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1. Introduction
In most statistical problems treated in the literature a datum of the problem

is the information that the various distributions of the chance variables in-
volved belong to given families of distribution functions (d.f.'s) completely
specified except for one or more parameters. Non-parametric statistical in-
ference is concerned with problems where the d.f.'s are not specified to such
an extent, and where their functional form is unknown. This does not preclude
some knowledge of the d.f.'s; for example, we may know that they are con-
tinuous, uni-modal, bi-modal, and the like.

It is clear that the more information that is available from which to draw
inferences the more decisive can our conclusions be, that is, the confidence
regions may have smaller average size, the statistical tests will have greater
power, and the like. Hence if the functional forms of the d.f.'s are known or if
there is good ground for assuming them, it is a loss not to make use of this
information. Where this information is not at hand, statistical inference must
properly proceed without it. In the latter event the criticism of some statisti-
cians that non-parametric tests are "inefficient" is not valid, because "effi-
ciency" (in the colloquial sense) implies thorough use of available resources,
and it cannot be inefficient not to make use of unavailable information. Statis-
tical efficiency must be appraised in the context of available information and,
except where uniformly most powerful procedures exist, with respect to specific
alternatives.

In the present paper we shall describe briefly a few recent advances in non-
parametric theory. Readers who expect a complete, unified theory such as may
be found in the analysis of variance will be disappointed; it is impossible to
present such a theory because none exists. What has been accomplished thus
far is only a series of small advances in various directions. It is as if, faced by a
hardy opponent, one lashed out in all directions and succeeded in penetrating
the enemy's armor slightly in several places. The analogy is correct to the fur-
ther extent that many problems in non-parametric inference are of consider-
able difficulty. It is the hope of the author of the present paper to arouse the
interest of the readers of these proceedings, to acquaint them with a few of the
developments, and to enlist their aid in solving the multitude of outstanding
problems.

2. Estimation
Let xi, * * *, xn be n independent observations on the chance variable X,

about whose cumulative d.f., f(x), nothing is known except that it is continu-
ous. We shall discuss the problem of estimatingf(x).
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It is intuitively obvious that the "best" estimate of f(x) is the sample
(cumulative) d.f., ¢(x), a step-function defined as follows: nk(x) is the number
of observations among x,, * * *, x, which are less than x. Such an estimate,
however, suffers from the same disadvantages as a point estimate of a param-
eter. It does not associate with the estimate an appraisal of its accuracy, so to
speak; a distinction must be made, for example, between estimates obtained
from ten or from a thousand observations. Since the estimating step-function
cannot be the true d.f., the value of the estimate lies in this: it implies, with a
certain confidence coefficient a (before the experiment, with a probability a),
that some "neighborhood" of +(x) contains f(x). The purpose of a theory of
estimation is to clarify and make precise the meaning of "neighborhood."

This same problem occurs in the estimation of a parameter, and the theory
of estimation was put on a rigorous foundation by Neyman [9]' in a manner
as ingenious as it is simple. For each value of the parameter 0 which completely
characterizes the d.f. to be estimated (the limitation to one parameter is made
here for convenience only, not of necessity), an "acceptance" regionA (0) in the
sample space is assigned so that the probability of this region is a when 0 is
the parameter value. Then the "neighborhood" (confidence region) is simply
the totality of all 0 for which the observed sample point lies in the region of
acceptance. Further restrictions on the regions A (0) are needed in order that
the confidence regions have special desirable forms (e.g., that they be inter-
vals). These restrictions are far from sufficient to determine uniquely the
regions A (0). Although many valuable results have been obtained bearing on
the problem of choice of A (0), many outstanding problems remain.

Let us now return to the problem of estimation of f(x). Our object will be to
construct regions A (f) such that, when f(x) is the d.f. of X, the probability is a
that +(x) will lie entirely in A (f). Then the confidence region (to which we
earlier gave the intuitive designation "neighborhood") is the totality of all f
for which the observed +(x) lies in A (f). Strictly speaking, this totality is a
region only in the function space. However, no confusion will result from desig-
nating the set of functions as a region, just as no confusion results from calling
a set of points which estimate a parameter a "region," which it need not always
be in the precise mathematical definition of region. The problems which there-
fore confront us are the following:

1. How to construct A (f) for a given continuousf, such that the probability
that+ (x) c A(f) is a;

2. How to choose such A (f) that the confidence region R(4) shall be con-
structible and shall be practically constructible [if the totality of all f for
which +(x) c A(f) can only be envisaged conceptually without being prac-
tically accessible, its value in practice is limited];

3. To determine further conditions on the A (f) which will ensure such desir-
able properties as minimum average size in some suitable sense, and/or un-
biassedness, and the like.
We shall now discuss a method which yields an answer (though of course not

the only possible one) to the first two problems.
1 Boldface numbers in brackets refer to references at the end of the paper (see p. 112).
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Let f(x) be any continuous cumulative d.f. Let Al(x) and 62(x) be non-
negative continuous functions defined in the closed interval [0,1]. Define the
functions 11(x) and 12(x) as follows:

14(x) f(x) + Sdf(x)],
12(z) f(x) - 82[f(x) -

It will be noticed that the graphs of 11(x) and 12(x) form a "belt" which encloses
f(x). Subject to certain conditions on A1(x) and 62(x) which we shall discuss in a
moment, we wish to determine the probability that +(x) will lie in this belt,
that is, that

4(x) < +(X) 4I(x), for all x.

