitions in [49] and [31].)
However, in this case the property of homogeneity in time may be violated,
though this does not occur if we introduce the analogous concepts not for finite
segments of the channel but for channels operating over an infinite time interval.

2.6. In applieations it is sometimes natural to assume that the channel de-
pends on slowly changing parameters. As a limiting case, it may be supposed
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that during the time of transmission the parameters do not change, but that
their exact value is unknown and is a random variable with a given probability
distribution. Thus the concept of a channel with a random parameter is reached.
Such a channel has the following general definition: it is assumed (in the nota-
tion of section 2.5) that we are given a measurable space (B, Sg) of values of the
parameter and a measurable function B(f), f € F, with values in (B, Sz) such
that the transition density qo(yo, f, %o, f’) is zero whenever B(f) = B(f"). (It is
easy to give an analogous definition in the case when the density does not exist.)
Then, for a given initial distribution po(-), it is natural to call a random parameter
of the channel the random variable 8(¢), where ¢ has the distribution py(-). From
the intuitive point of view, B(¢) is a random parameter which does not change
with time. It is then natural to introduce the concept of a channel conditional on
the value of b € B. The state space of this channel is the inverse image of the point
b under the mapping B(f) of F into B, and the transition density coincides with
9o(yo, £, %o, ') with B(f) = B(f") = b.

2.7. The transmitter is called Gaussian if the spaces of input and output
signals are spaces of real-valued functions, and the transition function Q(y;, -)
yields, for any fixed y a conditional Gaussian distribution (an infinite set of
random variables is said to possess a conditional Gaussian distribution if any
finite subset possesses, under an arbitrary condition, a finite-dimensional Gauss-
ian distribution whose second moments are independent of the condition and
whose first moments depend linearly on this condition); and finally the restric-
tion V is imposed only on the first and second moments of the random variables
which are linked by the transmitter. Such a transmitter assigns to each Gaussian
input process n another Gaussian output process 7.

An important role is played, particularly in applications, by receiving-trans-
mitting systems with a finite bandwidth. An attempt to formulate the appro-
priate concept mathematically, and to prove Shannon’s well known formula (46)
in the case of a channel operating for an infinite time, meets with serious diffi-
culties related to the fact that stationary processes with bounded spectra are
singular (deterministic) and therefore yield no information. These difficulties
may be avoided by the introduction of the following model of a transmitter with
finite bandwidth [\, N + W] and additive noise for transmission over time T. This
model is perhaps a little clumsy from the point of view of the general theory of
stochastic processes, but it reflects the real physical situation sufficiently well
(compare [41]).

Here the spaces (Y, Sy) and (¥, Sy) are the spaces of the functions y(t) for
t € [0, T] with o-fields of measurable sets introduced in the usual way. Further,
the noise is given as the random process ¢(f) for ¢t € [0, T']. The operator A takes
the function v(¢) for ¢ € [0, T]into the function
2kt . 2_1@)

¢x €08 —— + dj sin

(8) Av(t) = )\oék/T‘z_s_)\o-i-W( T T

where the ¢, and d; are Fourier coefficients of v(f). Then, the measure Q[y(?), -]
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is the distribution of the random process A[y(f) + (f)]. The restriction V
consists of the boundedness of the average power of the input signal; that is, it
consists of the fact that

©) L{ I8 n2(t)dt} < p,T

where p, is a given constant, called the average signal power, The average noise
power p, is defined by

1 T
(10) 7 E{ ﬁ) ;2(t)dc}.
We shall say that the noise is white Gaussian if
(11) c@) = > <ck cos 22t + dy sin 2th>’
Yo </ T Eht W T T

where the ¢; and d;, are independent Gaussian random variables with zero means
and equal variances.

2.8. By the message (p, W) we shall mean the aggregate consisting of two
measurable spaces (X, Sx) and (X, Sz), a probability distribution p(-) on the
o-field Sx and a subset W of the set of all the probability measures in the prod-
uct o-field Sx X Sz. The spaces (X, Sx) and (X, Sg) will be called the spaces
of input and output values of the message. The distribution p(-) will be called
the input distribution of the message, and the subset W will be called the condition
of accuracy of reproduction. The two random variables ¢ and £ generate the
message (p, W) if they take values in the spaces (X, Sx) and (X, S5) respectively,
if the distribution of the variable ¢ coincides with p(-), and if the joint distri-
bution of the pair belongs to W.

Thus, as is usual in information theory, the message being transmitted is
regarded as random, with a given distribution p(-). Moreover, it is considered
that the message obtained after transmission need not coincide exactly with
the input message. (According to the definition used herein, even the spaces of
the input and output message values need not in general coincide, although in
the majority of applications they do coincide.) However, some bounds are indi-
cated within which the received message may vary, depending on the trans-
mitted message. This is the condition of the accuracy W.

It is assumed that the condition W is defined with the help of M functions
pi(x, &), for x € X and 2 € X, and by a set W in a manner comparable with
that by which equation (2) defines restriction V. The same remarks may be

made here on the question of generality as were made on the gen-
1 erality of condition (2). In particular there remains an open ques-
tion analogous to that mentioned in section 2.3.

2.9. An important particular case is that of a message with the condition of
perfect reproduction. This is how we shall describe a message for which the spaces
(X, Sx) and (X, S%) coincide, and for which W is such that the pair (£, £) gen-
erate the message (p, W) if and only if ¢ = £ with probability one.
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In fact the research in a long series of papers started by Feinstein [29], and
Khinchin [49] reduces to this very case under our treatment of Shannon’s the-
orem. A more general treatment of communications, also introduced by Shannon
[79] was made mathematically precise by Kolmogorov [51] and developed in
the author’s work. A recent paper of Shannon [84] investigates independently a
particular class of messages which, in the terminology employed here, are called
messages with a component-wise condition of accuracy of reproduction.

2.10. We shall assume that we are given measurable spaces (X, Sx,) and
(X0, 8%, such that (X, Sx) = (X% S%) and (X, S) = (X3, Sx). Then the
random variables ¢ and £, taking on values in X and X can be regarded as the
sets £ = (&1, +++ , &), £ = (&, -+ -, &), where the £; take on values in X,, and
£, in X, Then the variables &; are called the input components of the message,
and the §; the output components of the message. The condition W of accuracy
of reproduction is component-uise if it is fulfillment or nonfulfillment for the

pair (¢, £) depends only on the pair-wise distribution of the pairs (&, £;), where
i =1, ---,n, but does not depend on the joint distributions of these pairs.
The concept of a message homogeneous in time is introduced in a natural way.
The component-wise condition of accuracy of reproduction will be called a homo-
geneous condition of boundedness in mean square error, if (Xo, Sx,) and (X, Sx.)
are real lines and the condition consists of the fact that

(12) E{(t — £)% = pay

where pq is a given constant called the mean square error. The condition W of
accuracy of reproduction is additive, if each of the functions p.(x, £) has the form

(13) pila, ®) = 3 olet 29,

where
(14) x‘:(x(l);"';xgt ﬂ=(ﬁ?,"',:ﬁg).

The input message has independent components if for the variable ¢ with distri-
bution p(-), the components &, - - - , & are independent variables.

2.11. Another important special case is that of a Gaussian message. Here it
is assumed that the spaces of input and output message values are spaces of
real-valued functions, so that the variables £ and £ can be treated as collections
of real variables.

The message is called Gaussian if the distribution p(-) gives a set of variables
possessing joint Gaussian distributions, and condition W is imposed only on the
first and second moments of the random variables under examination.

2.12. Now let the transmitter (Q, V) and the message (p, W) be given simul-
taneously. The name encoding function will be given to a function P(z, 4), for
z € Xand A & Sy, which for a fixed value z of the input message is a probability
measure in the space ¥ of output signals and for fixed 4 is measurable with
respect to Sx. The name decoding function will be given to a function P(g, A),
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for § € ¥ and A & S5, which for a fixed output signal § is a measure on the
space X of output values of messages, and for a fixed A is measurable with
respect to S7. We shall say that the message (p, W) can be transmatled by the
transmatter (Q, V') with the help of the encoding function P(- , -) and the decoding
function P(- , -) if random variables £ 1, 7, and £ can be constructed forming a
Markov chain such that the pair £, £ generate the message (p, W), and the pair
(n, 7) are connected by the transmitter (@, V), and, with probability one,

(15) P{n € Algy = P(¢, 4), P{i € A5} = P, 4).

In this case we shall say that the variables £, 7, 7, and £ give the method of
transmission of the message (p, W) by the transmitter (Q, V). Notice that the
encoding function P and the decoding function P uniquely determine the joint
distribution of £, #, 4, and £.

We make here a few remarks on this definition. The use of the encoding func-
tion P(-, -) means from the intuitive point of view that if the message takes
on the value z, then we transmit an input signal chosen with the distribution
P(z, -). In most earlier papers only nonrandomized encoding was used, given
by the function f(z) for + € X with values in Y, such that the measure P(x, -)
is concentrated at the point f(x). Nonrandomized decoding is defined analogously.
In practice, naturally, nonrandomized encoding and decoding is almost always
used, but the introduction of randomization obviously enters in principle
into the possibilitics open to the communication system builder. From the
mathematical point of view it simplifies the formulation of theorems. let us
suppose that the restriction V is omitted, the definition of condition 1 contains
only the single function pi(-, -), with M = 1, and W = [0, a]. Then, if the
message (p, W) can be transmitted at all by the transmitter (Q, V), it can be trans-
mitted with the help of nonrandomized encodirg and decoding fur ctions. It isalso
not difficult to give examples showing that this assertion may be false in case
M = 2. It can still be expected, however, that under very broad conditions

(perhaps in some asymptotic sense, see section 3.10), some theorem
111 may hold on the possibhility of substituting nonrandomized for ran-
domized encoding and decoding functions.

