
CHAPTER 11

ELEMENTARY TRUTH

“ . . .  a new theory, however spe­
cial its range of application, is 
seldom or never just an increment 
to what is already known. Its as­
similation requires the reconstruc­
tion of prior theory and the re- 
evaluation of prior fact, an in­
trinsically revolutionary process 
that is seldom completed by a 
single man and never overnight.” 

Thomas Kuhn.

This chapter marks a change in emphasis towards an approach that will 
be more descriptive than rigorous. Our major concern will as usual be to 
analyse classical notions and define their categorial counterparts, but the 
detailed attention to verification of previous chapters will often be 
foregone. The proof that these generalisations work “ as they should” will 
thus at times be left to the reader.

11.1. The idea of a first-order language

The propositional language PL of §6.3 is quite inadequate to the task of 
expressing the most basic discourse about mathematical structures. Take 
for example a structure (A, R ) consisting of a binary relation jR on a set 
A  (i.e. R ^ A x A ) .  Let c be a particular element of A  and consider the 
sentence “ if every x is related by R to c, then there is some x to which c 
is related by K ” . If the “ range” of the variable x is A, then this sentence 
is certainly true. For, if everything is related to c, then in particular c is 
related to c, so c is related to something. To see the structure of the 
sentence a little more clearly let

a abbreviate “ for all x, xJRc”
230



CH. 11, § 11.1 THE IDEA OF A  FIRST-ORDER-LANGUAGE 231

and
β abbreviate “ for some x, cRx” .

Then the sentence is schematised as 

α=>β.

Now the semantical theory developed for PL in Chapter 6 cannot analyse 
the above argument, i.e. it cannot tell us why a => β is true. To know the 
truth value of the whole sentence we must know the values of a and β. 
However these function as “ atomic” sentences (like the letters 7rf). Their 
structure cannot be expressed in the language PL, and the PL-semantics 
does not itself explain why β must have the value “ true” if a does. In 
order then to formalise a and β we introduce the following symbols:

(i) a symbol V, known as the universal quantifier, and read “ for all” ;
(ii) a symbol 3, known as the existential quantifier, and read “ for 

some” or “ there exists” ;
(iii) a symbol c, called an individual constant, which is a “ name” for the 

element c;
(iv) a symbol R, a (two placed) relation symbol, or predicate letter, 

which names the relation R ;
(v) a symbol v, called an individual variable whose interpretation is, 

literally, variable. It may be taken to refer to any member of A. (We shall 
help ourselves to an infinite number of these variables shortly, but for 
now one will do).

We can now symbolise a as (Vu)uRc, and β as (3v)cRv.
A  language of the type we are now developing is called a first-order or 

elementary language. The word “ elementary” here means “ of elements” . 
The variables of a first-order language range over elements of a structure. 
In a higher-order language, quantifiers would be applied to variables 
ranging over, not just elements, but also sets of elements, sets of sets of 
elements, etc. However in saying that the sentence

(Vu)uRc => (3u)cRd

is true of the structure or “ interpretation” (A, R, c) it is thereby under­
stood that the variable v ranges over the elements of A. Thus we need 
not include in our first order language any symbolisations of locutions like 
“ for all x belonging to A ” . That is, the use of an elementary language 
does not depend on a formalisation of set theory.

The language we have just sketched is but one among many first order 
languages. The one we use will depend on the nature of the mathematical
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structure we wish to discuss. If we wanted to analyse BA’s we would need
— constants 0 and 1  to name zero and unit elements;
— functions letters for the Boolean operations. These would comprise a 

one-place letter f for complementation, with f(u) read “ the comple­
ment of u”, and a pair of two-placed function letters, g and h, for 
meets and joins, with g(u1? v2) read “ the meet of υλ and v2 \ and

2̂) read “ the join of υλ and t>2” ;
— the identity symbol ~ , with v1~ v 2 read iiv1 is identical to v2 \
Then, for example, the sentences

would be true of any Boolean algebra -  they simply express the defining 
property of the complement of an element.

In principle, functions can always be replaced by relations (their 
graphs). Correspondingly, instead of introducing a function letter, say h 
above, we could use a three place relation symbol S, with S(u1? u2, v3) 
being read “ tr is the join of v2 and t>2” . The last sentence would then be 
replaced by

The most important mathematical structure as far as this book is con­
cerned is the notion of category. This too is a “ first-order concept” and 
there is some choice in how we formalise it. We could introduce two 
different sorts of variables, one sort to range over objects and the other 
over arrows, and hence have what is called a “ two-sorted language” . 
Alternatively we could use one sort of variable and the following list of 
predicate letters:

and

(Vu)S(l, u, t(v))

Ob(v)

Ai(v)
dom^i, v2) 
cod(u1? v2) 

id(vl9 v2) 

comiv^ v2, v3)

v is an object” 
v is an arrow”

v1 = v2 ° u3”

Amongst the sentences we would need to formally axiomatise the
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concept of a category are

V v ((Ob(t>) v  Ar (υ)) λ  ~  (Ob(t>) λ  At ( u ) ) )

(Vu2)(Ob(u2) => (Bvjid ivu v2))
(Vn1)(Vu2)(dom(u1? d J ^ O K d ^ a A i^ ))
(V^i). . .  (Vu6)(com(u4, vu D2)Acom(i)5, v4, d3)acoiii(d6, v2, v3)

The last sentence expresses the associative law -  (υχ ° v2) ° v3 =
(i)i° (v2 ° v3). The interpretation of the others is left to the reader.