Our intention is, after this probability has been determined, so to manipulate
51(x) and 62(x) that this probability is the prescribed a. We intend then to let
the region within this belt [more properly, the totality of all +(x) which are
such that 4(x) < +(x) < 11(x)] constitute the acceptance region A@f). The
confidence region R(0) will then consist of allf for which 4 lies in the belt A (@).
We shall see that this confidence region will also be determined by a belt en-
closing +(x), that is, two step-functions 01(x) and 02(x), such that

+2(X) < +(X)-< +1(X),

and R(4) is the totality of all continuous (cumulative) d.f.'s which are such
that at every point x they lie between +2(x) and ol(x).
We have therefore to be able to determine the probability that +(x) will lie

within the belt formed by 11(x) and 4(x). One prospect which may cause some
dismay is that this probability will depend on f(x). If this were so, then the
adjustment of 81(x) and 62(x) so that the probability of A (f) shall be a would
depend upon f and would give rise to serious complications. This, however, is
not so, because of the significant fact that, in the definition of 11(x) and 4(x),
Al and 62 are functions of f(x) and not of x. Consider any topologic (one-to-one
and continuous) transformation of the real line into itself which takes a chance
variable X into a chance variable Y. If the point y goes over into the point y',
then the probability that X < y is the same as the probability that Y < y',
and equals f(y). Hence the functions f(x), 14(x), and 41(x) are unchanged by this
transformation except for the fact that each point x may receive a different
"name" x'. The probability that +(x) will fall within the belt formed by 11(x)
and 41(x) depends only on the positions of 14(x) and 41(x) relative to f(x), and
these are unchanged. Hence the probability that +(x) c AUf) depends only
upon Al and 52 and not at all upon f(x). This is a considerable simplification.

Are we perfectly free to choose 51(x) and 62(x) (provided only that they be
non-negative and continuous)? No. We intend to be able to "manipulate"
61(x) and 62(x) so that the probability that +(x) c A (f) be any prescribed posi-
tive a < 1. This means precisely that what we really want is a one-parameter
family of couples of functions A1(x) and 62(x), each couple corresponding to a
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value of a. In most problems ofpractical importance we shall be able to achieve
this by enlarging or decreasing 81(x) and 62(x); for example, we may choose
81(x) and 62(x) both constant, or both a constant multiplied by x. However,
certain restrictions on 81(x) and 62(x) are general. Thus, since +(x) is mono-
tonically non-decreasing, we can assume that 11(x) and 4(x) are also mono-
tonically non-decreasing. If, for example, s = &(z2) < 11(zi) when Z2 > z1,
we may, without at all changing the probability that +(x) c A(f), let
11(z1) = s. This is so because, from

O(Zl) < 0(Z2)
4(Z2) _ 1(Z2),

we obtain
O(Zl) <- 11(Z2) .

Moreover, I1(x) must take the value one for some finite x for which f(x) < 1,
since +(x) does (with probability one). If 11(x) did not do this, then the proba-
bility that +(x) should lie in the belt formed by 11(x) and 4(x) would be zero.
For a similar reason, 4(x) must take the value zero at some x for whichf(x) >O.

Suppose now that 61(x) and 82(x) have been chosen so that the probability
that +(x) c Af(f is the prescribed a. How shall we, given +(x), obtain R(4)?

Let us assume, for simplicity of exposition, that 11(x) and 12(x) are strictly
monotonically increasing. By our definitions, 11 and 4 are really functions of
f(x), and f(x) takes continuously all values from zero to one. If, for x = t, with
t any arbitrarily chosen number, +(t) = 1, then the trivial upper bound on
f(t) is one. Suppose then that +(t) < 1. In the x,y-plane draw the graphs of
y = x, y = x + 81(x), and y = x -82(x) (0 < x _ 1). We have then the
region A( corresponding to the simple distribution f(x) x (0 < x _ 1),
f(x)- 0 (x < 0), f(x) = 1 (x > 1). Let B be the point t,4(t). Let BC be the

D~~~~

y~~~~~~~~~~~~~~~~~~7
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intersection of the line y = 0(t) with y = 12(x) and let D be the intersection
with y = x of the vertical line through C. Finally, complete the rectangle
BODE. Then no d.f. which is such that its acceptance region A contains
entirely the given +(x) can have, at t, an ordinate higher than E. For if it did,
then the point [t2,4(t)] would be higher than C. Hence +(x) would be below
4(x) at x = t, in violation of the fact that it lies in the acceptance region of
the d.f.

Similarly, let F be the intersection of y = +(t) with y = 41(x), and G the
intersection with y = x of the vertical line through F. Complete the rectangle
BFGH. Then by an argument similar to that above we can prove that a d.f.
whose ordinate at x = t is lower than H would have an acceptance region
whose upper bound at x = t would fall below B and hence would not include
the observed +(x).

It is obvious that, if either the intersection at C or that at F does not exist,
E is at a distance one from the x-axis or H is on the x-axis, respectively.

Finally, it is clear that any d.f. whose ordinate at t lies between E and H is
such that the observed +(x) fulfills the condition 4(t) < qb(t) : 11(t).
We may therefore assert, with confidence coefficient a, that the actual d.f.

of X has, at x = t, an ordinate which lies between E and H. What is more, if
this procedure of obtaining the points E and H is repeated everywhere (for
all x), we can assert, with confidence coefficient a, that at every x the ordinate
of f(x) lies between the corresponding E and H. Every continuous d.f. which
lies entirely within these bounds is such that the observed +(x) lies in its
acceptance region.
The lengths of EJ and HJ are functions of BJ only. Since 0(x) is a step-

function whose only values are multiples of l/n, the procedure for obtaining
E and H need be repeated at most n + 1 times. Denote the totality of points
E by +1(x) and the totality of points H by +2(x). Then +1(x) and +2(x) are also
step-functions which determine the desired region R(4O). The latter is thus
practically constructible.
For the sake of simplicity of exposition we assumed that 11(x) and 12(x)

were strictly monotonic and proceeded in a somewhat intuitive geometric
fashion. The reader interested in a rigorous description is referred to Wald and
Wolfowitz [23].

