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1. In 1936, during the Oxford Conference of the Econometric Society,
Ragnar Frisch proposed the following question.
Suppose it is known that two random variables X and Y have the following

composition:
X = + a

Ykb~+$} (1)

where t, a, and j3 are some mutually independent random variables and a and b
are certain constant coefficients, the values of which are unknown. What are
the conditions under which the regression of Y on X, and also that of X on Y.
is linear, irrespective of the values of a and b?
A partial answer to the question was given by H. V. Allen [11.1 Miss Allen

proved this theorem: provided the first two moments of i3 and all the moments
of tand a exist, the necessary and sufficient condition for linearity of regression
of Y on X, whatever may be a and b, is that both t and a should be normally
distributed. The proof was based on the construction of an infinite sequence of
polynomials, normal and orthogonal with respect to the elementary proba-
bility law of X, and therefore the existence of all moments as postulated was
necessary in this manner of proof. However, as the author herself points out,
the condition that all moments exist is restrictive and makes her answer only a
partial one. It may be noted that the distributions considered in many prac-
tical problems do have finite moments of all orders.
The purpose of this article is to consider the same problem under assump-

tions regarding the moments which are less restrictive than those of Miss
Allen.

2. First, a precise interpretation must be given the problem of Ragnar
Frisch. Let X and Y be any two random variables and let Fx,y(x,y) and Fx(x)
stand for the joint cumulative distribution of both variables and for the mar-
ginal cumulative distribution of X, respectively. Thus, for all real x and y,

Fx,y(x,y) = P{(X < x)(Y < y)} (2)
and

Fx(x) = P{X < x} = lim Fxy(x,y). (3)

Statements concerning the regression of Y on X will be interpreted to presup-
pose the existence, for all real x except perhaps for a set of probability zero

Boldface numbers in brackets refer to references at the end of the paper (see p. 91).
[79 1



8o BERKELEY SYMPOSIUM: FIX

(almost all x), of a function Fy18(y), representing the probability distribution
of Y relative to the assumption thatX = x (relative distribution of Y given x),
such that for all real x and y

Fxy(x,y) =| Fy12(y)dFx(x). (4)

Then the regression of Y onX is defined as

Y(x) =| ydFyir(y), (5)

provided the integral on the right-hand side is absolutely convergent.
Thus, the statement that the regression of Y on X is represented by a

polynomial of the nth degree implies the existence of Fyz(y) for almost all
real values of x, the absolute convergence of the integral in (5), and the exist-
ence of n + 1 real numbers ck, k = 0, 1, 2, * , n, such that! for almost all x

rX ~~~~n
Y(x) = ydFyIz(y) = ckxk (6)

k-O

3. Again, let X and Y be two random variables for which the regression of
Y on X exists. Let orxy(t,T), pox(t) and poyl.(T) denote the characteristic func-
tions of the distributions Fx y(x,y), Fx(x), and Fy1.(y) respectively. Then

soXy(tT) = f f ei+"' dFxy(xy)

= f {ei2j elr' dFyrz(y)f dFx(x)

= / eitoyi.(i) dFx(x). (7)

Also, if the regression of Y on X exists, that is to say, if the integral in (5) is
absolutely convergent, then it is well known that the derivative of the char-
acteristic function poylz(T) exists and, at X = 0,

dpyj.z(r) = i Y(x). (8)
d~r So-

Lemma 1. If the regression of Y on X exists and, besides, if the first moment
JL(Y) of Y also exists, so that the integral

b(Y) = fJ f ydFx,y(xy) (9)
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is absolutely convergent, then px,y(tr) is differentiable with respect to T and

d3pX r(t,) =f eitb doPy1z dFx(x). (10)
aO _- dr

The proof of Lemma 1 is very simple and reduces to showing that the
integral in (10) is convergent uniformly in r. For this purpose, notice that

|eift dr~S = || yidFr(y1)| yIY dFY1.(y) (11)

and that, therefore, whatever be A <B,

J| eitz dFx(x) f f IyjdFxgy(xy). (12)

The proof is completed by reference to the absolute convergence of integral (9).
In particular, the substitution of r = 0 in (10) and the use of (8) gives

OwzYtT) =O Ji ei"Y(x) dFx(x). (13)