Notice that with the aid of the identity symbol we can express the 
statement ψ(^ι) that an individual vx is the only one having a certain 
property φ (this of course is vital to the description of universal proper­
ties). We put ψ(ρ!) = (cpCui)λ (Vu2)(<p(u2) u2)), i.e. “ v1 has the prop­
erty, and anything having it is equal to The formula 3 ν 1φ(νί) is 
sometimes written (3!η1)φ(η1) which is read, “ there is exactly one such 
that φ(νλγ\

The language just outlined is rather cumbersome in distinguishing 
arrows from objects. A  simpler approach, mentioned earlier, is to elimi­
nate objects in favour of their identity arrows, and so assume all individu­
als are arrows. We would then use the predicate com as before, as well as 
the function letters D(u) -  “ dom t>” , and C(u) -  “ cod t>” . Thus dom v is 
now an arrow, namely an identity arrow. But the dom and cod of an 
identity arrow ought to be itself, so we can define Ob(u) to be an 
abbreviation of the expression

(D(t>) ~ v) λ (C(u) ~ v).

An extensive development of this type of first-order language for 
categories is presented by W. S. Hatcher [68], who uses it to discuss 
Lawvere’s earlier work [64] on an elementary theory of the category of 
sets. Hatcher also gives a rigorous proof of the Duality Principle, which 
after all is a principle of logic (caveat -  composites in Hatcher are written 
the other way around, i.e. what we have been calling “ g ° / ” is written

E x e r c is e  1. Express the Identity Law in the above languages.

E x e r c is e  2 .  Write down a first order sentence expressing each of the 
axioms for the notion of an elementary topos.



11.2. Formal language and semantics

All of the examples just given have a common core, one shared by all 
such languages.
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Basic alphabet for elementary languages
(i) an infinite list vl9 v2, v3, . . .  of individual variables;
(ii) propositional connectives a , v , ~ , =>;

(iii) quantifier symbols V, 3;
(iv) identity symbol
(v) brackets ), (.

Given this stock of symbols we can specify a particular language, intended 
to describe a particular kind of structure, by listing its relation symbols, 
function letters, and individual constants. Hence a first-order language is, 
by definition, a set of symbols of these three kinds. For BA’s we employ 
the language {0 , 1 , f, g, h}, while for categories we could use {com, C, D}. 
In order to discuss semantic theories for elementary logic we will work 
throughout with a particularly simple language, namely

££ = {R ,c}

having just one (two-place) relation symbol, and one individual constant. 
This will suffice to illustrate the main points while avoiding complexities 
that are technical rather than conceptual.

T e r m s : These are expressions denoting individuals. For SE the terms are 
the variables t>1? v2, . . .  and the constant c.

A t o m ic  F o r m u l a e : These are the basic building blocks for sentences. For 
SE they comprise all (and only) those expressions of the form t ~  u, and 
iRw, where t and u are terms.

F o r m u l a e : These are built up inductively by the rules
(i) each atomic formula is a formula;
(ii) if φ and φ are formulae, then so are (φ λ  ψ ), (φ ν  φ), (φ => ψ ),

(~φ);
(iii) if φ is a formula and v an individual variable, then (Vt>)<p and 

(3v)<p are formulae.
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S e n te n c e s : If a particular occurrence of a variable in a formula is within 
the scope of a quantifier, that is said to be a bound occurrence of the 
variable. Otherwise the occurrence is free. Thus the first occurrence of 
in — is free, while its third occurrence is bound. A
sentence is a formula in which every occurrence of a variable is bound. A  
formula that is not a sentence, i.e. has at least one free occurrence of a 
variable, is called an open formula.

We will write φ(υ) to indicate that the variable v has a free occurrence 
in φ -  thereby formalising a notation we have used all along. This may be 
extended to φ(υίχ, . . . ,  vin) to indicate several (or perhaps all) of the free 
variables of φ.

In t e r p r e t a t io n s  o f  SE: To ascribe meanings to ^-sentences we need to 
give an interpretation of the symbols R and c, and then use these to 
define interpretations of formulae by induction over their rules of forma­
tion.

A  model for ££, or a realisation of SE, is a structure 21 = (A, jR, c) 
comprising

(i) a non-empty set A ;
(ii) a relation jR c A x A ;

(iii) a particular individual c e A .
Now if φ is the sentence (Vu1)t)1Rc, then we may ask whether φ is true or 
false with respect to 2Ϊ. The answer is-yes, if every element of A  is 
R -related to c, and no otherwise. On the other hand if ψ(υλ) is the open 
formula i^Rc it makes no sense to ask whether φ is true or false 
simpliciter. We would have to give some interpretation to the free 
variable v1. We could thus ask whether φ is true when v± is interpreted as 
referring to the individual c. The answer then is-yes, if cRc, and no 
otherwise. The general point then is that to give an open formula a truth 
value relative to a model we have first to assign to its free variables 
specific “values” in that model.

We now introduce a method of interpreting the variables “ all at once” 
in 21. Let x be a function that assigns to each positive integer n an 
element x(n), or simply xn, of A. Such a function is called an 2Ϊ-valuation, 
and is represented as an infinite sequence x = (xl5 x2, . . . ,  xt, ...) . The i-th 
member xt of this sequence is the interpretation of the variable vt 
provided by the valuation x. In what follows we will have occasion to alter 
valuations like x in one place only. We denote by x(i/a) the valuation
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obtained by replacing x-t by the element aeA.  Thus 

x(i/a) =  <xls x2, ...,  Xi_!, α, %+1, . ..).