It is unnecessary to remark that it cannot be asserted that the unknown
f(x) is such that its graph lies in R(4). The correct statement is that the fore-
going procedure is such that, before the sample is obtained, the probability
is a that R(,) will "cover"f(x).

In some problems only upper (or lower) confidence limits are of interest. In
that event we let 61(x) [or 82(x)] be identically zero. The result is a statement,
valid with confidence coefficient a, that f(x) is at most +1(x) [at least 02(x)J
for all x.

It is interesting to note that this method gives no information about the
range of the chance variable X. On reflection this is perfectly reasonable. From
the knowledge that f(x) is continuous and the knowledge of the smallest and
largest observations on X, we cannot conclude, for example, that no observa-
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tion can be smaller than some lower bound. It is only on the basis of additional
information, such as that of the functional form of f(x), that such estimates
could be made. Formally this can be seen as follows: We have already re-
marked earlier that 4(x) must be zero for all x less than some number t* such
that f(t*) is positive. If this were not so, then the probability that +(x) c A (f)
would be zero. However, when this is so, we have that 01(x) = f(t*) for all x
less than the smallest observed value. A similar argument applies to the large
values of x.
How shall 61(x) and 82(x) be chosen? This is an important and probably

difficult problem on which no results have as yet been published. It is likely
that in studying the probability that the confidence region shall "cover" some
specific d.f. other than f(x) a fruitful procedure would be to introduce a metric
in the space of continuous d.f.'s. The distance between two d.f.'s would then
serve as a measure of the importance of the difference between them. If f(x)
is the d.f. of X, the probability that the confidence region shall include another
d.f. is not likely, except under special conditions, to be the same for all d.f.'s
at the same distance from f(x), and attention will probably be directed to the
greatest lower bound of these probabilities. If the metric is not to be arbitrary
but is to serve as a yardstick of the importance of the deviations of the d.f.'s,
it must follow from the practical circumstances of an actual problem in appli-
cation, and will in general be different for different problems. This may prove
a serious drawback.
An expeditious method is to choose 81(x) and 62(x) both constant. Suppose

that this is done and both constants have the same value A. Then 01(x) = 0(x)
+ A, ¢2(x) = +(x) - A, except where obvious changes are necessary to keep
the boundaries from going above one or below zero. Hence if a table of A as a
function of a were available, the construction of confidence regions would be
almost immediate. Such a table for large sample sizes n was constructed by
Kolmogoroff [5] and enlarged by Smirnoff [16]. Kolmogoroff proved that, when
81 (x)862(x) -//, the probability that +(x) c A (f) approaches

E(_lke~2k.X

as n co*, uniformly in X. Smirnoff proved a more general result which we shall
mention later. The series in X converges very rapidly. For a = 0.95, X is
approximately 1.35, that is, A is very close to 1.35/ -A,/n for large samples.
An example of the construction of confidence regions using a small sample

size (n = 6) and exact probabilities will be found in Wald and Wolfowitz [231.
The reader will also find there a method for finding the probability that +(x)
will be in A (f), applicable to general 81(x) and 82(x) and finite sample sizes.

Finally, one remark about "jumps," which we shall discuss only for the case
where A1(x) and 82(x) are both constant. Conceivably it could happen at some
value of x, say t, that the lower bound of the confidence belt coming in from
the right [i.e., qb2(t+)] is greater than the upper bound coming in from the
left [i.e., i(t-)]. No continuous d.f. could then lie entirely in R(O). However,
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if f(x) is continuous, then, except for an event of probability zero, no two obser-
vations will coincide, and hence +(x) will not sustain a jump of more than l/n
at any point. Now 81(x) + 82(x) is a constant not less than l/n, else no +(x)
could lie in Af(f, +(x) being a step-function with all its jumps a multiple of
1/n. Hence the probability of the situation where no continuous f(x) could lie
in R(O) is zero. Of course, the actual observations can never really come from
a strictly continuous distribution because of limitations of measurement. The
difficulties which may sometimes arise can probably be obviated by some
simple assumption about the distribution of values within intervals of a length
equal to the unit of measurement.
We remarked earlier that, if the a priori information about f(x) consists

solely in the knowledge that it is continuous, the information about the "tails"
of the distribution is of necessity limited. Hence we cannot estimate moments,
since the latter depend critically upon the tails. Moreover, we have no reason
for assuming that any of the moments exist. However, we can readily con-
struct confidence intervals for the median or any other percentile of the
distribution.

In order to see this, perform the transformation Y = f(X). This transforma-
tion is continuous and one-to-one, except that entire intervals in X (one end
of which may be at infinity) of zero probability are transformed into single
points, a fact which causes no difficulty. Now the probability that the interval
between the kth and k'th largest observations on Y (in a sample of n) shall
contain the point 1/2 is readily found, since Y is uniformly distributed between
zero and one. Let us choose k and k' so that this probability is suitably close
to the desired confidence coefficient; since k and k' may take only a finite

number [()] of values, some compromise may be necessary. Then it is

clear that the interval between the kth and k'th largest observations on X is a
confidence interval for the median. Other percentiles may be similarly treated.
This method is due toW. R. Thompson [19].