The assumption that £, 4, 7, and £ form a Markov chain is completely natural.
Intuitively it means that in transmission the output signal depends only on the
input signal and not on the value of the message encoded by it, and that in
decoding only the output signal is used, and not the inaccessible input signal
and message.

2.13. The basic Shannon problem can now be formulated. For which pairs of
the message (p, W) and the transmitter (Q, V') s it possible, and for which pairs is
it tmpossible, to select coding and decoding functions such that (p, W) can be trans-
mitted by the transmitler (Q, V)? The solutions of these problems for different
assumptions will be called Shannon theorems.

There also arises naturally a second problem of constructing, when trans-
mission is possible, the encoding and decoding functions which realize this trans-
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mission in the simplest and most effective way possible. The examination of
these two problems, and also of their direct generalizations, forms at present
the subject of the Shannon theory of the optimal coding of information.

3. Shannon’s theorems

3.1. In his fundamental work, Shannon introduced quantities which enabled
him to formulate an answer to the problem he raised. The principal one of these
is a quantity called information.

Let the two random variables ¢ and {, taking on values in the measurable
spaces (Z, Sz) and (Z, S;) respectively, be given. Let p;:(D) for D € Sz X Sz,
together with p;(C) for C € Sz, and p§(C) for ¢ € S§ be their joint and mar-
ginal distributions. If the measure p;¢(+) is not absolutely continuous with respect
to the product of the measures py X pi(-), then we define information by

(16) I(,8) = + .
But if p:(-) is absolutely continuous with respect to py X pg(-), then as(-)

denotes the Radon-Nikodym density of the measure py(-) with respect to
pr X pi(+) and the name information density is given to the function

(17) %5(+) = log az(-).
We shall give the name information to
(18) 16,9 = [ isle, Dpildz, d2)
IXZ
= f as5(2, 2) log arz(z, 2)p;(d2) pi(d?).
ZXZ

If (Z, Sz) and (Z, S7) are real lines, and the distributions prz(-)p¢(+), and pg(-)
are given by the densities ¢:¢(2, 2), ¢:(2), and ¢z(2), then definition (18) takes the
more classical form

(19) I, §) = /_: /_2 %z, 2) log f:(rz—()zq% dz ds.

We shall give the name entropy of the random variable { to its information with
respect to itself, namely

(20) I(5,8) = H(©).

Frequently instead of expressing the definition of information as given in
equation (18), it is expressed as the limit (or upper bound) of a certain sequence
of integral sums. The relationship between the different possible definitions of
information is investigated in detail in a series of papers by Perez [64]; Gelfand,
Kolmogorov and Yaglom [36]-[38]; Tzian-Tze-Peia [94]; and Dobrushin [19].
(The somewhat belated paper of Fleischer [34] reflects the insufficient contact
between Soviet and American investigators in this field.)
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3.2. We feel that the main evidence for the scientific importance of the con-
cepts of information and entropy is the fact that with their help a solution to
Shannon’s problem can be obtained. There exist separate and, up to now, uncon-
nected indications that the concepts of information and entropy may be of
value, quite apart from the circumstances described in section 2 (see section 8).
However, on the whole it must be said that the numerous attempts to employ
the mathematical concepts of information theory and entropy in places where
the word information is applied in its nonspecialized treatment only compro-
mise these concepts. From this point of view the very popular axiomatic defini-
tion of entropy, which was introduced at first by Shannon in [79], and later
simplified by other writers (Khinchin [48], and Faddeev [28]), played even a
negative role. The point is that not all the axioms which enter into the definition
of entropy are equally natural (for example, the formula of conditional entropy),
and also that, as Kolmogorov notes, it is not a priori clear whether there exists
a unique one-dimensional numerical characteristic which adequately reflects
the properties of such a complicated phenomenon that information turns out to

be in a diverse real situation. Nevertheless, it would be interesting
IV to give also an axiomatic definition of information. Obviously the

basic axioms here must be the nonnegative properties of informa-
tion, equation (21); the formula of conditional information (22); and, possibly,
the formula connecting information and entropy (20).

3.3. Let us note some of the important properties of information. Informa-
tion is nonnegative

(21) I(¢, ) = 0, moreover I(¢,{) =0

if and only if ¢ and { are independent. Its dependence on the distribution p(-)
is not eontinuous, but only semicontinuous from below (see Gelfand and Yaglom
[38]). This is explained (see [21]) by the fact that information density (in the
probability sense of convergence) depends continuously on the distribution
(with the metric of convergence in quadratic mean); but from the convergence
in probability of a sequence of integrands it does not follow that the sequence
of their integrals converges, unless these integrals are uniformly convergent. If
there exists a conditional probability distribution for the pair ¢ and { subject to
the condition that a third variable v is given, then the conditional information
I(¢, ¢lv) can be defined in a natural way. (The definition of conditional infor-
mation can also be given without the assumption of the existence of the condi-
tional distributions (see [19] and [52]).) It is, of course, a random variable. Then
the following important formula for conditional information holds

(22) I((&, M5 = I(r, § + EIG, E).

It can be deduced from equations (21) and (22) that if ¢(-) is some measurable
function, then

(23) I(#(), ) = I(, 9.
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It also follows from equation (22) that if the variables ¢, v, and § form a Markov
chain, then

(24) (&), 0 =I(v, §).

3.4. Now these results can be applied to Shannon’s problem. Suppose the
variables £, #, 4, and £ give the method of transmission. Then, by applying first
equation (23) and then equation (24), it is found that

(25) 15,9 = I(¢&m, 3, 8) < I, 7).

That is, the information between the input and output messages cannot be greater
than the information between the input and output signals.
The name capacity of the transmitter (@, V) will be given to the number

(26) C@, V) = sup I(n, 7),

where the upper bound is taken over all the pairs of variables 5, 7 connected by
the transmitter (@, V). The name W-eniropy of the message is given to the number

(27) H(p, W = inf I(¢ §),

where the lower bound is taken over all pairs £, £ which form the message (p, W).
[The name entropy is justified by the fact that, for a message with the condition
of perfect reproduction, H(p, W) = H(£).] Then equation (25) gives the fol-
lowing Shannon theorem: If the message (p, W) can be transmitted by the trans-
matter (Q, V), then

(28) Hp, W) 2C@Q,V).

It will be called the converse Shannon theorem.

This general and simple proof of the assertion of the converse Shannon the-
orem, based only on the ‘“‘algebraic”’ properties of information, was apparently
first pointed out by Kolmogorov [51]. It seems that it is not yet sufficiently
widely used in information theory literature, since in some papers facts which
are special cases of this result are still proved by more unwieldy ad hoc methods.

3.5. As for the statement of the Shannon theorem about sufficient conditions
for the possibility of transmission, the subject becomes more complicated. It is
easy to give examples which show that the condition of equation (28) (even if
< is replaced by < there) is insufficient for the possibility of transmission.
Condition (28) is sufficient for the possibility of transmission only in a certain
asymptotic sense, and in this respect the assumption that H(p, W) — = is
essential, since condition (28) is necessary and sufficient only when applied to
the problem of transmitting a sufficiently large quantity of information. The
numerous other assumptions are of the nature of regularity assumptions, and it
may be boldly assumed that they are fulfilled in applications.

The most vulnerable aspect of Shannon’s theorem, from the point of view
of practical applicability, is the fact that the coding and decoding methods,
whose existence is guaranteed by the fulfillment of condition (28), are obvi-
ously unavoidably connected with the coding of a large quantity of information
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as a single unit, and are therefore inevitably complex. (Furthermore, their

complexity increases when H/C — 1.) In this connection the

A% possibility of obtaining quantitative estimates of the minimal com-

plexity for the algorithms of optimal coding and decoding is tempt-

ing, though still remote (see [2], where similar estimates are obtained for the

algorithms of computational analysis). From this point of view [102] and [26]

are very interesting, since they give upper bounds for the average number of
operations for decoding algorithms in simple situations.

3.6. The concepts used in the mathematical formulation of the direct asser-

tion of Shannon’s theorem will be introduced below. The sequence of pairs of

random variables (¢, {*), where ¢t = 1,2, --- , will be called information-stable
if 0 < I(¢t ¢t < o and
29) fim i €689

toe 1 (g- t; g- t)
in the sense of convergence in probability. (The case of infinite information, for
which a theory can also be developed [19] is not considered here.)

In many applications, it is natural to take ¢t and {* as the sequences of seg-
ments [0, t] of certain processes {a.} and {a.} respectively, that is,

(30) ¢=Aays€[0,]}, = {&s€0,).
If the processes o, and &, have diserete time, and if the pairs (a,, &@,) fors = -- -,
—1,0,1, --- are completely independent, then the assertion of information

stability of the segments {* and {* reduces to the assertion of the law of large
numbers for a sequence of sums of independent random variables. Therefore,
the necessary and sufficient conditions for information stability can easily be
obtained from the theory of limit theorems for the sums of independent random
quantities. Similarly, if the pairs (a,, @) form a Markov chain, then the assertion
of information stability reduces to the assertion of the law of large numbers for
functions of variables connected in a Markov chain. This was first pointed out
by Rosenblatt-Rot [75]. If a, and &, form a joint stationary ergodic process with
discrete time and state-space, then the assertion of information stability is
easily obtained from the well known theorem of McMillan [58] and this theorem
itself signifies information stability of the sequence of pairs (¢*, {). The earliest
results on conditions for information stability for stationary processes with an
arbitrary set of states, and for processes with continuous time were obtained
by Perez [65], [67]; and were established under rather wide conditions by
Pinsker [72].