Once variables have been interpreted, we can discuss matters of truth. 
We are going to give a rigorous definition of the statement “ the formula φ 
is satisfied in 31 by the valuation x ” , which is symbolised

The definition of satisfaction is intuitively almost obvious, but to set it out 
precisely is rather laborious. That such a rigorous definition really is 
needed was first realised by Alfred Tarski, who gave one in [36], thereby 
opening up what has become a substantial branch of mathematical logic, 
known as model theory.

A t o m ic  F o r m u l a e : Given a valuation x, each term t determines an 
element xt of A, defined by

(1 ) 3H=i~u[x] iff is the same element as xM
(2) 3U=iRu[x] iff xtRxu.

Thus the symbol ~  has a fixed interpretation on any model. It denotes 
the identity relation A ={(x, y): x = y}.

F o r m u l a e :

(3) 3ίΝφΛψ[χ] iff 3ίΙ=φ[χ] and 3ΙΙ=ψ[χ]
(4) 3ϊΙ=φνψ[χ] iff 3ΙΙ=φ[χ] or 3H=i/f[x]
(5) 30~<p[x] iff not 3th φ[χ]
(6) 3ΙΙ=φ=>ψ[χ] iff either not 31Νφ[χ] or 3ΙΝψ[χ]
(7) 31Ν(νυ0φ[χ] iff for every a e A , 3ΙΙ=φ[χ(ΐ/α)]
(8) 3Il=(3t)i)<p[x] iff for some a e A ,  31Νφ[χ(ι/α)].

In fact the satisfaction of a formula depends only on the interpretation of 
free variables in that formula, as shown by the

3ΙΝφ[χ].

xt if t is the variable vt 
c if t is the constant c.

Then

E x e r c is e  1. If x  and y are valuations with xt = yt whenever vt occurs free 
in φ, then

3ih<p[x] iff 3lh<p[y]. □
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In view of this fact, if φ is a sentence (no free variables) then one of two 
things can happen: either

(i) φ is satisfied by every valuation in 31, or
(ii) φ is satisfied by no valuation in 21.

In case (i), we simply write 2t Νφ, read “ φ is true in 21” , or “21 is a model of 
φ ” . In case (ii) we say that φ is false in 21, or that φ fails in 21.

Now there are some open formulae that we might want to say are 
simply true in 21. One such example is v1~ v 1- i t  comes out true no 
matter how it is interpreted, i.e. it is satisfied by every valuation. To make 
this usage precise, and to reflect the fact that only interpretations of free 
variables are required we consider satisfaction of formulae by finite 
sequences. The index of a formula is defined to be the number of free 
variables that it has. If φ(υίχ, . . . ,  vin) has index n, with vh, . . . ,  vin con­
stituting all of its variables, we write 2th<p[x1, . . . ,  xn] if 21 h<p[y] for some 
(equivalently any) valuation y that has yh = xl5 yh = x2, . . . ,  = xn. This
means that φ is satisfied when vh is interpreted as x1? t>i2 as x2, etc. Then φ 
is said to be true in 21, 21N φ, iff for any x1?. . . ,  x̂  e A, 21 h <p[x1?. . . ,  xn].

Exercise 2. 21 Νφ(υίι?. . . ,  vin) iff 21 KV^XViO · · · (Vuin)<p.

E x e r c is e  3. 2iHVt>)<p[x] iff 211= ~ (3υ )~ φ [χ ].

11.3. Axiomatics

An i£-formula φ is valid if it is true in all ^-models. To axiomatise the 
valid formulae we need to consider substitutions of a term t for a variable 
v in a formula <p. We write <p(v/t) to denote the result of replacing every 
free occurrence of v in φ by t. This operation will “preserve truth” in 
general only if v is free for t in φ. This means either that t is the constant 
c, or that t is a variable and no free occurrence of v is within the scope of 
a i-quantifier. This means then that t does not become bound when 
substituted for a free occurrence of v.

The classical axioms for SE are of three kinds.

P r o p o s it io n a l  A x i o m s : All formulae that are instances of the schemata 
I-XII of §6.3 are axioms.



238 ELEMENTARY TRUTH CH. 11, § 11.4

Q u a n t if ie r  A x i o m s : For each formula <p(v), and term t for which v is free 
in φ,
(υι) νυφ=>φ(υ/ί),
(e g ) <p(t>/f)=>3u<p

are axioms.
(The names stand for “universal instantiation” and “ existential general­

isation” .)

Id e n t it y  A x i o m s : For any term i,

(11) i ~ i  is an axiom.

For any φ(ν), and terms t and u, for which v is free in φ,

(1 2 )  ( ί ~ Μ ) Λ φ ( ϋ / ί ) = ) φ (υ /Μ ), is an  a x io m .

The rules of inference are,

D e t a c h m e n t : From φ and φ => φ infer ψ, 
an d  tw o  qu an tifier ru les:

(V) From φ => ψ infer φ => (^ν)φ, provided v is not free in φ
(3) From φ => ψ infer (3υ)φ=>ψ, provided v is not free in φ.

Writing \~αι^φ to mean that φ is derivable from the above axioms by the 
above rules, we have

~̂cl<P Iff for oil -models 31, %¥φ.

This fact, that the class of valid ^-formulae is axiomatisable, is known as 
Godel’s Completeness Theorem, and was first proven for elementary 
logic by Godel [30]. There are now several ways of proving it, and 
information about these may be found for example in Chang and Keisler 
[73] and Rasiowa and Sikorski [63].