Just as the probability that the interval between the kth and k'th largest
observations will contain the median is independent of f(x) when the latter is
continuous, so, in exactly the same way, we see that the probability distribu-
tion of the chance variable defined as the probability assigned by f(s) to the
interval running from the kth largest x to the k'th largest x (a chance variable
because the ends of the interval are chance variables) is independent of f(x),
depends only on k and k' (and n, of course), and may readily be found from
the uniform distribution. In this way Wilks [26] was able to give non-paramet-
ric tolerance intervals, that is, pairs (k,k'), such that the probability is a pre-
scribed a that the probability assigned by f(x) to the interval will be at least a
prescribed ,3. (The a is subject to the compromise mentioned above.)

Wilks [27] also solved the problem of tolerance intervals for two independent
variables jointly, and Wald [21] solved it for two variables jointly, without the
hypothesis of independence. Wilks [26] also solved the problem of non-

parametric tolerance intervals which would include at least a specified pro-
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portion of a second sample. In this work the only necessary assumption on
f(x) is that of continuity.

3. Testing hypotheses
The division of the subject of the present lectures into estimation and testing

of hypotheses is based more on expediency than on logical need. Naturally the
relation between estimation and testing of hypotheses is a very intimate one;
indeed, Neyman's idea of a confidence region is to take the totality of all
parameter values not rejected by a set of tests of hypotheses. In spite of this,
we shall find it convenient to retain this division.
The procedure of estimation described in the preceding section can of course

be employed to test hypotheses about the population d.f. Suppose that it is
desired to test the hypothesis that the cumulative d.f., f(x), of a chance variable
X on which n random independent observations have been made is a given
d.f., F(x). If it is not required that f(x) be determined by a finite number of
parameters, the problem is a non parametric one. Let us assume that the 81(x)
and 62(x) of the previous section have been suitably chosen. Then a reasonable
test would consist in seeing whether 0(x) is entirely contained in A (F), the
notation of the previous section being retained. If 81(x) and 32(x) are constant
and n is large, Kolmogoroff's result is applicable, and the test would consist
of seeing whether

Sup F(x) - 0(x) { -./n

exceeds the Kolmogoroff X which corresponds to the chosen confidence co-
efficient.
A closely allied problem is that of "two samples," that is, to test whether

two samples, of size ni and n%, respectively, came from the same population.
The test that naturally suggests itself in connection with the previous dis-
cussion on estimation is that based on

sup I +(x) - '(x) ,

where +(x) and +'(x) are the two sample d.f.'s. When both samples are of large
size the result of Smirnoff [161 is available; it states that the probability that

sup I +(x) -+'(x) I -vn-X< n = nln2
nl + 112

approaches the same limiting function as that in Kolmogoroff's result cited
above, namely,

E(1)ke-20'X
k=--

when nl and n2 approach infinity at a constant ratio, no matter what the com-
mon continuous d.f. of the populations from which both samples were drawn.
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Another attack on the problem of two samples was made by Wald and
Wolfowitz [24]. Let the observations in both samples be arranged in order of
size, and replace each observation by 1 or 2 according as it came from the
first or second sample. The result is a sequence V of l's and 2's which abstracts
from the sample only the order relationships (in size) among the various obser-
vations. Under the null hypothesis (that both samples came from the same
population) all V's have the same probability. When the two populations are
different, some small intervals have greater probability under one distribution
than under the other. This results in a diminution of the average total number
of "runs." A run, for this purpose, is defined as a subsequence of consecutive
l's or 2's which cannot be extended in either direction. Hence the statistic
proposed by these writers is the total number of runs, small values being
critical. The distribution of this statistic is known (see Wald and Wolfowitz
[24]). When ni and n% are not large, the critical points are not difficult to
obtain, and an excellent table by Swed and Eisenhart [181 is available. As ni
and n2 approach infinity at a constant ratio, the distribution of the total num-
ber of runs approaches normality, so that no difficulty arises.
Wald and Wolfowitz [24], employing the Neyman-Pearson idea of the power

function, extended the notion of consistency, due to R. A. Fisher. A precise
description can be found in their paper; let us here content ourselves with a
more suggestive and less rigorous description. A consistent estimate of a
parameter is one such that, as the sample size increases indefinitely, the proba-
bility approaches one that the estimate will lie in an arbitrarily small neighbor-
hood of the "true" value of the parameter being estimated. A test is consistent
if it is based on the (proper) use of a consistent estimate. In this event the
probability of rejecting an alternative hypothesis when it is false approaches
one as the sample number increases indefinitely. A non-parametric test is called
consistent if it possesses this latter property. It is easy to see that this defini-
tion includes the parametric one as a special case. It is important to note, how-
ever, that a test may be consistent with respect to one alternative, but not
with respect to another. This is particularly important in non-parametric
theory, but is true in the classical parametric theory as well. Thus, a test of the
hypothesis that the mean of a normal distribution with unit variance is a given
number, the test being based on one "tail" of the normal distribution, is con-
sistent with respect to one set of alternatives and not consistent with respect
to another set of alternatives.
The statistic U, the total number of runs, is shown by Wald and Wolfowitz