The next task here seems to be the generalization of these results to
VI the case of a “sequential scheme” (compare [40]), that is, to the

case when {'= {af, s € [0,¢]},{t = {&, s €[0,¢]}. Recently,
Jacobs [43] introduced an interesting class of almost periodic processes and
proved McMillan’s theorem for them, which also makes it possible to establish
their information stability. It seems important at present to carry over Jacob’s
results to almost periodic processes with continuous time and state spaces,
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since this is exactly the statistical nature of many of the processes
VII arising in radio-engineering in connection with modulations of
stationary processes.

Pinsker’s result [72] is interesting and conclusive, since it shows that, if ¢
and {* are sets of variables possessing joint Gaussian distributions, then for
information stability it is necessary and sufficient that I(§*, {) — .

It is clear from the above that the property of information stability holds
under very wide conditions. Its generality can be compared with that of the
law of large numbers, which is related to it.

3.7. Examine further the sequence of transmitters (Q¢, V*) with C(Q?, V¥ < .
It will be called information stable if there exists an information stable sequence
of pairs (v, %), connected by the transmitters (Q¢, V*) such that

@31) lim L5 _

= C(Q", V)

On many grounds one may hope that the property of information stability
for a sequence of transmitters when C(Q*, V¥ —  will turn out to be as gen-
eral as is the property of information stability for sequences of random variables.
The mathematical results so far obtained, however, are much less wide here. It
was proved by the author [19] that sequences of increasing segments of a homo-

geneous memoryless channel are information stable. By using the
VIII theory of sums of independent variables it would obviously not be

difficult to obtain general (and perhaps necessary and sufficient)
conditions for information stability for memoryless channels in the nonhomo-
geneous case, and also for a sequential scheme.

Numerous investigations [90], [32], [33], [12] devoted to the solution of the
problem posed by Khinchin on the coincidence of ergodic and ordinary capacity
of a channel may be regarded as the proof of information stability for the seg-
ments of a channel with finite memory in the Feinstein-Khinchin sense. From
the results of [8], it is possible, by using the theorem of Khu-Go-Din, which is
given below (see section 3.10), to deduce indirectly the information stability of
segments of homogeneous channels with finite memory and discrete state spaces,
when certain restrictions are imposed on the transition function g, It seems
interesting to give a direct proof of information stability for this case and to

establish (in the fashion of the ergodic theory of homogeneous finite
IX Markov chains) a condition which is necessary and sufficient for
information stability for any initial state.

For the nondiscrete case the only general result is that of Pinsker [72] which
proves that in order that a sequence of Gaussian transmitters should be infor-
mation stable, it is necessary and sufficient that C(Q? V¢ — «. The problem

of obtaining wide sufficient conditions for information stability of
X segments of channels, with generalizations to the case of contin-

uous time and the case of nonhomogeneity in time (perhaps almost
periodicity), is of great importance here.
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3.8. The sequence of messages (p*, W% with H(p!, W*) < « will be called

information stable if there exists an information stable sequence of pairs (¢, £*)
forming the message (p‘, W*) such that

i LESE)
(62) P10 R

Less is known about the conditions for information stability for a sequence of
messages than for a transmitter.

In the case of messages with the condition of perfect reproduction, the prob-
lem reduces to the information stability of pairs of variables (¢, £*), where &
has the distribution p‘. It can usually be solved on the basis of the results given
earlier. In another paper, [19], we gave proof of the information stability of a
sequence of communications homogeneous in time, with a component-wise con-
dition of accuracy of reproduction, and independent components as the number

n of components tends to infinity. Here the problem of immediate
XI interest is comparable to problem VIII for transmitters. Pinsker

proved that for information stability of a sequence of Gaussian
messages it is necessary and sufficient that H(p?, W*) — . German, a student .
of Moscow University, proved in his thesis that a sequence of messages with
component-wise conditions of accuracy of reproduction is information stable

when the input process is stationary and ergodic and takes on a
XII finite number of values. In this connection, the generalization to

the case of a continuous set of message values, and of continuous
time, is of immediate importance.

3.9. The following definition is introduced. Let W C R?, where R is n-dimen-

sional Euclidean space with points Z = (x;, - - , 2.). It is convenient to take
the number (%', /) = max; |2; — x| as the distance between the points 7’ =
(#y, -+ ,2%) and 7 = (2¥, - - -, 2%). By [U],, where ¢ = 0, we denote the set

of all points Z € R" such that for some £ € U, the distance (%, ) < e. We
denote by (Q, V.) a transmitter for which, in definition (2), the set V is replaced
by [V]; by (p, W.) we denote a message for which the set W is replaced by [W]..

3.10. The following Shannon theorem can now be formulated: Let the infor-
mation stable sequences of transmitters (Q¢, V) and messages (p', W*) be such that
the functions =4(- , -) and pj(- , -), wherei =1, --- ,Nt,andj = 1, --- , M¢, are
uniformly bounded in <, j, and t and for any a > 0, Nt = o {exp [aC(Q¢, V!)]},
Mt = o{exp [aH (pt, W*)]}. Let H(p*, W) — o, and let the lower limit

0@, V9
(33) o LWy
Then for any e > O there exists a ty sufliciently large so that for all t = t, the message
(p*, Wo) can be transmitted by the transmitier (Q*, V7).
This theorem will be called the direct Shannon theorem.
Let us consider this result. First, in formulating the theorem we note that it
is not always possible to replace Wiby W*, and V! by V. This is clearly evident,
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for example, in the case of messages with the condition of perfect reproduction,
since the error arising in transmission (with however small a probability) in any
noisy channel leads here to the incomplete congruency of the input and output
messages. But the converse Shannon theorem about the impossibility of trans-
mission shows that the message (p?, W?) can be transmitted by the transmitter
(Q4, VY only if [C(Q, V)]/[H(p?, Wi] = 1. Since this ratio usually depends
continuously on e, it follows from the converse Shannon theorem that for a wide
class of cases condition (33) (with the sign > replaced by ), is also necessary
for fulfilling the assertion of the formulated theorem. Indeed, the converse
Shannon theorem is given in this very form in most of the previous papers. In
[19] conditions are given under which it is then possible to replace Wi by W*
and Viby V! in the formulated theorem.

The restriction on the number of functions #i(- , -) and pi(- , -) turns out
to be rather weak and is fulfilled in interesting particular cases. Conversely, the
requirement of the boundedness of the functions =i(- , -) and pi(- , -) is ex-
tremely stringent. In [19] the supplementary conditions necessary to replace
the requirement of boundedness are investigated in detail. They are closely re-
lated to the requirements for information stability and recall Liapunov’s con-

ditions for the central limit theorem. It would be interesting to
XIII see how they are fulfilled in concrete situations (see sections 3.7

and 3.8). In [19] this question is partially examined for the cases
of memoryless channels and a message with a component-wise condition of
accuracy and independent components.

Information stability conditions for sequences of transmitters and messages
are of fundamental importance. It was recently proved by Khu-Go-Din that a
stipulation very close to the assertion of information stability of sequences of
transmitters is necessary in order that, for sufficiently large ¢, it should be pos-
sible to transmit by the transmitter any information stable message with a con-
dition of perfect reproduction, for which equation (33) held. Khu-Go-Din’s

result shows that the introduction of a condition of information
X1V stability for transmitters is unavoidable. It seems interesting to

attempt to obtain a similar result for information stability require-
ment for sequences of messages.

This form of the theorem contains as a special case (if inessential differences
of formulation are ignored) all earlier published theorems of this type (see [49],
[(34], [65], and [62]). However, these papers examine, besides the Shannon
theorem itself, also the question of conditions for the information stability of
transmitters and messages studied in them,; a matter which in our presentation
is treated as a separate problem.

3.11. In the case where the sequence of transmitters is a sequence of segments
of a homogeneous channel, and the sequence of messages is a sequence of homo-
geneous messages with an increasing number of components, a somewhat dif-
ferent formulation of the basic Shannon theorem is often preferred.

In this connection the following concepts will be introduced. Let (@5, V") be
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the transmitter given by a segment of length n of a homogeneous channel with
an initial distribution po. Then,
(34) T = lim %C(Q;o, o)
will be called the mean capacity of the channel if this limit exists for any initial
distribution po, and does not depend on this distribution. Further let {p*, W=}
be a message homogeneous in time, with n components. The name rate of crea-
tion of the message will be given to the limit:
(35) A = lim }L,H(pn, W),
n—row

These definitions can easily be generalized to the case of continuous time. It
follows directly from the Shannon theorems formulated above, if H > C, that
for sufficiently large n the message {p., W"} cannot be transmitted by the trans-
mitter (Q%, V). If, on the other hand, C > H, and the requirements of infor-
mation stability are fulfilled, then, for sufficiently large n, the message (p®, W*)
can be transmitted by the transmitter (Q%, V).