E x e r c i s e . Show that the following are CL-theorems: 

t ~  u => u ~  t, (t ~  u) a  (u ~  uf) => (t ~  u'),

~ ( 3 υ ) ~ φ  =3(Vu)<p, (Vu)<p => ~  ( 3 υ ) ~ φ .

11.4. Models in a topos

The interpretation of ^  in a topos is, like its classical counterpart, both 
natural in its conception, and arduous in its detail. It is based on a
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reformulation in arrow-language of the satisfaction relation 

2ϋ=φ0ι , . , . ,Χ η Ι

In fact it is convenient to deal first with a more general notion. An integer 
m 2? 1  will be called appropriate to φ if all of the variables of φ, free and 
bound, appear in the list vl9 v2, · · ·, vm. Notice that it is permitted that 
the list include other variables than those occurring in φ, so that if m ^  
then I is also appropriate to φ. Now given an appropriate m, we can 
discuss satisfaction of φ by m-length sequences. We put 3ΙΝφ[χ1?. . . ,  xm] 
iff 3th<p[y] for some (equivalently any) valuation y that has yt = x-t 
whenever vt is free in φ (such a vt will then occur in the list vl9. . . ,  vm).

Now given a model 31 = (A, R, c) and a particular m, each φ to which m 
is appropriate determines a subset, <pm, of the m-fold product A m. 
Namely,

<Pm = { < * 1 ,  · · · ,  *m > : 21 != < ? [> !,  · · · ,  Xm ] }

is the set of all m-length sequences satisfying φ in 31.
To know all the <pm,s, for appropriate m’s, is to know all about 

satisfaction of φ in 31. Moreover the rules for satisfaction for the proposi­
tional connectives correspond to the Boolean set operations on subsets of 
A m. Thus the complement of <pm (i.e. the sequences not satisfying φ) is 
the set of sequences satisfying ~<p, the intersecting of <pm and ψ™ consists 
of the sequences satisfying φ λ  ψ, and we get

(~<p)m= -cpm
(φΛψ)γη= φ γηη ψ γη

(φ v ψ)"1 = <pm U etc.

(We see now the point of dealing with appropriate m’s. If m is approp­
riate to φ and ψ it will be to φΛψ also, although the three formulae 
might all have different indices.)

It would seem then that we could interpret φ in a topos as a subobject 
of am, for some object a, and then use the Heyting algebra structure of 
Sub(am) to interpret connectives, and hopefully quantifiers as well. This 
approach to categorial semantics has been set out in dissertations by 
students of Gonzalo Reyes and Andre Joyal at Montreal. The theory for 
elementary logic is presented by Monique Robitaille-Giguere [75].

The alternative approach is to switch from subobjects to their charac­
teristic arrows. This accords with the propositional semantics of Chapter 
6 , and has the advantage for us that the interpretation of quantifiers is 
more accessible to a “ first principles” treatment. This latter theory has 
been developed by Michael Brockway [76].
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Returning to our -model 21, we replace <pm by its characteristic 
function Ιφψ1 :A m->2, where

rr T im // f 1  ^M  «Xl, •••,^n» = L otherwise

Using the correspondence described in Theorem 1 of §7.1, we find that

[ K p r ^ - W c p r  
ΐφ λ ψΐ™= M m n u t 1 ( = ^ o  (ΐφ]™, [ψϊ»»

[φνψ Γ  =[φ]Γ^Ι[ψ]Γ

where —ι, w  are the classical truth functions on 2.

To treat quantifiers in this manner we consider an example. Suppose 
that φ has just the variables ul5 r>2, and v3 and (with m = 3), ϋφΡ: A 3 2 
has been defined. We wish to define [Vu2<pP: A 3 2. So, take a triple 
(xu x2, x3) c A 3 and let

B2 = {x e A : 2i N cp[xi, x, x3]}
= {x G A : [φΡ«Χι, x, X3>) = 1}.

The satisfaction definition tells us that

2ΪΝνη2φ[χΐ9 x2, x3] iff J32 = A,

so we want

[Vd2<pP « x1, x2, x3)) = { 1 B2 A
L0 otherwise.

Now the assignment of the subset B2 of A  to the triple (x1? x2, x3) 
establishes a function \cp\l from A 3 to 9P(A). We now define a new 
function VA : 0>(A) —> 2 by putting

VA(B) = j 1  lf B = A
ΙΟ if Β φ Α  (i.e. B a A )

Then the definition of lVu2cpP becomes 

A 3 - ~ " 12 > 3>(A)

HVt)2<pP = VA ° |φ|:

2
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Under the isomorphism SP(A) =  2A we may construe \<p\2 as a function 
A 3 —>2A, and hence it becomes the exponential adjoint (cf. §3.16) of a 
function / : A 3 x A —>2, i.e. f : A 4-̂ > 2. Then f  assigns a 1 or a 0 to a 
4-tuple (x1? x2, x3, x4) c A 4 according as the function |φ|1((χι, χ2, x3) )= Xb2 
assigns a 1  or a 0 to x4, i.e. according as ΙφΡ((χι, x4, x3)) equals 1  or 0 . 
Thus if we define T4 :A 4 —>A 3 by T^Xi, x2, x3, x4)) = (x1? x4, x3), we 
have that

commutes. But T4 can be given a categorial description. Recall from §3.8 
that whenever /^ m , we have a “ j-th projection map” pr™:Am—>A 
taking each m-sequence to its /- th member. In the present case, the effect 
of T\ is to place the result of the 4-th projection of a 4-sequence in its 
2nd position. But (§3.8) this process can be described as a product 
map -  T4 is the map