[24] to provide a consistent test for the problem of two samples, with respect to
all alternatives which satisfy some mild restrictions. The method of proof is
essentially this: Let nl and n2 increase at a constant ratio. It is shown that
U/n1 converges stochastically to its expected value when either the null or any
alternative hypothesis (subject to the restrictions mentioned) is true. The
expected value is explicitly obtained and is shown to be a maximum when
both populations are identical. The proof rests essentially on the following
lemma (see [24], Theorem II, lemma 2):
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Let f(x) and g(x) be the cumulative distribution functions of the populations
from which the ni and n2 random independent observations, respectively, are ob-
tained. Suppose that:

a) f(x) O (x <O)
f(x) x (O< x 1)
fAX) 1 (x > 1)

b) g(x) O (x< O)
9(x)- (x 2t 1)

c) The derivative g'(x) of g(x) exists, is continuous and positive everywhere
in the intervalO . x . 1

d) n1/n2 = c, a constant.
Then

lim E(U/ni) = 2f g, (x) dx
i-X- : C +gc'(X)
lim a2(U/ni) = 0.
m-X

The writer has recently improved this result as follows:

lim a2(U/.\/n) =4 [f d12c fX+ g(c3 + dx3)
nj-al o (c+g,), o (c +g,)

_ (J|1 2 dx-c3 (J ' dx)l.
+ g,)2, (C+ gD)2

Also it can be shown that under these conditions the distribution of U ap-
proaches the normal distribution. Using these facts, we can obtain the power
of the test based on U for alternatives subject to some slight (from the statis-
tical point of view) restrictions when the sample sizes are large.
A few remarks on tests in the problem of two samples which are not consist-

ent may be of interest at this point. Two proofs of lack of consistency are
available in the literature, one by Wald and Wolfowitz [24] and the other by
Bowker [1]. Let us examine the test (proposed by Mathisen [6]) which Bowker
proved not consistent. One form of the test is as follows: Observe the number
m of observations of the second sample whose values are less than the median
of the first sample. When m is too large or too small (in a precisely defined way),
the hypothesis of identity of d.f.'s is to be rejected. This test is not consistent
if among the alternatives to the null hypothesis we admit any large part (of
course this is precisely defined in the papers cited) of the totality of all couples
of non-identical continuous d.f.'s, but is consistent if the alternatives are, for
example, confined to couples of d.f.'s such that one is a translation of the
other. The essence of the proof (of non-consistency) is this, that any two con-
tinuous d.f.'s, which have a common median and coincide in any small neigh-
borhood of the median, will show, in the limit, identical behavior with respect
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to m. Hence the two d.f.'s may differ ever so drastically (except in the neighbor-
hood of their medians), the sample numbers may increase without limit, and
yet the probability of rejecting the null hypothesis (which is false) may be
made to differ from the size of the test by a number arbitrarily small. (When
one d.f. is a translation of the other, the two medians cannot coincide.)
Another version of this test uses quartiles instead of medians; this test can
be proved not consistent in a similar manner. Indeed, tests which are based on
the relative behavior of the d.f.'s at a fixed finite number of points are not
consistent unless the alternatives are suitably restricted, whereas a statistic
like U, the total number of runs, depends, intuitively speaking, on the relative
behavior of the two d.f.'s along the entire real line. The x2-test for goodness of
fit or for the problem of two samples is also inconsistent if the alternatives
are not too restricted and if the location of the class intervals does not vary
with n.
The efficiency of a statistical test depends upon its power function and is in

general relative to specific alternatives. Relative efficiency of estimation could
be defined, borrowing an idea of Neyman's, on the basis of the probability that
the confidence region will include some specific d.f. not that of the population;
this definition would also be relative to a specific alternative distribution.
The question naturally arises: How much of the available information is

utilized by these various tests? We shall not attempt here to give the phrase
"available information" a precise meaning. The statistic U made use only of
the order relations among the observations, and the purely metric properties
were not used. This need not constitute an adverse criticism, because on the
basis of the sole a priori information that the two d.f.'s are continuous no
"information" may really be lost. Similarly the statistic m, the number of
observations in the second sample less than the median of the first, does not
utilize many properties of the two samples. The fact that one of these statistics
is consistent and the other is not implies that the one which is not consistent
does not utilize all the available information.

In order to clarify the situation let A* = a,, a2,* *, an, +n2be the ni + n2
observations from both populations, the first n1 being from the first population.
Let us assume that no two observations are equal; since the d.f.'s are continu-
ous, this event has probability one. The fundamental idea of the following is
due to R. A. Fisher [21, [31. Under the null hypothesis all permutations of the
elements of A* have the same conditional probability, when the totality of

/n + %2\
observations is that of A*. Consequently each of the ) possible divi-

ni
sions of the ni + n2 elements of A* into two samples of size ni and n2, respec-
tively, is equally likely under the null hypothesis. The test procedure then
selects 1 of these divisions to constitute the critical region, where

[(fl + %2)1 =



104 BERKELEY SYMPOSIUM: WOLFOWITZ

the level of significance (size of the critical region). Let A* be considered a
point in an ni + n2 dimensional Euclidean space. Consider all the "conjugate"
points obtained by permuting the coordinates of A*. Let Irl, * * *, -rW be the
t = (n1 + n2) ! permutations of the first (n1 + n2) integers, and let R,, be the
region in (n1 + n2) space with the property that if the coordinates of any point
in it are arranged in ascending order the sequence of their subscripts will be Tr.
Then A* and each of its conjugate points lies in a different R7,,. Scheff6 [131 has
proved a result which essentially is that, subject to some slight restrictions,
the method of randomization is the most general one which will yield (similar)
regions of prescribed size for any common admissible d.f.
We are now in a position to see that, in one sense, requiring the statistic to

