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1. Introduction
The algorithm in question is one for the rapid approximate computation of

the inverse to a linear operator. It has become known to statisticians and others
through the work of Hotelling [11,1 who used it for inverting finite matrices-
linear operators in finite-dimensional vector spaces-and found a bound for
the error. Somewhat earlier, Ostrowski [4] had proposed its use in a rather
general class of problems, with special emphasis on integral equations of
second kind and Volterra type. He did not give a bound for the error. More
recently Rademacher [6] has applied the same idea to calculating Laurent
expansions of algebraic functions.
The object of this paper is to show how the error can be limited in a rather

general problem, and to suggest specific procedures for applying it to linear
integral equations of second kind and Fredholm type.

2. Vector spaces

For this purpose it may be useful to state some facts about normed linear
vector spaces. Suppose L is such a space (which will for definiteness be assumed
real): that is, if xi and x2 are vectors in L, so is ax1 + bx2, where a and b are real
numbers; with every x in L is associated a non-negative real number lixil, the
norm of x; 114x1 > 0 unless x is the zero-element of L, whose norm is zero.
Furthermore, lixi + x211 5 lxI1! + 11x211, and ilaxil = lal ilxii.
We consider an operator K which transforms any element x of L into an

element Kx of L; the special operator I is that which carries each x of L into
itself. We suppose K to be additive, homogeneous, and continuous (i.e.,
linear); there then exists a constant

(2.1) M(K) = l.u.b. lil11ZL lxiXi

called the (upper) bound, or norm, of K. Clearly, M(I) = 1. If

(2.2) M(K) < 1,

the equation

(2.3) x-Kx=(I-K)x = y
Boldface numbers in brackets refer to references at the end of the paper (see p. 358).
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possesses a unique solution x in L for any given y in L, and

(2.4) x= Kky,
k=0

where KO = I, Kk+o = K . Kk for k _ 0. That is, (2.2) guarantees that opera-
tor I - K has the inverse (I - K)-1 given by the Liouville-Neumann expan-
sion

(2.5) ( )1=EK
k=0

If (I - K)-1 is approximated by the nth partial sum of expansion (2.5), it
n-1

is easily seen that the errorEn= (I - K)-1 - Kk satisfies the inequality

(2.6) M(En) _A {M(K)} k = {M(K)}n/{ - M(K)}

This follows from (2.2) and the facts that the sum A + B and the product AB
of two linear operators are bounded, and M(A + B) < M(A) + M(B),
M(AB) _ M(A)M(B).

3. Limitation of error

The error committed in using the nth partial sum of (2.5) is thus 0( {M(K) }n).
By using [4] an identity of Euler

(1_z)-1 = IT (1 +z2), IzI < 1,
k=0

we can write the inverse as an infinite product:

(3.1) (I-K)- =II(I+K2k), M(K) < 1.
k=O

It will be shown that the error committed in using the nth partial product of
(3.1) is0({M(K)}2).
Following Hotelling's discussion of algebraic linear systems, we consider the

equation

(3.2) Ax= y,

where A is a linear transformation in L. We suppose that A = (I -G)Ao,
where Ao has the known inverse CO = Ao-1 and M(G) < 1. Then

A-' = Co(I -G)-1

- CO
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so by (3.1)

(3.3) A-1 = CoI (I +G2k).
k=0

Forn> 1, write
n-1

(3.4) Cn=Co T (I + G2k).k=0

Then Cn is an approximation to A-'. The error A-' - Cn is bounded by

(3.5) M(A-1 - CJ) < M(Co){M(G)}23/{1 - M(G)} .

This follows from (3.4); for Ao = (I - G)-'A, so

n-1
Cn = A-'(I - G) 11(I + G2k) = A-'(I - G2"),

k=0
whence

A-' - Cn = A-G21 = Co(I -)-W

From (3.5) it follows that M(A-1- C.) < e if n exceeds the complicated-
looking quantity

(log 2)-1 log log o[1- M(G)]-log M(Co)

The approximations C. satisfy the recursion relation

(3.6) Cn+l = C.n(2I- AC.,),

which may have advantages in practice.