A 4 (Prj,prlpr43) ^

Consequently we get a categorial definition of /, and hence of |φ||. To 
complete the picture we need such a definition for VA. This was given by 
Lawvere in [72], where he described VA as “ the characteristic map of the 
name of irweA” . In §4.2 we described rimeA : 1 —* 2A, the name of imeA, 
as the arrow that picks trueA out of 2A. Since trueA = : A  —» 2, we
identify trueA with {Α}ς9>(Α). But the character of this last subobject is, 
by definition, VA. hrue^ itself is the exponential adjoint of the composite

In summary then, lVt>2<p]3 = VA ° |φ|1, where VA is the character of the 
exponential adjoint of trueA ° prA, while |φ|| is the exponential adjoint of

Ι φ Ρ

2

prA
1 x A — ^ A ■» 2 , where prA((0 , x)) = x.

ΙφΤ° (pr^prl prt>.
For existential quantifiers, by analogy we have

311= 3υ2φ[χ1? x2, x3] iff B2 φ 0

and so we put
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and hence

A 3 ·1φ1* > 9 (A )

2

commutes where

3* ' M o
if Β φ 0  
if B =0.

It follows that 3A is the character of the set 

C = { B :  B ^ 0 }

— { B : for some x e A , x e  B}.

But then if e  A 0>(A) x A  is the membership relation on A  (§4.7), i.e.

6 A = {(B, x ) : B  c  A, and x e B } ,

we see that applying the first projection pA((B, x)) = B  from &(A) x A  to 
0>(A) yields pA( e A) = C.

Thus 3a is the character of the image of the composite

^ (A )x A  > 0>(A).

This places our account of quantifiers on an “ arrows only” basis. The 
general definition of and comes from the above by
putting m in place of 4, and i in place of 2.

The function It ~  ujm : A m —* 2 has

• , *m>) = j 1
ίο

if x ,= x u 
otherwise

so
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commutes where p™:Am-> A , p™ :A" 

pT((Xl, Xm)) = Xt

Pu«,Xl, ·■■, *m>) = Xu

►A, and δΑ have

and

f l  if x = y
-«*■>’» = to itif x ^ y ’

x, y e A.

δΑ (the “ Kronecker delta” ) is the character of the identity relation 
(diagonal) A ={(x, y): x = y }^  A 2. Notice that A can be identified with 
the monic (1 A? 1 a )  : ̂  that takes x to (x, x).

To define p™, let fc :{0 }-^  A  have /c(0) = c.
Then

p C :A m- 

fc ° \:An

A  if i :
fc

:Vi

- » 1 - -> A  if t=c.

(Similarly for p™).
To deal with the predicate letter R, let r : A 2 —» 2 be the characteristic 

function of R ^ A x A .  Then

commutes. The final notion to be re-examined is truth in a model. If 
<p(uil5. . . , ιO  has index n, then defining [φΐ^: A n —> 2  by

If 1. ,, u f 1  if 3tN<p|>i, · · · ,* „ ]IupMVCi, . . . , x n))=<
(0 otherwise

we have

Si Νφ iff for all x1?. . . ,  xn e A, II<pfc((xi, · · · > * 0 )= 1 
iff [cpt = χΑη
iff Ιφ]^ = irweAn.
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To describe [1ψ11Λ by arrows, we observe that if m is appropriate to φ, 
δίΝ φ^!,. . . ,  x j  iff for any y1;. . . ,  ym having

yit = xu . . . , y in= xn,

5tl=<p[yi, · · · ,ym]·
Thus

A n  f-— ► Am

This description fits in with the definition of truth of sentences. A  
member of A n, i.e. an n-length sequence, can be thought of as a function 
from the ordinal n = {0 ,1 , . . . ,  n — 1} to A. Thus, with n = 0, A 0 is the set 
of functions from the ordinal 0 (the initial object 0) to A. Thus

A ° = A 0 = {0}=1.

So if φ is a sentence, with index n =  0, [φΙ21:Α 0-^ 2  is a truth value 
1 ^ 2 .  We have

2

commutes for any /, provided only that

A n  J- ► Am

A

But then for any m ^  1, any f : l —> A m makes

1  J- ► Am

2

commute, for if 21 Νφ then I<pllm is the “ constant” function that outputs 
only l ’s, while if not 21 Να, then [<p]m outputs only 0 ’s.
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E x e r c is e  1. Suppose that <p(vil9. . . ,  vin) has index n, and m is approp­
riate to <p. Explain why

Am  f „ An

2

commutes, where / « yl5. . . ,  ym>) = <yil5. . . ,  yK). □

The general definition

Let % be a topos, and a an ^-object. We define several arrows related to 
a.

D e f in it io n  1. Aa : a ^  a x  a is the product arrow (1a, 1a) 
δα : a x a —> Ω is the character of Aa.

D e f in it io n  2 . Va : Ω α Ω is th e  u n iq u e  arrow  m a k in g

1 true—  ̂ n

a pullback, where rtrueJ is the exponential adjoint of the composite 
truea ° pra : 1  x a -> a - » 12.