Sometimes a slight variation of these definitions is preferable. Let Z = {{u, {u}
be a joint stationary processes. Then

(36) 12) = lim 3 1{Gs, -+ 8, G o, 6}

will be called the rate of transmission of information. (The conditions for exist-
ence of the limit in equation (36) as well as other variations of this definition were
studied by Pinsker {72]). It is then natural to assume that

(37) C = sup I(50)
where the upper bound is taken over all processes 3¢ = {nn, 7.}, such that for
any n, the variables (g, : -+, 7,) and (a1, - -+, 7») are connected by a segment

of length n of the channel with some initial distribution for the state of the
channel. It is also assumed that

(38) IT = inf I(2)
where the lower bound is taken over all processes & = {£,, £x} such that for
any n, the variables (&, --- , &) and (£, - -+ , £,) form a message with n com-

ponents. The deduction of equation (37) for channels with finite memory in
the Khinchin-Feinstein sense is contained in [90] and [32]. The problem of
establishing general conditions for its fulfillment, and also the almost com-
pletely uninvestigated problem of establishing conditions for equa-
XV tion (38) are obviously closely linked with problems IX, X, and
XII of obtaining conditions for the information stability of the
corresponding channel and message.
3.12. In this paper the formulation of Shannon’s theorem reflects mathemat-
ically the real picture of transmission of information, lasting for a certain long
but finite period of time. But in most of the earlier papers, a different mathe-
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matical idealization was introduced in which the, transmission of information
was thought of as lasting for an infinite time. The corresponding definitions, as
they are given for simple cases in well known papers, will not be given here. For
the general case they are unwieldy and can be found in [19], section 1.8.

For simple cases, which have already been studied in earlier literature, the
transition from the Shannon theorem in the formulation given above to the
corresponding theorem for infinite transmission is almost trivial. However, this
is not so for the general case. An example will be described intuitively to clarify
the difficulties which arise here. Let the message under transmission be & = §,
where — <t < «, {is a random variable with a continuous distribution, and
where the condition of accuracy of reproduction is the condition of perfect repro-
duction. The rate of creation of such a message is infinite. However, there exist
coding and decoding methods which enable it to be transmitted by a trans-
mitter with a nonzero mean capacity which is as small as desired.

To do this, having chosen the monotone sequence of times Ty > T: > ---,
T, — — =, for the segment [T, T»], we transmit information about £ with
accuracy of up to 2. By choosing T»41 — T sufficiently large, this can be
done with as small a probability of error as desired. For any time ¢, information
about £, will be obtained at the output right up to that very time with as great
an accuracy and as small a probability of error as desired. Thus, although
H > C here, transmission over infinite time is nevertheless possible. An example
of a similar (but essentially more complicated) situation for which H < « can
also be introduced.

Tt would be interesting to clear up this eycle of problems completely. In order

to do this it may be necessary to reformulate the definition of
XVI entropy and of capacity (compare with the different definitions of
the rate of transmission of information in [51]).

4. The calculation of capacity, of W-entropy, and of
optimal distributions

4.1. Since the solution to Shannon’s problem is given by the capacity of the
transmitter and the W-entropy of the message, it is important to learn how to
calculate explicitly these quantities in concrete cases. Also of interest, and
closely related to the above, is the question of the calculation of optimal input
distributions to the transmitter, that is, of the distributions p in the space of
input signals, such that if 4 has the distribution p and the pair (5, 4) is connected
by the transmitter (@, V), then
(39) I(n,7) =C@Q V),
as well as the question of the calculation of optimal message distributions,
that is, of the joint distributions r(- , -) in the product of the spaces of input

and output message values, such that the pairs (¢, £) with distribution (- , -)
form the message (p, W), and
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The importance of optimal distributions is explained by the fact that, as the
inequality of relation (25) shows, if the variables £, », 4, and £ provide the means
of transmitting the message (p, W) through the transmitter (@, V), then

(41) I(55 =CQ, V), I % z H,W).

It follows from this that when the entropy of the message is close to the capacity
of the transmitter (that is, when this capacity is used almost completely) the
coding and decoding methods must be chosen so that the differences I(§, £) —
H(p, W) and C(Q, V) — I(», 7) are small. It is natural to deduce from this that
the distributions of the input signal 4 and of the message values £ and £ are al-
most optimal, which means that the value of the optimal distributions suggests

how to choose the transmission method. From the mathematical
XVII point of view, it is far from obvious that the smallness of the differ-

ences I(¢,£) — H(p, W) and C(Q, V) — I(y, 7) implies the near-
ness of the corresponding distributions, since the space of the distributions is
not compact and information is not a continuous functional. Nevertheless it
appears that this is true under sufficiently broad assumptions.

4.2. In accordance with the definition of capacity, in equation (26), the prob-
lem of calculating it is the problem of calculating the maximum of a functional
(and in the case of discrete space, of calculating of a function of several vari-
ables). The character of the problem is related to the special analytical form of
the functional under examination, which enables the solution to be simplified;
and also to the fact that restrictions in terms of inequalities are imposed on the
region of variation of its argument (the restriction V and the requirement of
nonnegativity of probability distributions). The general theory of variational
problems with such restrictions has not yet been adequately worked out (see [5]).

An explicit expression for the capacity can be attained only in exceptional
cases, but in papers by Shannon, and especially Muroga [79], [60], and [61],

an algorithm has been worked out which reduces the problem to the
XVIII solution of a transcendental equation. These investigations were

carried out at a level of “physical accuracy” and it seems impor-
tant (especially for the more complicated nondiscrete case) to complete them.
This could be done by analyzing in detail questions of existence, examining
special cases and so on. In [81] Shannon gave a geometrical treatment of the

problem for the discrete case and showed, in particular, that the
XIiX set of optimal distributions is convex. It would be interesting to

find methods of calculating the extreme points of this set and also
to carry over the investigation to the general case.

Analogous problems exist in connection with calculating the entropy
XX of messages and optimal distributions for messages. However, al-

most nothing has been done here (apart from the cursory remarks
in [86]).
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4.3. In the case where the transmitter is a segment of a memoryless channel,
it is not difficult to show (see [19] or [31]) that among the optimal input distri-
butions there exists a distribution with independent components. It is easily
deduced from this that, if C, is the capacity of a segment of length n, then

(42) Cy = nCh.

However, the calculation of C; usually turns out to be an equally difficult prob-
lem. For a Gaussian memoryless channel with additive noise Shannon’s formula

43) C, = nlog (1 + %8)’
holds, and the optimal distribution is Gaussian.

Similarly, for a message with independent components and with a compo-
nent-wise condition of accuracy, there are among the optimal distributions (see
[19]) some for which the pairs (£;, £) are independent. It follows again from this
that, if H, is the entropy of the message with » components, then

(44) H, = nH,.

And particularly simple is the following formula for a homogeneous Gaussian
message with a condition of boundedness on the mean square error,

(45) . = nlog (1 + &>,
Pa

where pg is the mean square error, and p, is the variance of a component of the
input signal.

4.4, In more general situations explicit formulas for the capacities and W-
entropies cannot be obtained. In this connection of great importance is a some-
what simpler problem, namely to calculate the mean capacily C and the rate of
creation H of the message (compare section 3.11).

The problem of calculating C and H has already been adequately solved for
Gaussian transmitters and messages which are especially important from the
point of view of applications. In fact it can be shown fairly easily (see Pinsker
[69], [72]) that in these cases there are always Gaussian distributions among the
optimal distributions. It is possible to give for Gaussian distributions (see [80]
and [38]), a simple expression for information in the finite-dimensional case.
This can be generalized to the infinite-dimensional case. (In particular, a method
of calculating information for certain classes of Gaussian processes is developed
in [38].) General formulas for the rate of transmission of information, for the
mean capacity, and for the rate of creation of a message in terms of the corre-
sponding spectral densities were obtained by Pinsker in [68], [69], and [72]. His
results were partly repeated in [73]. The methods of solving such problems are
closely linked with the analytical methods of second order stationary processes.

The following Shannon formula is the most popular in radio engineering
applications. If Cr is the capacity of a transmitter with a finite bandwidth and
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with additive white Gaussian noise for transmission during the time 7, then
as T —

(46) Cr ~ 2WT log (1 + ﬁi)'

The situation is worse for other classes of processes. Thus, for example for
Rayleigh processes, which are frequently used in radio engineering, the problem
immediately leads to serious difficulties. (Rayleigh processes arise
XXI in passing narrowband Gaussian processes through envelope detec-
tors. See for example [14]. Something was done on this subject
in [61].)

4.5. It is easy to deduce a simple formula for the rate of message creation
with the condition of perfect reproduction, if the input process is a homogeneous
finite Markov chain (see [79] and [48]). However, if we even simply replace the
Markov chain by a process which is a function of a Markov chain, the problem
becomes immeasurably more difficult. An ingenious solution to this problem was

proposed by Blackwell [6]. Most important here is the question of
XXII whether it is impossible to generalize this solution to the case where

the condition of accuracy is an arbitrary component-wise condition

or an additive condition. It is possible that analogous methods can
XXIII be applied to the wholly unexplored problem of finding the mean

channel capacity having finite memory. In this case there may be

(see [8]) among the optimal input processes, that is processes 3¢
XX1V for which the upper bound in equation (37) is attained, ones which

are functions of Markov processes. It is of interest to give a method
for calculating the parameters of such processes.

4.6. The difficulty of finding explicit expressions for the W-entropy and capac-
ities naturally leads one to consider making use of the smallness of some of the
channel and message parameters.