Lemma 2. If the first moment of Y and also the n first moments ofX exist and
if, furthermore, the regression of Y on X exists and is represented by a polynomial

n

of the nth degreeE Wk, then
k-O

Ofoxzy~t,r) =d- CAic-ft. (14)

clT 00= Cikdt,

The existence of the derivatives on the right-hand side of (14) is guaranteed
by the hypothesis that the first n moments of X exist. This implies that the
integrals

1:(x) xkdFx(x) (15)

are absolutely convergent for k = 1, 2, , n. Then, as is well known,

d-__ = f XkeitzdF2(x). (16)
dtk _j

The proof of Lemma 2 is completed by reference to formula (13).
Formulae (13) and (14) play an essential role in the following. In the present

paper, formula (14) will be used assuming n = 1 only.
4. With reference to the random variables X and Y defined in (1), it is easy

to see that the statement of the problem of Ragnar Frisch implies the existence
of the first moments of all three variables t, a, and fl. In fact, if b = 0, then the
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regression of Y on X reduces to the first moment of ( and the assumption that
this regression exists for all real b implies the existence of the first moment of ,3.
Again, if the regression of Y on X exists when a = 0 and b = 1, this would
require the existence of the first moment of Z. The further assumption that the
regression of X on Y exists leads to the conclusion that the first moment of a
must exist.

This seems to justify the consideration of the problem of Ragnar Frisch
under the restriction that the first moments of I, a, and p3 exist in the sense
that the integrals representing these moments are absolutely convergent. It is
obvious that no loss of generality will be incurred by assuming that the first
moments of t, a, and i are all equal to zero. Under these general restrictions,
the solution of the problem of Ragnar Frisch is given by the following three
theorems. In these three theorems the variables X, Y, t, a, and ( will be those
of formula (1).

Theorem 1. For the regression of Y on X to be linearfor all values of a contained
in a closed interval (a,, a2) where either a, <a2< 0 or 0 < a1 < a2 and for some
b .d0, it is necessary and sufficient that

either (i) t or a reduces to a constant, 0= 0 or a = 0 or both
or (ii) that the characteristicfunctions of 4 and a have theform

,pt(t) = e-k(u+i#)Itlala (17)

,p(t) = e (+iD 't )"I"| (18)

with

1 < vp 2, u>0 and k2 > 0. (19)

The alternative (i) is trivial, and therefore it will be assumed in the following
that neither t nor a reduces to a constant.

5. Proof of necessity. Assume that neither t nor a reduces to a constant and
that the regression of Y on X is linear for all ae(al,a2) and for some b # 0. This
latter assumption combined with the postulated equality to zero of the first
moments of t, a, and p implies that the first moments of X and Y exist and are
equal to zero and that there exists a real number c such that, for almost all
real x

Y(x) = cx. (20)

Let pr(t), .pa(t), and sop(t) denote the characteristic functions of I, a, and (3
respectively. Then

Tx(t) = *pt(at),po(t) (21)
and

wx y(tT) = .p(at + bT)Sop(t)#pp(r) . (22)

Now formula (14) will be applied to (21) and (22). In doing so it will be re-
membered that the equality to zero of the first moment of (3 implies that the
derivative so.'(0) = 0. It will also be remembered that, whatever be the vari-
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able, its characteristic function taken at t = 0 is necessarily equal to unity.
Using (21), (22), and (14), we have

b^p'(at),p.(t) = c d [,pt(al),p.(t)] (23)
dt

or
(b - ac),ot'(at)pp(t) = cpe(at),p.'(t) (24)

for all real values of t and for all ae(al,a2) .2
It is evident that c cannot equal zero. Suppose, in fact, that c = 0. Then

b - ac 0 and, for all values of t and ae(al,a2)

= 0. (25)

Since *°a(0) = 1 and since characteristic functions are continuous, there exists
a number a > Osuch that, for t < 6,

soa) YId 0.-(26)

It follows from (25) that for | t < 8/ao

t'(t) = 0, (27)

where ao is the larger of the two numbers | a,1 and | a2 l. This implies that the
second derivative of sot(t) at t = 0 must exist and be equal to zero. (See Cramer
[21, p. 90.) From this it would follow that t is a constant equal to zero, con-
trary to the assumption. Similarly, b - ac cannot be equal to zero withoit- a

reducing to a constant.
It may happen that spt(t) and/or po.(t) have real roots. In that case let T be

the smallest of the absolute values of the roots of either function. Since both
spz(t) and po.(t) are continuous and equal unity at t = 0, it follows that T > 0.
Then for t < T neither the function pt (t) nor the function (p. (t) is ever equal
to zero. If neither pot(t) nor p. (t) has any real roots, then T will stand for + - .
Further, let To be the smaller of the two numbers T and T/ao. Then for all
values of ae(ai,a2) and for all |tI < To neither op(at) nor p. (t) ever vanishes. If
To is a finite number, then either so. To) = 0 or there will be at least one
value a'e(al,a2) for which pt(-a'To) = 0 or both. Restricting ourselves to
the interval It | < To, we can write