D e f in it io n  3. 3α :Ωα —>Ω is the character of the image arrow of the 
composite pa° G a : e >-> 12a x a -> /2a, where pa is the first projection 
arrow, and g  α (§4.7) is the subobject of i2a x a whose character is the 
evaluation arrow eva : Ω α x a —> 12. Thus we have a diagram

ΓίΠίβ 1
1 n a

v,

G > ΩαΧα

Pa

3

1 true β
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where the bottom square is a pullback, and the top an epi-monic 
factorisation.

D e f in it io n  4. For each m and i, with 1 ^  i ^  m, T™+1: am+1 am is the 
product arrow

An ^-model for SE is a structure 

SI = (a, r, fc}, where

(i) a is an ^-object that is non-empty, i.e. ^ ( l ,a )^ 0 ;
(ii) η α Χ α ^ > Ω  is an g’-arrow;

(iii) fc : 1  —> a is an “ g’-element” of a.
Then given a term t we associate with each appropriate m an arrow p™,

Then for each ^-formula φ and appropriate m we define an i 5-arrow 
M m : H inductively as follows:

where,

(l) ΐ ί * ΜΓ  = δα ο<ρΓ,Ρΰ)

α m < P " P u >  2 ----------> a

Ω
(2 ) ItRUlm = ro<p - P“ )

(3) Ιφ Λ Ψΐ"1 = IMm λΙψϊ" = ο ° ΙΨΓ)

a

β ί2 χ β ί2

β

(4) Ιφνψψ'=Ιφ]ΤνΙψ]Γ
(5) [' <p]lm = ~1 ° Ιφΐ"*
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(6) I<p=^im= M m ΦΪΨΪ
(7) n v i ^ r = ν α ο \φ\™

where |<p|™ is the exponential adjoint of the composite of

(8) p w r = 3 a °i<pir.
Now let <p(vil9. . . ,  ViJ have index n. Then let g be any arrow from an to 
a. Choose a φ-appropriate m, and let / :  an —> am be the product arrow 
<Pi, · · ·, Pm), where

(pr£:an -^a,  if j = ik, some l ^ k ^ n  
1̂ (g otherwise.

Then define [cplk: an —> Ω by

i.e. |[<pfc — I<pl]m ° /. Then we define “21 is an g’-model of φ” by

8ϊ|^=φ iff M k  = truean.

Notice that if n ^ l ,  we could take g as any of the projection arrows 
an —> a, while if n = 0 , we need the assumption that a is non-empty for 
there to be a g : 1  —> a at all.

The demonstration that the definition of [<p]k does not depend on



which g is chosen, or which appropriate m, depends on some lengthy but 
straightforward exercises:

E x e r c is e  2. If f,h : an =4 am have

pr™°f = pr™°h=pr£,  for all 

then [<p]m ο /  = [<p]lm ° h, for <p(uii?. . . ,  of index n.

E x e r c is e  3. If m and / are both appropriate to φ, then 

am — f— + a1

248 ELEMENTARY TRUTH CH. 11, § 11.4

/
/  

a
commutes provided that pr\ ° f  = prtm, whenever vt is free in <p. Show that 
such an f  exists.

E x e r c is e  4. If φ(νίΊ, . . . ,  vin) has index n, and m is appropriate to <p, then 

q " « .......* > .  a -

Ω
commutes (cf. Exercise 1). □

From these results we obtain:

T h e o r e m . If φ has index n, and m is appropriate to φ, then

iff I<p!m =
P r o o f . By Exercise 3 of §4.2, any arrow that “ factors through true is 
true” , i.e. if

‘ \  / " “ · 
a

commutes, then h = trueb. But by the definition of E<pfc, and Exercise 4, 
each of ΙφΙΛ and ΙφΕ”' factor through each other, hence

|[φ|ι = iraea. iff [< p ]m =  i r a e a m. □
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11.5. Substitution and soundness

An <T-formula φ is called %-valid, if 31 φ holds for every ̂ -model
31.

T h e o r e m  1 . If g ’ hcp and <ξ\=φ̂ >ψ, then %\=ψ.

P r o o f .  Let 3i be any g’-model. Then 31 Νφ and 3 ΪI= φ => ψ, and so taking an 
m appropriate to (φ => ψ), we have Ιφ]]™ => Ιψψ1 — ϊφ => ψψ1 = truea- (by 
the Theorem at the end of the last section). But truea™ is the unit of the 
HA <̂ (am, Ω), so (Exercise 8.3.8) in that HA, Ιφψ'^Ιψ}™. But since m is 
also appropriate to φ, and Si Νφ, we also have ϋφΐ™ = truea™. Thus in 
<g(am, Ω), Ιφψ1 =  trueam and so as m is appropriate to ψ, 31 Ι=ψ. □

So the rule of Detachment preserves ^-validity. Since the propositional 
connectives are interpreted as the truth arrows in a topos it should come 
as no surprise that any instance of the schemata I-XI is valid in any 
while there are topos models in which XII fails (an example will be given 
later). We shall write hIL φ to mean that φ is derivable in the system that 
has all the rules and axioms of §11.3 except for XII. Without II  and 12, 
this is the system of intuitionistic predicate logic of Heyting [66]. Axioms 
for identity equivalent to the ones given here are discussed by Rasiowa 
and Sikorski [63].

S o u n d n e s s  T h e o r e m . If φ, then for any <g, <̂ Ι=φ.

We will not prove all the Soundness Theorem, but will concentrate on 
setting up the machinery that lies behind it. The method as always is to 
show that the axioms are ^-valid and the rules of inference preserve this 
property. The strategy for the first part is to show that if φ is an axiom 
then relative to 31, [[φ]]"1 = true,a™, for some (or any) appropriate m. The 
Theorem of the last section then gives 311= φ.