In the case when the transmitter is such that the output signal differs very
little from the input signal, and in the case when the message is such that.its
output meaning is close to its input meaning, the problem is closely linked with
the nonprobabilistic theory of e-entropies and e-capacities (see [54], section 2).
Another useful restriction is the assumption that the channel has a random
parameter. It is natural to assume that in this case the mean capacity

(47) T = sup f 1(Zy)p(db),
LIS

where p(-) is the distribution of the parameter 8(¢), and I(Z;) is the rate of
information transmission for a pair of processes ({n, {2) such that ({1, < - -, ¢a)
‘and ({3, ---, £3) are connected by a corresponding conditional channel with
parameter b. The upper bound is taken over all input processes {{.} for which
there exists an input process {{»} such that the pairs ({1, -+ - , &) and (§1, =+« , {n)
are connected by the channel under investigation. It can be deduced from papers
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by Tsybakov [91], [92], and [93], that formula (47) enables us to calculate the

capacity of a wide class of physically realizable channels for the propagation of

radio waves, particularly when phase fluctuations exist. In [16], formula (47)

was proved for a special case which could easily be extended to the general case

if only the space B of parameter values were finite. But since, in the applications
of formula (47) which we mentioned, one must deal with a variable

XXV B8 which must have a continuous distribution, it would be interest-
ing to deduce formula (47) also for that case.

It should be noted however that a channel with a random parameter is non-
ergodic under any sensible interpretation of this term. Therefore the direct
Shannon theorem does not hold for it. But this does not take away the physical
significance of C since it can be treated as an approximate value for the capacity
of a channel with a slowly changing parameter, for which the direct Shannon
theorem is applicable.

4.7. From among the important domains of research which are not discussed
here, let us note the papers on the calculation of the capacity of multiwire
channels [63], and on the statistical evaluation of information-theoretic param-
eters of realizable channels and messages [4], [17], and [56].

6. The investigation of optimal codes

5.1. The question naturally arises as to the simplest way of constructing
encoding and decoding methods whose existence is guaranteed by Shannon’s the-
orem. This problem will be examined only for the simplest case where the mes-
sage is one with the condition of perfect reproduction, and such that the space
X of input message values consists of S elements Ey, - - - , Eg, and p:(E;) = 1/8,
forz =1, ---, S. This message will be denoted by (p, M*). Such a case is par-
ticularly important, since the course of the proof of Shannon’s theorem for an
arbitrary message suggests, [19], that the solution of the problem for this special
case enters as a direct component in the general solution. We shall not dwell
here on an interesting series of investigations, [39], devoted to the so-called
nonuniform code, which can be interpreted as investigations of effective coding
methods for other classes of messages. '

5.2. Let the transmitter (Q, V) be given. By e(Q, V, S) we shall denote the
smallest e such that the message (p, M%) can be transmitted by the transmitter
(@, V). Since, for S — o, the sequence of messages IS is information stable
with entropy log S, then if

. log St

(48) e, v <

and if the assumptions of the direct Shannon theorem are satisfied for the se-
quence C(Q¢, V), the following relation is satisfied

(49) lim e(Q?, V¢, S = 0.

t—
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It follows from the converse Shannon theorem that if, on the contrary,
log S¢

0 20 v >
then
(51) lim e(Qt, V', 8% > 0.

{—®

By using constructions which were applied in the proof of the direct Shannon
theorem, it is not difficult to prove that, if the sequence (Q‘, V*) is information
stable, equation (51) can be replaced by the stronger equation

(52) lim e(Qt, V¢, 8% = 1.
t— o

The difference between the formulation of equations (51) and (52) was empha-
sized by Wolfowitz [101].

5.3. If equation (52) describes in a sufficiently exhaustive fashion the asymp-
totic value of e(- , -, -) under condition (50), then conversely, in the case when
equation (48) is satisfied, it is desirable to make relation (49) more precise,
estimating the rate at which e(- , - , -) tends to zero. Such an estimate is partic-
ularly important if (Q", V*) is a segment of length n of a homogeneous channel,
since if e(@™, V™, S™) is sufficiently small, the encoding for a channel operating
continuously can be carried out in separate blocks of length n, (compare with
similar constructions in [31] and [49]). This means that the smaller n, is, the
simpler will be such a coding method. Perhaps, under very broad assumptions
it follows from equation (48) that, for some a > 0,

(53) e(Q, V', 8t) = o[2—eC@V1],

In any case, by following through the proof of the direct Shannon theorem [19],
it is easy to see that this will be so if the assumption of information stability of
the sequence (Q¢, V?) is replaced by the stronger assumption that there exists a
sequence of pairs (¢, 7*) connected by the transmitter (Q¢, V*), such that for
any ¢ > 0 and some d(e¢) > 0,

. tyge(nhat)
(54 mm Plee, vy T
For a memoryless channel, condition (54) follows from the well known theo-
rems on large deviations of sums of independent variables [13] if it is assumed
that the optimal input distribution is ‘‘sufficiently good.” By such means
Feinstein [30] proved assertion (53) for homogeneous finite memoryless channels.
For channels with a finite number of states, assertion (54) can
XXVI obviously be deduced from the well known estimates for large
deviations for sums of variables connected in a Markov chain, but
in a more general situation separate investigations are necessary.
5.4. Assume now that (Q*, V") is a segment of length n of a homogeneous
channel. Further, assume that S* = [27#]. Condition (48) now means that

> e} = o[2-4@C@VY],
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(55) H < T,

where C is the mean channel capacity. Investigations which were carried out in
simplest cases allow us to hope that when n — « and for certain a, b > 0,

(56) (@, V*, [207]) X ne2~

Here the notation z, )< y, means that

(57) 0<lim®<m? <.

e dn noweln
The more precise asymptotic expression
(58) e(@, V=, [278]) ~ cno270n,

where ¢ is a constant, seems obviously impossible to obtain (al-
XXVII though this has not yet been proved even for one case). The point
is that in order to investigate the probability e(- , : , -) with such
a high degree of accuracy, the arithmetic properties of the number 7 are essential.
It would be interesting to prove the existence of the constants ¢ and b, but
naturally it is more important to learn how to calculate them. This turns out
to be difficult even for the simplest finite memoryless channels. The author
studied this problem for the case of memoryless channels where the matrix of
transition probabilities Qo = (g:;) possesses the following property of symmetry:
each of its rows is a permutation of any other row and each of its columns a
permutation of any other column. It appeared that for such channels

b = log R(h) + (1 — k) log m(h) + log N

(59) —1
a4 =—,
2h
where
_N X _ dlog R(h)

log R(h) — hm(h) = —H,

(\.
and where M is the number of elements in the input signal space and N is the
number in the output signal space, provided that

1 1 1
(61) H =z Hey = ém (é) - IOgR (é)

A particular case of the channels under investigation is the symmetric binary
channel with matrix

(62) Q= (q‘ ‘”),
U} 31

where ¢; + ¢. = 1. Elias [24] and [25] studied a problem in connection with
this channel which is of interest here. (His expression for a, however, is errone-
ous.) When H < H;, it is only possible to obtain distinet upper and lower
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bounds for b. The problem of calculating b exactly, even for the
XXVIII  case of the simplest symmetric binary channel, is very difficult.

Evidently, its solution can be made possible only with the aid of
some new ideas. Elias also studied [24] the case of a binary erasure channel, that
is, a channel with the matrix

0
(63) (‘h Qz)y Gt =1
0 0 Q@

which is not symmetric in the sense used here. The results of Elias can appar-
ently be generalized to a certain class of nonbinary channels. How-
XXIX ever, the problem of finding the parameters a and b even for a
nonsymmetric binary channel again becomes very difficult, and the
approach to it is as yet not clear. (Roughly speaking, Hi; coin-
XXX cides here with the mean capacity C, so that the difficulties are
the same as for the symmetric binary channel when H < Hy.)
In the general case of a finite memoryless channel, it is possible to obtain only
certain estimates (see [82]).

In [85] Shannon,examined the problem for an important class of Gaussian

memoryless channels with additive noise, and once again he found a complete
solution only for the case when H = Hy. It is not clear to what

XXXI extent his results can be generalized to other Gaussian channels.
Apparently the results obtained for symmetric finite memoryless

channels can be generalized to certain channels with a continuous set of signals,
which generate the circle |z2| = 1, and such that their transition

XXXI11 probabilities are invariant under rotations. (Such channels can well
represent transmissions with phase modulation.)

5.5. In all the papers referred to on constructive coding methods with min-
imal error, the method of random codirg is used. This consists of the following.
We shall consider only nonrandomized coding. In accordance with the remarks
made in section 2.11, this is no real restriction of generality. The coding can
then be defined as a function f(F.). By the code %(S) we shall denote the col-
lection of values f(Ey), - - - , f(Es). By ¢{Q, V, X(8S)} we shall denote the small-
est e such that the message (p, M) can be transmitted by the transmitter
(@, V) using the code X(S) and some method of decoding. Now assume that
there is given a certain probability distribution r(-) on the space (X, Sx) of
input signals, and a system of independent random variables ¢, - - - , ¢s, having
the distribution 7(-). Then X(8) = (¢, - - - , ¢s) Will be called a random code,
and the mathematical expectation

(64) 2@, V,8) = E({Q, V, X(8)})

will be called the mean probability of error for the distribution r(-). Obviously
éQ,V,S8) = e(Q, V,8). All the well known asymptotic upper estimates (enu-
merated above) for the probability e(Q, V, S) are based on this inequality; but
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the study of the mean probability of error is also independently of
XXXIII  interest, in that it characterizes the probability of error for a typi-

cal code. There are grounds for hoping that, in a wide class of cases,
the following law of large numbers is true, as n — «

e{Q, V", (2]}
(65) é{Qn’ Vn’ [2nH]}
1t would also be interesting to study in greater detail the asymptotic distribution
of e{Q~, V*, k([2"H])} as n — . Most commonly r(-) is taken to be the optimal
distribution of the input signal. In this connection, it is clear, from the usual
proof of Shannon’s theorem [19] that condition (54) implies not only relation
(53), but also the stronger assertion

— 1 (in probability).