4. The algebraic case

The case where Ax = y is a system of linear algebraic equations was treated
rather thoroughly by Hotelling [1], [21. In our terminology, he adopted the
norm - (2x.2)X, where x = (xi, * * , Xn); if A has the matrix (aii) M(A) _
(2laii2)l by the Lagrange-Cauchy inequality. Analogously, if p > 1 one can de-
fine 1lxii = (2Ix IP) '/-; and by the Holder inequality M(A) _ (22 ai | q) 11,
where q = p/(p - 1). Another norm is ||x|| = 2 | xi |, for which M(A) < 2 Ai,
where Ai = max air 1. Still another is 1lxii = max xi 1, for which M(A) < max

3
Bi, where Bi = Z aia |.

j=1
An extension to corresponding types of infinite linear systems (in Hilbert

space, spaces l(P), etc.) is suggested, provided that the norms and bounds con-
verge.
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5. Volterra integral equations
The Volterra-type linear integral equation of second kind

(5.1) x(s) -
a

K(s,t) x(t) dt = y(s), 0 _ S < t < 1

occupies a special position, as Ostrowski remarked, in that the Liouville-
Neumann expansion converges to give the solution, even though no condition
of form (2.2) holds. For fixed s < 1 we suppose y(t) and K(s, t) to be con-
tinous on 0 _ t . s. Then Iy(t) and 1K(s, t) have (finite) maxima on
(0, s), which we denote by IIYIi. and M. respectively. Application of the Liou-
ville-Neumann iterative scheme, with the customary estimates, yields a con-
tinuous x(s) for which

|x(s) < 1jy1II e'M..

Since the inequality holds for all s in (0, 1), and since the right member is an
increasing function of s,

We consequently have a norm in terms of which

(5.2) M ( (I - K)-'1 < e'M..

The process of section 3 can be applied to speed up convergence, with Co = I
and G = K. We have

(5.3) M(K21) _ (8M.)2,
(2n) I

which, when substituted with (5.2) into (3.5), gives

(5.4) M(A-1 - C,1) _e'M.(M )2"/(2f)l

Inequality (5.4) can be simplified-with loss of precision-by replacing s and
M. by 1 andM = max M. respectively.

6. Fred~holm integral equations
For the linear integral equation of second kind and Fredholm type, matters

are less simple. Success of the iterative scheme depends on some such restriction
as (2.2).

Let the equation be

(6.1) x(s) K(s, t) x(t)dt = y(s), 0 <s 1.
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Choice of a norm depends on the class of functions considered. Thus if y(s)
is continuous [L the space of functions continuous on (0, 1)], one may take

1jy11 = max Iy(s) j; now M(K) _ max k(s), where k(s) =JIK(s, t) cdt.
Another familiar norm is the quadratic:

(jII 2
) 112IIYII = lJ y(t)dt

For this,

(K) [K(st)]2ddt} /

It may now happen that M(K) _ 1, so that convergence of the direct
Liouville-Neumann process is not assured. It will then be desirable to find an
approximate inverse Co, as in section 3. One method for doing this is that of
"kernel-splitting" [6], which reduces the problem to an algebraic one. An
error limit which will give a bound for M(G) is to be found in [3]. Other
processes for determining a Co are also discussed in [3]; namely, the method
of "segments," as applied to an infinite linear system equivalent to (6.1), and
the method of least squares.

7. Integral equations of first kind
A linear integral equation of first kind and Fredholm type

1 `f K(s, t)x(t)dt = y(s), 0 < S < 1,

may also be amenable to the algorithm of section 3. For, as with (6.1), it may
be possible by"kernel-splitting" to find a sufficiently good C0.
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