To establish validity of the quantifier and identity axioms we must look 
at the categorial content of the substitution process. If ψ = <p(vjt), then in 
Set, interpreting t in ψ as xt is the same as interpreting vt in φ as xt, i.e. 
21Ι=ψ[χι,. . .  ifi Slt= φ[χ1;. . .  ,Xi_!, x,, Xf+i,.. and so
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commutes, where f((xu xm>) = <xl5 . . . ,  x„ xi+1, x m).
Correspondingly, in a general topos g*, if i ^  m and t is a term to which 

m is appropriate (i.e. if t = vi then j ^  m), the arrow : am - »  am is
defined to be the product arrow

( p r T , . . . , p r r - i , p T , p r T +1, . . . , p r Z ) ·

S u b s t it u t io n  L em m a . In any topos, the diagram

am a m [ i / t ]  t 

Ω

commutes whenever vt is free for t in φ. □

E x e r c i s e  1 . p r^  ° 8[i/Vj] = pr™ °  6 m[i/n J] =  pr,m.

E x e r c i s e  2 . If f : b —» a m h as pr™ ° f  =  pr^ o £  th e n

commutes. (Interpret this in Set.)

E x e r c is e  3 . For i, j^m ,

nrm + 1 am+l__U >a"

<T7+I,pc:i>
77+

commutes.

E x e r c is e  4. If i>, does not occur in φ, then 

U i v j v ^ r  o TJm+1= M m ° TT+1,
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and hence
ΡυΙ-φ(υί/υί)|η = pui<p]|m 
[V Vj(p (vj Vj )lm = BVujCp Jm.

Consequently ΙφΤ1 = ΙφΐΓ if φ and ψ are “ bound alphabetical variants” 
of each other. □

To use the Substitution Lemma to show validity of the identity axioms 
we examine the properties of the Kronecker delta.

T h e o r e m  2 . For any pair f,g:b-^>a, 8a ° (/, g )  is the character of the 
equaliser of f  and g.

P r o o f . Consider

c >----------* --------► b

Ua, la)
<f, g)

true

a x a 

δα 

Ω
The top square is obtained by pulling (1a, 1 a) = Aa back along (f, g). By 
the universal property of that square qua pullback, it is an easy exercise 
to show that h equalises f  and g. But the bottom square is the pullback 
defining δα, so by the PBL and the Ω -axiom, δα ° (f, g) = xh. □

C o r o l l a r y . δα ° (f, f) = trueb, for f :b^> a.

P r o o f . trueb = x^b and 1b equalises the pair (/,/).

From this Corollary we obtain immediately the validity of II, i.e. 
% l= t ~  t. For, It ~  i]m = δα ° <p™ p T), where p™: am —> a.

Now in Set, the formula (t ~  u) determines the set

Dtu { < * 1 ,  · · · ? r̂n)m b  ( i  * . . . ,  Xr n ] }

= {<Xi,.. . ,x m):xt = xu}.

Correspondingly in ^ we define dtu:d am to be the subobject whose 
character is It ~  u]m.
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T h e o r e m  3 . For appropriate m,

5 m[i /t ]  o d,» =  6 m[ i /u ]  ° <4..

P r o o f . Since |[i~ n]m = δα ° (p„ pu) : am —> i2, Theorem 2 tells us that dtu 
equalises p, and pu, hence p, ° dtu = pu ° d[u. Then

<prl5. . . ,  pt, . . . ,  prm> ° d,u
= <Pri ° dtu, .. ■, p, ° dt„ , . . . ,  prm ° dtu)
= (pri ° ( L , . . . ,  pu ° d,u, . . .  ,prm ° d,u)
= (pr1, . . . , p u, . . . , p r m) ° d tu. □

C o r o l l a r y . 1 /  m  is appropriate to t, u, a n d  <p(Vi), w ith free for t and u in 
ψ, then

[φ(ϋι/ί)]Γ «  κ Γ  = [<p(Vi/M)r «  njm

P r o o f . Using the Substitution Lemma, we have

M tVOF 1 o  d* =[<pr o  6 m [ i / r ]  o  dtM 
= Μ Τ  ° δ 1 Μ ° 4  

= [φ(υί/Μ)]Γη °

Since χ^  = It ~  wjm, Lemma 1 (2 ) of §7.5 yields the desired result. □

Now in order to have 9ϊ Ν[(ί ~  u)A<p(vJt)\ => <p(vju) we require that for 
some appropriate m,

It -  ulm ̂ ϊφ {ν^ )Τ  tzlcpivju)}™

in the HA ^(am, Ω). But this follows from the Corollary, by lattice 
properties, and so the schema 12 is valid.

We turn now to the validity of the quantifier axioms. For this we elicit 
the basic properties of the quantifier arrows.

T h e o r e m  4 . (1 )  (V a o Pa) =>  eva = truen̂ a 
(2 )  eva Φ  ( 3 a o Pa) =  im e i2aXa
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P r o o f . (1) Consider

d >- f

[tmej

true

Ωα x a

Pa

n a

V a 

Ω

The top square is obtained by pulling back along pa. A  now
familiar argument tells then that xf = Va ° pa. But by definition of hrue  ̂
as the exponential adjoint of truea ° pra, the diagram

1  Xfl hme« yA« > Qa xa

truea °prc

commutes, which says precisely that the perimeter of

commutes, yielding an arrow l x a ^ e  that makes t̂ruec}x '\ a factor 
through ea.