(66) é(Q!, VY, 8t) = o(2-aC@.V9),
XXXIV Apparently, in a wide class of cases,
(67) &@Q, v, [2F]) X n2n,

The values of @ and b have so far been calculated only for the same cases (see
above) when the constants @ and b were considered. It was shown that, when
H = H.y,a = @aand b = b. This means that for sufficiently high rates of infor-
mation transmission, the random code is (with accuracy up to a constant)
asymptotically “good”” as well as optimal, which (see [35]) permits one to con-
struct ““good’” codes by the Monte Carlo method. It should be noted, however,
that for a Gaussian channel Shannon [85] had to take for »(-) not the optimal
distribution but a certain distribution which was only asymptotically optimal.
(Instead of the distribution of n independent normal variables with zero mean
and variance p,, he had to take the uniform distribution over an n-dimensional

sphere of radius \fn—z_):.) It would be of interest to know whether it
XXXV is possible to reduce @ and b by a similar method in other cases.

When H < H;;, explicit expressions for @ and b can similarly be
found. For example, for the symmetric channels described above

2

It is interesting that, in all the cases studied, Hei turned out to be the break
point of the derived function b(H). It would appear that b < b

XXXVI whenever H < H,;, but this has not been proved even for a sym-
metric binary channel (compare problem XXVIII). The problem
of calculating @ and b is simpler than that of calculating the con-

XXXVII stants a and b, and it appears realistic to find @ and b in a rather
wide class of cases.

5.6. Pecause of the difficulty in the practical realization of transmission and
in the theoretical investigation of arbitrary codes, a special class of group codes
has been singled out [42], [88], [10], [95].

Let us postulate a finite memoryless channel such that the number of ele-

(68) g=-1 5=H+2logR<%>+logN.
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ments in the input signals space is M = ¢*, where ¢ is a prime number and % is
an integer. Y, shall be identified with the direct product of k cyclic groups of
order ¢, and Y will be taken to be the direct product of n groups Y,. The code
K(S) will be called a group code if it forms a subgroup of Y. We shall denote by
é(Q, V, S) the smallest value of the probability e{Q, V, X(S)}, where the min-
imum is taken over all group codes. It turns out, for a wide class of homogeneous
memoryless channels whose transition matrix is symmetrie, and also for a sym-
metric binary channel and for a binary erasure channel, that [25] in the limit
asn — o and H = Hgy,

(69) e(@, v, [27]) X &@~, v, [27)),

and thus the best group code is asymptotically as good as the best among all
codes. This follows from the fact that, under a certain natural definition of the
concept of a random group code, the mean value of the probability of error
over all group codes, for all H, coincides asymptotically with &(@~, V=, [2"H]).
Thus, almost all group codes, when H = Hg;, are constructed as
XXXVIII optimal codes. (In order to make this assertion more precise, it
would be necessary to obtain an equation such as (65) for group
codes.) When H < H.., the asymptotic behavior of &(Q*, V*, [27#]) is unknown
even for a binary symmetric channel. The results described above can appar-
ently be extended to a somewhat wider class of memoryless chan-
XXXIX  nels (compare problem XXIX). The question of whether group
codes are asymptotically optimal is extremely interesting, even
XL only for the simplest classes of channels with memory.
The creation of optimal algebraic coding methods for A ;é g* is
apparently impossible. Then, as far as the channels with a continuous
set of states are concerned, generalizations are apparently possible to the case
referred to in connection with problem XXXII, where Y can be identified with
the multiplicative group of complex numbers |z|] = 1. No method is at present
known for generalizing algebraic coding methods in such a way as to make them
applicable to Gaussian memoryless channels.

5.7. The problem of constructing optimal codes, that is, the problem of cre-
ating relatively simple algorithms yielding a code &(S) such that e{@", V*, X(S)}
coincides with or at least is close to e(@7, V=, 8), is very difficult. It can be solved
only for rather small separate values of n and S. It becomes only a little easier
if it is restricted to the examination of group codes, [88]. For this reason other
nonprobabilistic methods for estimating the quality of a code have been intro-
duced and profitably studied. Assume that (@, V) is a finite memoryless chan-
nel. Then Y~ is the space of sequences ¥ = (y1, - - - , y») Where y; takes on the

values 1, - - - , M. Defining p{(y1, - -+ , ¥x), (1, - -+ , ¥n)} as the number of indices
i =1, ---, nfor which y; i, we transform Y» into a metric space.
The code distance for the code K{f(E)), - - - , f(Es)} will be defined as

(70) d(X) = rfl,i? p{f(E), f(E}.
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Intuition suggests that, generally speaking, for channels with symmetric ma-
trices, and ccdes with large code distances the probability of error is smaller.
It is not difficult, however, to give examples, even for a binary channel, of codes
such that d(X) < d(X’), but e(@Q", V*, X) < e(Q", V*, X'). The coincidence of
codes which are optimal with respect to the probability of error and to code
distance can only be proved for a very narrow class of cases [87] when there
exist densely packed codes, that is when the whole space ¥ can be represented
as the sum of nonintersecting spheres with equal radii (the centers of these

spheres form the densely packed code). Even the asymptotic coin-

XLI cidence of these two senses of optimality is not proved. How-
ever, one may conjecture that if
(71) d(n, 8) = max d{x(S)}

(where the maximum is taken over all codes % (S) of size S, for a transmission
of length n) then for a sequence of codes K{[2"#]} withn = 1,2, - .-

d{x([2"))}
(72) dfn, (2F) Y
it follows that
efQr, v, (2]}
@) o{Qn, Vv, (28] L

The converse is false. The function d(n, S) is determined only for certain values
of the arguments (see, for example, [44], [87]) and up to the present

n— o,

XLII time no solution has been found for the most natural problem of
calculating the constant « such that
(74) d{n, [2"7]} ~ an,

XLIII despite the elementary nature of its formulation. Problems similar
to XLI and XLII arise and remain unsolved when these problems

XLIV are restricted only to the study of group codes.

The concept of code distance can also be introduced in a natural
way for the simplest channels with a continuous set of states. In this case

one takes for p(- , -) the usual Euclidean distance, and the investigation of
d(n, S) approaches the well known geometric investigations into the filling up

of space by spheres.

5.8. The assumption that S = [2"#] made above is the most natural, since
it corresponds to the assumption of constancy of the transmission rate. There
is, however, some interest in investigating what occurs for another asymptotic
value of S. In particular it has appeared that the problem becomes substantially
simpler if it is assumed that S is constant. In this case solutions have been found
for the analogues of problems XLII (see [3]; it is interesting that here for a binary
channel « = 1/2 but @ — 1/2 when S — ), XLI, XLIII and XLIV, and for
the question of calculating the constants a and b. Here, of course, b > b, so that
the random code turns out to be worse than the optimal one. However, even
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for a nonsymmetric binary memoryless channel (quite apart from
XLV more complicated cases) the asymptotic value of e(@®, V», S)
remains uninvestigated.

The assumption that S is constant means that transmission at a very slow
rate is being studied. Another extreme case is that of transmission at the maxi-
mum possible rate, which approaches the capacity. The following problem was
pointed out by M. Pinsker. Let N(n, ¢) be the largest possible value of S such
that the message (p, M) can be transmitted by the transmitter (@, V*). The
asymptotic value of N(n, €), when ¢ is constant and n — o, must be studied. It
is easy to see that ¢{Q, V", N(n, €)} = ¢, so that studying N(n, ¢) is one way of
studying the asymptotic value of the probability e(@*, V7, S). It is not difficult
to show that, for a homogeneous memoryless channel with a symmetric matrix,

(75) N(n, €) X n—1/2 2iC+oueVn

where C is the channel capacity, u. is the solution of the equation ¥(u.) =

e where ¥(-) is the normal distribution function, and ¢ =

XLVI . [dm(0)/dh]'?, see equation (60). Certain estimates for N(n, ¢) can

be extracted from the papers of Wolfowitz. It is interesting to
investigate N(n, ¢) for other channels.

All the statements introduced above on the asymptotic investigation of

e(@*, V*, S) can be regarded as special cases of the following prob-

XLVII lem: find a relatively simple function g(n, S) such that, when

n —> 0 ’

(76) @, v, 8) X g(n, 8)

uniformly in 8. (See similar problems in the limit theory for sums of random
summands [50].) However, this problem will arise only after the solution of
problem XXVIII.

5.9. Kolmogorov stated the problem of this section somewhat differently.
To be precise, he changed the hypotheses of section 5.1 in that he considered
S = a*, where ¢ and s are integers, and the message values are identified with
the sets (E;, -+, E;,) where 4, = 1, -+ -, a. Further, suppose that the space
X of the output message values coincides with X, and that the accuracy condi-
tions will be given by the set of s functions

) 0  ifE, = E,
(77) pk{(E’iu e )Ei->y (Ejn ) Jj.)} = {

1 if E;, #£ E;,.