be a function only of the ranks of the observations (of the order relations
among them) is unnecessary from the point of view of obtaining similar re-
gions. The general method requires only that a proper number of each set of
conjugate points shall lie in the critical region, but these points need not always
lie in the same R,,,. The restriction to ranks requires that several entire regions
R,,, constitute the critical region. In behalf of methods based on ranks we may
give the following argument, besides that of ease of application: If the obser-
vations represent scientific data, say, and statisticians agree on what is an
optimum test, we should expect two scientists, examining separately the same
material, to come to the same conclusion. Since their results should not depend
on the accident of choice of a scale of measurement, the critical region should
be invariant under at least linear transformations. All that is assumed about
the underlying d.f.'s is their continuity, and this property is invariant under
topologic transformation of the real axis into itself. Invariance of the critical
region under topologic transformation requires that the statistic be a function
of the ranks of the observations.
Using Fisher's randomization idea described above, Pitman [121 proceeded

as follows: Let c and d denote, respectively, the means of the first and second
samples, and let w = c - d. Consider the distribution of w over the set of all
possible divisions of the ni + n2 observations into two groups, containing nl
and m, elements, respectively. All the attainable values of w are equally likely.
Large values of wI are the critical values, taken in sufficient number to
make the critical region of the proper size; the latter must be a multiple of

~/l+ %2 -1

[(fli )], so some compromise may be necessary.

For sizable ni and n2 the arithmetic of Pitman's test becomes very burden-
some. Pitman (op. cit.) gives the details of fitting a Pearson curve in order to
find an approximate critical point. The parameters of the curve are of course
functions of the observations. Pitman's conjecture that the distribution in
large samples is approximately normal was rigorously proved, under mild re-
strictions, by Wald and Wolfowitz [22]. This means that Pitman's test and the
test based on the assumption that the two d.f.'s are normal with the same
variance are related as follows: (a) they are the same in the limit; (b) if the
hypothesis of normality with equal variances is true, the classical test is, no
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doubt, more efficient than Pitman's for small samples; (c) Pitman's test always
has the correct size, whether normality holds or not.
A remark about the proof of the limiting normality of Pitman's statistic may

be of interest. The problem involved is somewhat different from the usual sort
of obtaining the limiting distribution, because the universe is that of the to-
tality of all divisions of the (n1 + n2) observations into two groups, ni and n2 in
number, respectively. A general theorem on the limiting distribution of linear
forms in a universe of permutations of the observations was proved by Wald
and Wolfowitz [22]. The method is to show that the moments approach those of
the normal distribution, and some restrictions are imposed. The proof is related
to that of the limiting normality of the rank correlation coefficient, due to
Hotelling and Pabst [4], and indeed includes the latter result as a special
case.
Another application of the randomization method to the problem of two

samples from multivariate populations was made by Wald and Wolfowitz [22].
They employed Hotelling's generalized T in the population of permutations
of the observations to test the hypothesis that two bivariate (or, in general,
multivariate) d.f.'s are identical, the alternatives being restricted to the case
where one d.f. can be obtained from the other by a translation. For reasons of
simplicity they made use of a monotonic function of Hotelling's T, but the
test is exactly as if the latter were literally employed. Its distribution under
the null hypothesis that the d.f.'s are identical is over the population of permu-
tations of the observations. For small samples it can be obtained by enumera-
tion of the permutations. For large samples the distribution is proved by
these same authors [22] to be approximately the x2 distribution, subject to
some restrictions on the d.f.

In connection with the above-mentioned theorems on limiting distributions
it would be desirable to investigate the rapidity of approach to the limiting
distribution, which has not been done. The situation from the practical com-
puting point of view is perhaps worst for samples of medium size, which are
too large for enumeration and are too small for the limiting theorems to
apply.

In all the foregoing the reader will no doubt have noticed the absence of any
general method of estimation or of testing hypotheses which might correspond
to general methods like that of maximum likelihood or the likelihood ratio.
The question was specifically raised by E. S. Pearson [11], who pointed out
that no general method was available for choosing those among the conjugate
points which are to constitute the critical region. Statistics are usually chosen
in analogy to those in use in classical parametric theory. This is true with
Pitman's statistic described above, the rank correlation coefficient, the "ran-
domized" serial correlation coefficient of Wald and Wolfowitz [25], and others.
A small beginning toward the solution of this problem has been made by the
writer [28].
The choice of critical region should without doubt be based, in the author's

opinion, on the behavior of the power function of the test with respect to
the important alternatives. However, the optimum behavior of the power
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function of the parametric likelihood ratio of Neyman and Pearson has only
recently been proved by Wald [201, although there has for a long time been
little doubt that this idea is one of the most fruitful in all of theoretical statis-
tics. What we shall now describe is an attempt to extend the likelihood ratio
method to statistics based on ranks. It seems that the method, according to
partial results obtained by the writer, can be extended to statistics of the
general Fisher randomization type and need not be limited to rank statistics,
and the writer hopes to publish some results on this in the future. It must be
stressed that what is about to be described is only a beginning, and two funda-
mental problems to be solved will be described later.
The parametric likelihood ratio X of Neyman and Pearson is defined as

follows (see [10]): Its numerator is the maximum of the values of the likelihood
assigned to the sample by the d.f.'s which satisfy the null hypothesis, and its
denominator is the maximum of the values of the likelihood assigned to the
sample by all admissible d.f.'s. Application requires that the distribution of X
shall be the same for all d.f.'s when the (composite) null hypothesis is true.
Small values of X are the critical values.