(b-ac) ,pt(at) = cp.'(t) (28)
,p(at) Pa(t)

or

(b - ac) a log sot(at) = ac
d log so.(t) (29)

2 This equation will be satisfied if a = 1 and Z and a both have the same distribution func-
tion, regardless of its form, provided that the first moments exist as postulated. In this case
the value of c will be b/2. (See J. F. Kenney [5].)
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Integration of (29) with respect to t gives

(b - ac) log p(at) = ac log po.(t) + log A (30)
or

,pi(at) = A [,p. (t)] b- (31)

where log A is the constant of integration. But A = 1, since every character-
istic function is equal to unity at t = 0. It will be remembered that (31) holds
for all ae(al,a2) and for t < To.

Since wp(at) is differentiable with respect to a, it follows that the exponent in
the right hand side of (31), say

ac (32)
b-ac'

must also be differentiable with respect to a. Denoting by w' the derivative of
w, we have

tqt'(at) = w'f{po(t) }- logspa(t) . (33)

Substitution in (33) of the value

IPE'(at) =-W (){o(t) W (34)
a So11(t)

obtained from (28) and (31) gives

tse = a-w'log io.(t). (35)
,P-Wt W

Again, this equation is valid for ae(a1,a2) and for | tl < To. There must exist
an interval 5 of values of t partial to | tI < To and not including zero where the
product t log p. (t) never vanishes. In fact, since so.(t) cannot be equal to unity
identically in any interval A including zero, however small, without a reducing
to a constant, the interval | tI < To must contain points t' where Po6(t')d 1.
Since so.(t) is continuous, there must be a vicinity of t' where Son(t) is never
equal to unity. Let a denote the longest interval including t' and partial to
| tI . To such that the product t log spa(t) never vanishes within 5. However,
then it will have to vanish at one of the boundaries, at least, of 5, which may
be t = 0. Also the other boundary of 5 may be i To.
Within the interval a equation (35) may.be divided by t log So. (t) giving

a loglog p.(t) w' dlog | tl (36)
at w dt

Integrating (36), we get the value of

log log Soa(t) = a5-log | t + logK (37)
w



LINEAR REGRESSIONS 85

valid for all the interval 8, which leads to

,p.(t) = eKt'i (38)
with

v = a- (39)
w

and logK representing the constant of integration, possibly a complex number

K =-(u + iv). (40)

The constant K cannot reduce to zero without a being a constant. Also, since
| sop(t) | < 1, u must be greater than or equal to zero. Further on it will be
shown that u is necessarily greater than zero. It is easy to see that neither v
nor K can depend on a. For this purpose it is sufficient to substitute in (37)
two different values of t, say ti and t2, both belonging to the interval 5. Then v
and K will appear as solutions of a system of two linear equations independent
of a.

Since P is an absolute constant and since (al,a2) does not include zero, (39)
implies

W ac = k2valv (41)
b-ac

with log k2 standing for the constant of integration. Presently it will be shown
that k2 must be positive. Solving (41) for c we get

_a bk2IaI `

IaI 1+2I (42)c I al 1 al .(2

Using (31), (38), and (41), it follows that

,pt(at) = e .Iat (43)

It is seen from (43) that k2 must be positive, or otherwise | op(at) | would have
values greater than unity.
Formulae (38) and (43), valid within the whole interval a not including zero

and partial to | t | < To, imply that a extends either from - To to zero or from
zero to + To. In fact the boundaries of a are either zero and at To or else such
points t' # 0 where

log sp(t') = KI t'i| = 0. (44)

Since K F 0, it follows that no such points exist. Thus formulae (38) and (43)
hold either in (- ToO) or in (0, To). Since the values of characteristic functions
taken at it d 0 are necessarily conjugate, we may now determine both char-
acteristic functions over the whole interval it < To. Suppose for example
that a = (0, To). Then within (- Too) we must have

,P-W = p°a(-t) = e-(u-i)t (45)
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with the formula

e-G)= Iti (46)

being valid for the whole interval | tI < To. Similarly it is found that within
Iti < To )jativ

yt(at) = e (47)

Obviously, the functions po(t) and spt(at) as in (46) and (47) satisfy the
differential equation (29) throughout the interval | tj < To. The difference be-
tween the values of the functions in the negative and in the positive halves of
this interval consists in the difference in the constants of integration, owing to
the discontinuity at t = 0.