We shall take the input distribution to be uniform. Finally, the set W will
consist of the single point (0, ---, 0) (compare section 2.7). Such a message
will be denoted by (p, 9*). By ¢(@, V, S) (compare section 5.2) will be denoted
the smallest ¢, such that the message (p, 9¢) can be transmitted by the trans-
mitter (Q, V). From the intuitive point of view, it can be said that here the input
message is £ = (&, - - - , &), the output message is £ = (&, -+ -, £), and

(78) 9(Q,V, 8) = inf max P{t: = £,
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where the lower bound is taken over all methods of transmission by (@, V).

The deseribed criterion reflects better the technical requirements on the trans-

mission accuracy. Evidently there is a formula for g(Q", V", [2"#]) which is anal-

ogous to the formula (56) for e(Q", V", [2*#]). We can prove that the value b
which describes the main exponential term of the asymptotic is

XLVIII the same for both formulas. The corresponding question about the
value a is open.

6. Unique transmission methods

6.1. One of the basic assumptions of the theory developed thus far was that
the distribution p:(-) of the input message and the transition function Q(- , )
of the transmitter were regarded as given. However, this assumption is unrea-
sonable in many real situations. Either because the statistical parameters of
the channel change rapidly with time so that there is no way of obtaining the
a priori distributions of these parameters, or because the same receiving—trans-
mitting set must be adapted to operate under various conditions. Finally a
game-theoretic situation may be represented, in which one of the players chooses
the distributions p and @, and the other chooses the transmission method.

6.2. The mathematical description of this situation reduces to the following.
A certain set T' of parameter values is given, and with each ¥ &€ T there is asso-
ciated a transmitter (Q,, V,) such that the input and output signal spaces do
not depend on v. Further, there is given a set of messages (ps, Ws) where § € A
such that the ranges of message values at the input and the output do not
depend on 8. We shall say that there exists a unique method of transmitting a
system of messages (ps, W), where § € A, by a system of transmatters (Q,, W,),
where v € T, if there exist a coding function P(-, -) and a decoding function
P(-, ) (independent of v and 8) such that, for all y € T'and § € A, the message
(ps, W5) can be transmitted by (€,, V,) with the help of the coding function
P(-, +) and the decoding function P(- , -).

By the capacity of the system (Q,, V.), for ¥ € T', we shall mean

(79) C(T') = inf sup I(, 7,),
n YET

where (9, 7,) are connected by (€, V,), and where the lower bound is taken
over all the variables n for which there exists such a pair (9, 1,), for all y. Further,
the quantity

(80) H(A) = sup H(ps, Ws).
€A
will be called the entropy of the system.

It follows easily from the arguments of section 3.4 that the existence of a unique
transmission method implies that

(81) H) = C(D).
The concept of a unique transmission method was recently introduced in
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papers by Blackwell, Breiman and Thomasian [9] and by the author [20]. In
[9] the case of finite homogeneous memoryless ‘channels was studied in detail.
The general case, where T is arbitrary and A consists of a single element, was
examined in [20], without giving proofs or detailed formulations.

Note that,

(82) C(r) = inf C(Q,, V5),
G

and moreover, equality holds when the system of functions €, is in some sense
“‘convex.” In the general case (see [20]), the symbol < can be taken in equation
(81).

6.3. There are grounds for believing that, in a fairly wide class of cases, the
direct Shannon theorem is true for unique transmission methods, asserting that
in the general case, under certain restrictions on the sequence of systems (@, V%)
with.y € T'¢, and (pi, W}) with § € A¢, the inequality,

. C(TYy
(83) ,1%.1% H@Y >1
implies that for any ¢ > 0 there exists a T so large that for all ¢ = 7' there
exists a unique method of transmitting the system of messages (ps, Wi) with
¥ € T by the system of transmitters (€}, V5.). The question of establishing
sufficiently general conditions (compare section 3.10) to satisfy
XLIX this theorem is still an open one. However, those special cases for
which it is not difficult to prove the validity of the theorem can
be indicated. The theorem is true if the systems of messages and transmitters
satisfy one of the following conditions:

a) T consists of a single element (@ V*) and the sequence of transmitters
(Qt, V*) is information stable; '

b) (@, V3), where v € T, are segments of homogeneous channels with dis-
crete time, finite sets of input and output signals, and finite memory; and more-
over, the transition matrices of the channels are such that
(84) Z qo(yo’ fO; go; f,) 2 a> 0

IS
forallye € Yo, /H E F,and f' € F;
c) (@, V) where v € I, are segments of nonhomogeneous memoryless chan-

nels of length £ with finite sets of signals; moreover, the conditions V are absent,
and the functions

(85) Q' *) = Qa(yy, )Qu(ys, -) -+ Quilyy, *)

where the set of (al, - - - , @%) with ¥ € T'* consists of all possible sets of elements
a € A, and {Q., a € A} is a certain convex set of transition functions. (The
set {Q., @ € A} of transition functions is said to be convez if, for @, witha € 4
and Q; with @ € A given by the matrices

(86) (¢ and (¢
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respectively, the function corregponding to the matrix
(87 g + (1 — X)), with0 = X; < 1,

also belongs to A.)

a’) At consists of a finite number r (independent of ) of messages (pi, W?)
where ¢ = 1, ---, r, and all the sequences of messages (pi, Wi) where t = 1,
2, - -+, are information stable.

b’) The conditions W} are independent of §, and the distributions p; can be
described as the distribution of a set {fi(¢2), -- -, f5(¢D}, where the {3 form a
finite homogeneous Markov chain with a fixed number of states. Moreover,
all the elements of the transition probability matrix are larger than a positive
constant «, uniformly in 4.

¢’) The conditions W; arc independent of 6 and the (pi, W) are messages
which are nonhomogeneous in time with component-wise conditions of accuracy
of reproduction, and with independent components. Moreover,

(88) Pi = pay X -+ X paj,

where (a}, -+, ai), with § € A, are all the possible sets of elements a & A, and
{ps, a & A} is a convex set of probability distributions on the finite space Xo.

The above examples show that the direet Shannon theorem is true in a rather
wide setting. On the other hand, its generality is less than that of the Shannon
theorem of section 3.10. Thus, the conclusion of the theorem will generally be
false if among the (ps, W;) there are messages with identical ps; but different
Ws. (Here, everything is reduced to the necessity of satisfying a stronger accu-
racy condition, which turns out to be the intersection of several W;; a solution
of this problem can be obtained by the methods of section 3.) Further, if in case
(¢) (and similarly in ¢’) the set {Q., a € A} is not convex, then the Shannon
theorem holds only if in definition (80) [and similarly in equation (81)] the
system @ is replaced by its convex hull.

6.4. Note several important special cases of equations (80) and (81) for the
capacity and entropy of systems. Let (@,, V,) with v € I', be the system of all
memoryless channels of length n with additive noise, with noise power p. and
signal power p;. Then C(T) is given by Shannon formula (43). Further, if (@, V)
with ¥ € I'is the system of all transmitters with finite bandwidth W and addi-
tive noise for transmission-during time 7, then C(T) is given asymptotically by
Shannon formula (46). Finally, if (ps;, Ws), with 6§ &€ A, is the system of all
messages with component-wise accuracy conditions given by bounding the mean
square error by the constant ps, whose input message components have a disper-
sion equal to p., then expression (45) holds for H{A). Equations (43), (45), and
particularly (46), which are usually derived for the Gaussian case, are in prac-
tice applied to a much wider class of cases, including the case where it is impos-
sible to say anything definite about the character of the distributions. The new
interpretation of these formulas given above can serve as a justification of such
a practice.
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6.5. Still open is the question of creating general methods for calculating
the capacity C(T') and the entropy H(A), and also the correspond-

L ing “optimal strategies,” that is, the values of #, ¥ and & at which
the extremes in equations (79) and (80) are attained (compare

problems XV, XIX and XX). Further, it seems interesting, after the fashion
of the problems analyzed in section 5, to investigate the asymptotic error pro-
bability for the unique transmission methods. A possible first step might be
an investigation of the error probability for the system of all mem-

LI oryless channels having square matrices of fixed order, and having
moreover diagonal elements p;; = 1 — ¢, where ¢ is a given constant.

7. Coding with the use of supplementary information

7.1. It is sometimes natural to assume that at the input of a channel certain
supplementary information about the state of the channel or about the output
signals at earlier moments of time are known and can therefore be utilized in
coding. (The channel may yield such information by feedback, or the informa-
tion may be obtained by certain methods of investigating the medium through
which the transmission is propagated.) The question arises of how to alter in
this case the statement and the solution of Shannon’s problem. This question
has been studied in certain special cases by Shannon [80] and [83] and by the
author [16].

7.2. For simplicity, the complete mathematical formulation of the problem
will be given only for the case of a homogeneous channel with discrete time,
although the reader will understand without difficulty how this definition may
be extended to the general case. Assume that, in addition to the objects which
enter into the definition of a segment of length n of a homogeneous channel
with discrete time, we are given a sequence of measurable spaces (D, Sb)
called the spaces of supplementary information at time k. Also given is the trans-
ition function

(89) Rk(yh te 1yk—1;g1yv"' :gk-—l;fl: te ’fk;A)) k = 1; trr, N

where y;: € Yo, §: € ¥y, f: € F, and A € 8%, which is a probability measure
on S% for fixed values of-its first 3k — 2 arguments. From the intuitive point
of view, Ri(-, -) gives the probability distribution of information present at
the input of the channel at time k, given the past values of signals and channel
states. Thus, the given formulation includes the case where the information
may be random due, for example, to noise in the feedback channel. However,
in this case it is assumed that the method of transmission through the feedback
channel is fixed. An interesting problem would be that in which only the! feed-
back channel itself is given, and the method of transmission through
LII it is to be chosen optimally. There are no obvious approaches to
the solution of such a problem.
Let us note some very important cases. If Dy = Y§~' X Y51 X F* and
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Ri(d, -) with d € D, is concentrated at the point d, then we shall say that we
are given a chanrel with perfect information about the past. If D, = ¥§~?, and
Ry(-, -) depends only on i, - - - , §x—1, and is concentrated at the corresponding
point, then we shall say that we are given a chanrel with perfect feedback (some-
times inaccurately described as a feedback channel with infinite capacity). Fi-
nally, if Di = F, and Ri(- , -) depends only on f and is, as a measure, concen-
trated at the corresponding point, then we shall say that we are given a channel
with perfect information about its state.