Let us return to the problem of two samples. Let the ni + n2 observations
be arranged in ascending order, and let V be the sequence of l's and 2's
obtained by replacing observations from the first sample by 1, and observa-
tions from the second sample by 2. Letfygndf2 be the d.f.'s of the populations
from which the first and second samples, respectively, were actually drawn.
Let Q, the totality of all admissible couples (F1,F2), be the set of all pairs of
continuous d.f.'s. The null hypothesis states that (fi,f2) lies in W, the subset
of Q which consists of all couples (F1,F2) both members of which are identical.
Let us consider the maximum likelihood not of the observations in the sample
directly, but of the sequence V derived from the sample, for the couples of
d.f.'s in co and Q. When the null hypothesis is true, all possible V's have the
same probability, which is a function solely of ni and n2, and therefore inde-
pendent of the sample. The maximum2 probability assigned to V by the couples
of d.f.'s in Q is a function of V. The result is the following test based on the
likelihood ratio: Let V1, V2, . . . , V. be the sequence of all possible V's,
arranged in descending order according to the maximum probability which
each V can take under the couples of d.f.'s in Q. The critical region is composed
of all the V's in an initial subsequence V,, V2, * *, V,, where l/s is the size of
the critical region.
The procedure described above is applicable to other non-parametric prob-

lems as well; for more details the reader is referred to Wolfowitz [28]. Let us
point out two of the gaps which must be filled in if this procedure is to be put
to use. First, although the procedure is plausible it must be justified precisely;
this is likely to be a very difficult task, judging from the difficulties encoun-
tered in the parametric theory and the larger classes of alternatives which must
here be considered. Second, a constructive method of obtaining the maximum
likelihood of V must be developed.

2Throughout we use the term "maximum" where "supremum" would be more appro-
priate. No confusion is caused thereby.
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4. Conclusion
In the present paper we have tried to give a survey of a number of problems

in non-parametric inference, preferring more or less intuitive and heuristic
descriptions to a precise but perhaps less intuitively clear presentation. More
detailed statements can be found in the various references, and an exhaustive
account and bibliography is available in the excellent paper by Scheff6 [14].
We have made no attempt at covering the entire field, omitting in particular
considerable run theory, for which the reader is referred to Mood [7], Mosteller
[8], Shewhart [15], Stevens [17], and Wolfowitz [29], among others. It seems
appropriate to conclude by outlining a few major directions in which research
in non-parametric inference may be expected to proceed.
The power functions of the more generally used tests should be obtained so

that we can judge their efficiency against various alternatives. Very often the
large-sample theory will be the one to be developed for reasons of expediency.
The subject of estimation should be cleared up, particularly in the details

described in the second section.
General and constructive methods of obtaining critical regions should be

developed in connection with the randomization method of Fisher. The
validity of the extension of the likelihood ratio method should be investigated,
and, if confirmed, the procedure should be generalized to other than rank sta-
tistics, and to a general class of problems. Constructive methods of obtaining
the maximum likelihood will be needed.

Finally, it is necessary to develop a theory for the numerous and important
situations where our a priori information tells us more than that the distribu-
tions are continuous or discrete, say, but falls short of telling us the functional
forms of the distributions. Thus we may know that the d.f.'s involved are
uni-modal, symmetric, or that their derivatives are bounded by a given con-
stant. It is very likely that such a theory would be of greater practical im-
portance than the one now existing. It is also likely to prove very difficult,
which is perhaps why scarcely any results are available.

5. Appendix
Derivation of the formula for the large-sample variance of U under an alterna-

tive hypothesis.-In discussing the problem of two samples, we described the
statistic U, the total number of runs of the two kinds of elements, and stated
a new result, the formula for the large-sample variance of U under an alterna-
tive hypothesis. We shall now present the derivation of the formula. The
alternative hypothesis which will be considered is really much more general
than at first appears, since it is always possible, by a continuous transforma-
tion, to transform one of the distributions to the uniform distribution, and,
by the method used by Wald and Wolfowitz [24] in the proof of their Theorem
II, it is possible to extend the result to a large class of couples of continuous
cumulative d.f.'s. By suitable manipulation and use of the formula, it is there-
fore possible to obtain the large-sample power of the statistic U for the alterna-
tives of statistical importance. However, it must be emphasized that this is a
result valid only for large-sample sizes.
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Let X and Y be chance variables with the respective cumulative d.f.'s f(x)
and g(x). Let nl and n2 observations be made on X and Y, respectively. Arrange
the ni + n2 observations in ascending order, and replace each by 1 or 2,
according as the observation is one on X or one on Y, respectively. Denote
the sequence of l's and 2's by V = v,, v2,* , v,,,+ ,,. Then U can be defined
as follows:

ni+ns
U= 1+ E2 (vj-Vi.O)2

J2
Suppose that:

a) f(x) O (x <O)
f(x) x (O 5 x < 1)
f(x) 1 (x> 1)

b) g(x)-O (x <O)
g(x)- (x 21

c) The derivative g'(x) of g(x) exists, is continuous and positive everywhere
in the interval 0 < x < 1

d) ni/n2 = c, a constant.
In section 3 above we have already mentioned the result as obtained by Wald
and Wolfowitz [24] in their Theorem II, lemma 2. We wish now to prove that

lim a2 =4 [f c9'2 o g,(c, +/g,)4
ni- ~~~(c+g')c g)

(fi ~~21~-dx)c2 (fxg
( (c + g')2 (C + g')2

The result we wish to prove is an asymptotic one. This should be borne in
mind in all that follows; in the interest of brevity we may omit explicit limit
statements where no confusion is caused thereby below. The limiting process is
with respect to nj approaching infinity; in the interest of typographical con-
venience we shall write simply n for nj where no confusion can result therefrom.