It is now possible to show that To = + a. In fact To was defined as the
smallest positive number such that either :iTo is a root of po(t) or such that
zia'To is a root of pt (at). Since neither of these functions as determined by (46)
and (47) has any roots at all, and since both of the functions must be con-
tinuous, it follows that To = + o and thus that formulae (46) and (47) are
valid for aE(al,a2) and for all real values of t.

Substituting at = r in (47), it is easily found that

Sot('r) = e-k2(u+ir |
D )arv (48)

Thus, if both a, and a2 are positive

etek2(u+i It) If49

On the other hand, if a, < a2 < 0, then

pt(t) = ek2(ui"(&Iti (50)

To conclude the proof of the necessity of the conditions stated in Theorem 1,
it remains to show that 1 < v _ 2 and that u > 0. The inequalities for v
follow from the fact that, if v < 1, then the derivatives of poa(t) and ept(t) fail
to exist at t = 0, which means that the first moments of a and t do not exist,
contrary to the basic hypothesis. Also, should v > 2, then the second deriva-
tives of po(t) and p(t) would exist and would vanish at t = 0. Should this be
the case, then the second moments of a and twould exist and be equal to zero.
But then a and Z would have been constants equal to zero and their character-
istic functions would have been sp(t) =_ 1.

It remains to prove that u must be a positive number, not zero. This is
achieved by noticing that should u = 0 then the modulus of the characteristic
function of a

|. J|--|ewirt in - 1 (51)
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for all real values of t, which is impossible. In fact, Cram6r [3] has pointed out
that if the modulus of a characteristic function of some variable z is equal to
unity for some value to # 0, then z must be a discrete variable whose distribu-
tion is a step function with discontinuities at all or at some points Zk of the form

Zk = 2kir/to + zo (52)
fork = O. i 1, -2, * * * .

This is easy to prove as follows. Assume that the modulus of

9pM(t) eitzdF5 (53)

is equal to unity for t = to. Then

z(t)l12= If (costoz+ sintoz)dF,.12

(1 )2 (1 ) 2
= f'cos tozdF,) + (f'sntozdF)

=1. (54)

Now the squares of the integrals above may be written as products and then
as double integrals, e.g.:

cos tozdFz(z)) =f cos tozdF,(z) cos 4ydF.(y)

=f/ J cos toz cos toydF.(z)dF,(y). (55)

In this way equation (54) can be rewritten as

J J cos to(z - y)dF,(z)dFz(y) = 1. (56)

It is now obvious that should there be a set S of values of (y,z) such that

JjfdFz(z)dFz(y) > 0 (57)

where to(z - y) d 2kir, then the integral in (56) would have a value less than
unity. It follows therefore that the probability of the argument of the cosine
in (56) being equal to a multiple of 21r is unity. Thus the possible values of the
variable z must differ from each other by multiples of 2wr/to.

It follows that, should a characteristic function so,(t) have its modulus equal
to unity for two incommensurable values ti d 0 and t2 id 0, then the possible
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values of z corresponding to the discontinuities of its distribution function
F.(z) would have to belong to two sequences of numbers, say

z2k k = O 1, 2,* (58)

and

,oi,2k . ,2,*- (59)
t2

But it is obvious that the sequences (58) and (59) may have no more than one
element in common. Thus | o(t) | -1 implies that z is a constant equal, say, to
zo in which case

-pz(t)= 0%. (60)

However, (60) is not a particular case of the general form of the characteristic
function of a found above. Thus u > 0. This completes the proof of the neces-
sity of conditions enumerated in Theorem 1.