7.3. A method of transmission for the message (p, W) with the use of supple-
mentary information is said to be given if there is given a system of variables
§ E, My My My, Ty 1, Py Oy e, B with values Xr X) Y0> Yo,
F, and D respectively, such that

a) the pair (¢, £) forms the message (p, W),

b) for all k£ and for all A € Sy X Sr there is the conditional probability

(90)
P{("-lk; ¢k) € Alnly Tty Mk ﬁly R ﬁk—ly o1, 0y Gy E} = Qo(nk—l; D1, A):

¢) the distribution of the variable ¢, coincides with the initial distribution
po for the channel, ’
d) for any k, and any A € S%

(91) P{ak € Alﬂlx ttt oy Me-1y ﬁl’ Tty ﬁk—-l; 4‘;1, R} ék—ly 61’ Tt 6k—l}
= Rk(nlr Cty M-y ﬁly ] ﬁk—ly 61; ) <ﬁk—ly A))
e) for any k and any A &€ Sy,

(92) P{"’k E A|7717 Tty Me—1y ﬁly Tty ﬁk~1; ‘51) Ty ‘5’#) 61) ) 616: E}

= P{ﬂk e A["ll; <ty M=, O, s}y
f) for any 4 € Sz

(93) P{§€A|m:"':nmﬁb"';ﬁmd’la"'7¢"l’51: "'raﬂyf}
=P{§€A|ﬁly"')ﬁ"}'

The intuitive meaning of conditions (a), (b), (¢), and (d) is clear. Condition (e)
means that in choosing the input signal at the kth moment, use is made only
of the knowledge of the input message, of previous values of the input signal,
and of the supplementary information 8;. Condition (f) means that decoding is
based only on knowledge of the output signal.

There is no supplementary information if the spaces of supplementary infor-
mation D, consist of one element each. It is not difficult to see that in this case
the above definition is equivalent to that of section 2.12.

7.4. In [82], Shannon studies a channel having perfect information about its
state and such that ¢o(y, f, %o, /) depends only on f (if there is no supplementary
information, this channel becomes a memoryless channel). Shannon indicates a
procedure which makes it possible to reduce the study of a channel with supple-
mentary information to that of an ordinary channel. His arguments can easily
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be extended to the most general case as follows. It is always possible to construct
a transmitter such that the existence of a method for transmitting the message
(p, W) by this transmitter is equivalent to the existence of a method for trans-
mitting the same message through the original channel with supplementary infor-
mation. This transmitter is constructed as follows: the space ¥ coincides (as it
did in the original channel) with Y§. Further, the spaces Yyo(Dy), for k = 1,

-, n, of all measurable mappings y(dx) from D; into Y are introduced with
the naturally induced o¢-algebra of measurable subsets. Also, ¥ is taken as
Y = Yo(Dy) X -+ X Yo(D,). As for the transition function of the new trans-
mitter, in the case of a channel with perfect information about its state, the
transmitter must be regarded as a channel with the same state space as before,
and a new transition density

(94) (}0 {y(dk), f07 goa f,} 9o {!j (f()); ?70, f/} ’

where y(fo) is the value of y(dx) when d; = f;. In the general case the definition
of the transition function is unwieldy. Thus, we shall only mention that its
basic idea remains the same. In those cases where y(d;) € Y (D,) is given at the
transmitter input, and the information about the past is equal to df (this can be
mathematically defined for the new transmitter also, but now it must not influ-
ence the coding), it is necessary that transmission should occur, as it did in the
previous channel, where the input signal y(d}) was given. Thus, at least for-
mally, the Shannon problem for a channel with supplementary information
reduces to the Shannon problem as formulated in section 2. However, since the
resulting transmitter turns out to be very complicated, the criteria for informa-
tion stability discussed in section 3 cannot be applied to it. There-
LIII fore, the question of deducing specific conditions for information
stability in this case remains open.

7.5. The question of calculating the capacity of channels with supplemen-
tary information is extremely interesting. First, note the following fact. The
capacity of a channel with perfect information about its past always coincides
with the capacity of the same channel with perfect information about its state.
This fact is a corollary of a more general result which will not be quoted here and
which, from the intuitive point of view, shows that feedback is useful for increas-
ing the capacity only to the extent to which it provides information about the
state of the channel. Further, by using the method developed in [16], it is not
difficult to show that the capacity of a channel with supplementary information
coincides with the ordinary channel capacity if the following condition is ful-
filled. Let 7 and n; be random variables connccted by a transmitter with the
input and output signal spaces (Yo, Sy,) and (Ys, S7,), and the transition func-
tion Qo(- , f, -). Then, I(y, n,) is independent of f and depends only on the distri-
bution of n. The application of this assertion to a memoryless channel yields
Shannon’s result, [79], which states that feedback does not increase the capa-
city of a memoryless channel. (At the time of publication of [16], which proves
the same result, the author was unfortunately not aware of Shannon’s work.)
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Another important example of a channel possessing the above property is
given by Gaussian transmitters (if they are converted into channels by the
method described in section 2). The point is that for such channels, Qo(- , f, -)
gives a Gaussian transmitter and, moreover, only the mean value (and not the
second moment) depends on f. The variation of the mean value of 7, does not
affect the information I(», ny). Thus feedback does not increase the capacity of
a Gaussian transmitter. This was first pointed out by M. Pinsker. Shannon, [82],
calculated the capacity for the above class of channels with perfect information
about their state. Another interesting example is provided by channels with a
random parameter and perfect information about the parameter value b & B.
Here (compare [47]) the mean capacity is clearly

(95) ¢ = [CPa),
B

where (', is the mean capacity for a conditional channel with parameter b. This
formula is easily proved (compare [16]) for the case where the space B is finite.
Since it has interesting applications to the case of a continuous distribution of

the parameter (Ovseevich, Pinsker, and Tsybakov used it to show
LVI that in certain physically realizable situations, feedback can in-

crease the channel capacity by 50 per cent), it is interesting to prove
it for the general case as well (compare section 4.6). It is important to learn how
to calculate the capacity of channels with supplementary information in other
cases also.

It is interesting to study too the question of whether, in the case of homo-
geneous memoryless channels, the use of feedback will diminish the optimal prob-
ability of error ¢{Q", V=, [2"H]} (see section 5.2). It is not difficult to show that
for channels with symmetric matrices, when H 2= H,., the use of feedback does
not alter the constants a and b in equation (56). In a paper of Elias, [25], there
is a remark which can be interpreted as an assertion that, if H < H., equation
(56), with constants ¢ and b again given by equation (59), holds for a binary

symmetric channel with feedback. The author does not know the
LV proof of this theorem, nor how far it can be extended to an arbi-
trary channel with a symmetric matrix. As was shown in [25], sim-
ilar facts can easily be proved for a symmetric binary erasure channel. Another
immediate problem outstanding in the investigation of the proba-
LVI bility of error e{Q" V*, [27#]} for Gaussian memoryless channels
with additive noise and feedback.

8. New applications of the concepts of the Shannon theory
of information

8.1. In the preceding sections of this survey, only those questions have been
studied which are contained within the framework of the basic Shannon prob-
lem of optimal transmission of information as formulated in section 2. Here, it
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is desirable to discuss briefly other, as yet hardly noticed, directions in applying
the concepts of entropy and information. It is possible that in the future all
these directions will merge into some single theory, but so far not even the out-
lines of such a unified theory are visible.

8.2. The first such direction is the use of a generalized entropy for a pair of
distributions as a measure of their difference, in problems of mathematical
statistics. A survey of numerous works on this subject is contained in the recent
book [55] by S. Kullback. In essence, the published papers contain an enumera-
tion of the properties of generalized entropy, which confirms that it can con-
veniently be used as a measure of statistical difference. It is felt that the attempt
to show that one can obtain an asymptotic answer to certain classical problems
of mathematical statistics by means of generalized entropy is more important.
This was done in the case of independent observations in papers by E. Mourier
[59] and S. A. Aivazian [1]. In a new paper by Dobrushin, Pinsker, and Shiriaev
it is shown that the asymptotic results noted can be extended to a very wide
class of dependent trials.

8.3. The second promising direction has been presented so far only in the
form of an investigation using the concept of entropy of the problem of the
identification of false coins with the least possible number of weighings, well
known from popular books of mathematical problems. Such an investigation
was begun in [46], and was developed in detail in the book [103]. Here we can
formulate the general problem of the minimal number of experiments necessary
for obtaining certain information, and apparently the asymptotic solution of
this problem can be given by means of the entropy concept under cer-
tain conditions.

8.4. The author does not understand the reasons for the appearance of the
concepts of entropy and information in certain game-theoretic constructions
(see [47]). The perspectives of this direction are not clear.

The author thanks A. N. Kolmogorov, M. S. Pinsker and A. M. Yaglom.
Continual contact with them is mainly reflected in the content of this paper.
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