Let A = n115 and let the interval 0 < x < 1 be divided into subintervals
of length A. Let 4. be the number of runs in the ith interval. Then 24- U is at

i

most nW15, since at most one new run is created in each subinterval by the par-
titioning. Since the variance of U is of order n and its covariance with the new
runs created is of a smaller order, it follows that the limiting value of the var-

iance of n-1121t, is the same as that of n-112 U. We may therefore confine our-

selves to investigating the first of these two.
In what follows we intend to let n -E a, so that A -A 0, and shall omit writ-

ing terms of type o(A). Let v represent a general normally distributed chance
variable, with zero mean and unit variance; different v will be distinguished by
subscripts. The number of l's which fall in the ith interval is the chance
variable

nA(1 + v'7n li)
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and the number of 2's which fall in the ith interval is the chance variable

nA/
+ Yi

c nA/

where gi' is the value of g'(x) at, say, the midpoint of the ith interval. When
these are the numbers of the two kinds of elements, the ratio c' of the number of
elements 1 in the ith interval to the number of elements 2 in the ith interval
is [always to within terms of type o(A)]

c C, +

The (conditional) variance of ti when these element numbers are fixed is there-
fore, using the limiting form of formula (13) of Wald and Wolfowitz [23],

4nA 1 + 1 vit) C =4nA i1 + 1
~~~~ (e~')(+98g,),A1

X(+, liA- hng- (c + g,) Lg'~-y g32 ])

Taking expected values with respect to the hitherto fixed number of elements,
we have that the leading term of this contribution to the variance of 4. is

4nAcg'i2
(c + 9'i)3

The variance of 4 consists of the sum of the above and the expected value of
the square of the difference between the conditional and absolute mean values
of t4. The former is

2nA (1+( pi[ ]

1+ c' c + gi' c + gi' -\/n-A~snti,
The absolute mean value of 4. is of course

2ngi' A
c + gi'

The required contribution to the variance of 4 is therefore the expected value of

4ngWt2A g9ipli c312 2.\2

(c + g;t)2 ~c +gA;' (c + gi')
the terms of lower order being omitted. Since the number of elements 1 which
fall in the ith interval is independent of the number of elements 2 which fall in
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the ith interval, vii and v2i are independently distributed. The required expected
value is therefore

4ngi' (c3 + g't) A
(C + g,')4

The variance of 4 is obtained by summing the two parts obtained above.
Summing the sum of these two parts for all the subintervals and passing to the
limit, we have that the sum of the variances of the 4i is

F 1 cg'2(x) lg(x) [C3 + g'3(x)] 1
4nJ [cg(x] dx +1 cg()4 dx.

O[C + gWX]3 [C + 9 (X)14

This is not yet the variance of U, because the various t4 are not independent
and the covariances must be taken into account. We now proceed to do the
latter.
We note that 4i and t, (i #d j) are related only through the fact that the num-

ber of elements 1 (1 = 1, 2) which fall in the ith interval is correlated with the
number of elements 1 which fall in the jth interval. Once the numbers of the
different elements which fall in the two intervals are fixed, the chance variables
t4 and i4 are independent, because they depend only on the relative position of
the two kinds of elements. Let lv and v2j, respectively, play the same role for the
jth interval that vl; and v,2i perform for the ith interval. From the well-known
formula for the correlation between the numbers of observations falling into
two classes of a multinomial distribution we have, always neglecting terms
of type o(A),

E(P22) = - v i' \A.
Also

E(viiv2j) = E(vliv2,)
= E(ijv2i) = E(vzlv2i) = 0,

since the two chance variables in any one parenthesis are independent.
Define the following quantities:

the absolute expected values of

A2
the conditional expected values of

B2 Jtj
when the numbers of the different elements in the
ith and jth intervals are fixed

A3 i4 A2'
the deviations of k from 4

B3 J 1,.tB2J

va(titi) = covariance between 4t and ti.
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We have
ti = A2 +A3
ti = B2 + B3

a(titi) = E(ti- A,) (t - B1)

E(A2- A1l + As) ([B2- B1] + B3)
= E[E*([A2- A] + As) ([B2- B1] + B3)],

where E* denotes the conditional expected value taken when the chance vari-
ables vli, Y2i, vt, v2 are held fixed (i.e., in the universe where the numbers of
elements 1 and 2 which fall in the ith and jth intervals are held fixed). Because
of the character of the dependence between 4 and to (described in the preceding
paragraph), we have

E*QA2- Al] + As) ([B2 - B1] + B3) = [A2- Al] [B2- BJ,

since E(A3) = E(B3) = 0, and As and B3 are independently distributed. Now
A2- A1 has been shown to be given by

A2 - A1 = 29ig/ / git'Pli C312 2i'
(c+9i) +gi \ (c+ gi

and similarly we have

B2- B, = 29g /nA / g'vl + C3/2 v2j
(c + gI') \c + g'a (C + 9i')

Employing the formulas given above for the expected values of products of
two v, we obtain

o(tIt,) = E[A2 - Al] [B2- Bj

4gi'g,'nA -gi'giA + -CIA
(c + gi') (c + gi') \(c + gi') (c + gs') (c + gi') (c + gi')

When the right member is summed over all pairs (i,j) we obtain

A h t l ft2(h) vrdi + te ,we o (x)t dxe r
o[c + gl(X)]2 o [c + g'MI)2

Adding this to the sum of the variances of the 1j, we obtain the desired result.
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