6. Proof of suffiiency. To prove that under the conditions of Theorem 1 with
the assumed existence of the first moment g(,B) of p, the regression of Y on X
necessarily exists and is linear, it is sufficient to prove that the regression of
t on X exists and is linear. In fact, it is evident that, if the regression of t on X
is Z(x), then the regression of Y = bQ + , is

Y(x) = bt(x) + ,g(*). (61)

Therefore in further reasoning it will be assumed that

Y = t. (62)

The proof is based essentially on formula (13). In order to use this formula
it must first be established that, if the characteristic functions of t and a are
given by formulae (17) and (18) with restrictions (19), then for almost all
values of x the regression Y(x) exists and that the first moment of Y = t exists.
All this is implied by the particular form of the characteristic functions po.(t)
and we(t) with u > 0, k2 > 0 and 1 < v . 2. It is noticed first that under
these conditions the derivatives of both characteristic functions exist for all
values of t, tend to zero as t - 0 and as t - c, these derivatives tend to zero

faster than an arbitrary negative power of t. According to the recent result of
Fortet [4], these conditions are sufficient for the existence of the first moments.
Thus, if a and Z have characteristic functions (46) and (48), they must possess
first moments equal to zero.

Furthermore, the characteristic functions (46) and (48) are absolutely in-
tegrable from - - to + a. This implies that the distribution functions
Ft(y) and Fa(z) possess continuous derivatives, say py(y) and pa(z), repre-
senting the frequency functions of the two variables Y = t and a. These
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frequency functions determine the joint frequency function of Y and X =
at + a, namely

px y(x,y) = pa(x - ay)py(y). (63)

The relative frequency function of Y given x, PYIZ(Y), is then given by

p 1.(Y) p.(x - ay)py(y) (64)
J pa(x - ay)py(y)dy

and the regression function Y(x) is given by

f yp.(x -ay)py()dy
Y(x)= X (65)

fpa(x- ay)py(y)dy

It is evident that Y(x) must exist for almost all values of x since otherwise the
first moment of Y would fail to exist.
Thus the conditions of validity of formula (13) are established. Since the

frequency function of X exists, say

px(x) =f p(x - ay)py(y)dy, (66)

formula (13) maybe written as

px Y(t, T) |= j eitzY(x)px(x)dx. (67)

Using (46) and (49) or various previous formulae satisfied by the characteristic
functions sp.(t) and (pc(t), easy algebra gives

asox, (t, T) | k2 aI" dpx(t) (68)
aTr T=o a(l +k22aKV) dt

so that, owing to (67), the right-hand side of (68) appears to be a Fourier
transform of the product

iY(x)px(x) (69)

Owihg to the particular form of the characteristic functions sp.c(t) and pt(t),
and especially owing to the fact that u > 0 and k2 > 0, the squares of the
moduli of .px(t) and of depx/dt are integrable from to + A. Therefore
(see Widder [6], p. 202) we may write

iY(x)px(W) =- 1 af" d-px e-itdt (70)Ir a~ dt
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and

px(x)= - | x(t)e-i'adt. (71)

Integrating (70) by parts and using (71), we have

iY(2pXW2 22-( lk;1, X(t)e--i'u + i (| XzI)e--'udt2r a(1 +k Ial P)

AxjaW (72)
a(l + k2IaI )x

or

Y(x) = (1 a'1_X (73)a(l + k2 aIP`)

for every x where px(x) > 0. This completes the proof of Theorem 1.
7. Theorem 2. With the previous notation holding, a necessary and sufficient

condition that Y(x) = cx for all values of a within an interval (ala2) such that
a, <0 < a2 is that

P(t) = e-kts itf (74)
and

,p.(t) = t (75)
with

1 < v 9 2, u>0 and k >0. (76)

Theorem 2 follows easily from Theorem 1. The new assumption implies that
formulae (49) and (50) must be equivalent. Hence v = 0.

8. Theorem 3. If the variables t, a, and P satisfy the conditions of Theorem 1
and if, besides, the second moment of either t or a is known to exist, then both t
and a must be normally distributed.

Suppose, for example, that the second moment of a exists. Let it be a2 > 0.
For every t,

d2 log sop(t) = (u iv t 1) t 2 (77)
dt2 ItI !'

The existence of the second moment implies that as t 00 this expression must
tend to -o2. This is possible only when v = 2, v = 0, and 2u = c2. Thus in this
case eut7

Scoa(t) = e- (78)

which is the characteristic function of the normal law. It follows easily from
this that t also must be normally distributed. Similar reasoning applies when
the second moment of Z is known to exist.

In conclusion, I wish to express my indebtedness to Professor J. Neyman
and to Professor G. P6lya for their valuable suggestions and criticisms.
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