But consider the diagram

<b> P2°/> Ωaxa

where p2 :Ωα Χ α -^ α  is the 2 nd projection.
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Using Exercise 8 of §3.8 we find that 

( {truea'x'\a)°(\d,p2°f)

= <riruea1 0 U 1 a °P2 °/>
= <Pa °f ,P2° f )
= <pa, p2) ° f  (Exercise 3.8.2)
-  1Ωαχα o f  (Exercise 3.8.3)

= f

Thus f  factors through hrue^ x 1α· Since the latter factors through e a, in 
Sub(i2a x a) we have f  ̂  e a. Hence (Theorem 7.5.1),

Yf Φ  Y£a = truea«xa,

which is the desired result.
(2) Exercise-use the diagram given with the definition of 3 α to show 

ea c  g, where *g = 3a ° Pa· □

Now in Set, if we take the sequence (xly. . . ,  xm), form (x1?. . . ,  x ,̂ xt), 
and then apply T™+1 we end up with (xt, . . . ,  Xi_u xt, xi+1, . . . ,  xm>- 
the overall effect is to perform δ[ί/ί]. Abstracting, we have

Theorem 5. Let L/f1: am —> am+1 be ihe product arrow (1a~, p™), Then 

(1) m  ^  t

am

commutes, and

(2 )  /X 1amXa 7* a » f ]a Xfl

ur

commutes for any f  as shown.

P r o o f . (1) Exercise-you will need to know 1a-  = <pr™,. . . ,  pr™>.
(2) By definition of the product arrow f x  1a,

Pa ° { / X 1a)0 (1a”I f t > = /° P ''0 (1a"',Pt)
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(where pr: a™ x a —> am is projection)

= / ° v
= f  □

Part (1) of this theorem, with the Substitution Lemma, gives

MiVOf” =IMm ° Τ Γ +1 °  ur,
and since

β β χ α ^ « .
Ι < ρ ΐΓ χ ΐ< Μ

am + l + 1

commutes, by definition of ]φ|Γ as exponential adjoint to |[<p]m ° T " 'f 1. we 
get

l<p(vilt)r  = eva °(|φ|ΓΧΐ-)° UT-
Moreover by taking /  — |φ|"' in Theorem 5(2), we have

\φ\Γ = ρα ° (Ι<ρ|Γχ ΐα) ° up.

Using these last two equations, and putting ()tp|"‘ x 1„) ° lJ]n -  g, we 
calculate

= φ(υ ,/ί)Γ ==> o avui<Pr ,  M « ,/o r >
= Φ  ° <va ° |<p|r, eva ° g)
= => ° <Va ° pa ° g, eua ° g)
= Φ  ° (Va o Pa, eua) o g 
= (Va ° pa => eua) ° g
= truen«xa o g (Theorem 4)
= trueam (am g > Ω α x a)

Hence the axiom ui is valid. □

E x e r c is e  5 . Show that e g  is valid b y  an anologous argument using the 
second part of Theorem 4. □

The soundness of the rules (V) and (3) are left for the enthusiastic 
reader. The details have been worked out in Brockway [76].
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11.6. Kripke Models

The algebraic and topological interpretations of intuitionistic proposi­
tional logic extend readily to first-order logic. The truth-value of a 
formula becomes a function H<p]]m : A m —» H, where H is a suitable Heyt­
ing algebra, e.g. the lattice of open sets of some topological space. A  
comprehensive study of this type of model is undertaken by Rasiowa and 
Sikorski [63] (cf. also its application to intuitionistic analysis by Dana 
Scott [68].)

In his 1965 paper, Kripke gave a semantics for first-order IL that 
generalises the classical notion of i£-model described earlier in this 
chapter. The basic idea is (or can be seen to be) that for a given poset P, a 
model assigns to each p e P  a classical model 2lp. Atomic formulae have 
their truth value at p determined by their classical truth value in 2IP, and 
then the connectives can be dealt with as in the propositional case (§8.4). 
In fact Kripke’s theory did not discuss individual constants, or the identity 
predicate, so in order to do so ourselves we introduce a slightly more 
general notion of model than that considered previously.

Let P be a poset. An 56-model based on P is defined to be a structure 21 
consisting of

(a) for each p e P  a classical -model 2IP = ( A P, Rp, cp)\
(b) for each arrow pEq in P, a function A pq : A p Aq, such that

(i) if p ^ q  then A pq(cp) = cq
(ii) if pC q then xRpy only if A pq(x)RqA pq(y)

(iii) A pp is the identity 1: Ap -> A p
(iv) if pL qC r, then

commutes. Thus (i) requires that A pq take the interpretation of c at p to 
its interpretation at q, while by (ii) A pq “preserves” the truth of atomic 
formulae of the form iRw. Notice that the collection {Ap: p e P} of sets 
together with the transition maps A pq constitute a functor A  :P - »  Set, i.e. 
an object in the topos Setp. This is a consequence of the definition, rather 
than the motivation for it. The reason why ^-models are defined as above 
is that this seems to be the natural way to treat ~  as the relation of
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identity of individuals. Kripke’s definition has ih place of (b) the require­
ment that

p ^ q  implies A p c  A q and Rp c
This amounts to putting A pq as the inclusion A p A q. As pointed out by 
Richmond Thomason in [68], if «  is interpreted as identity, such a model 
would validate ( i~ u )v  ~  (i ~  u), for distinct individuals are left distinct 
by inclusions, and so remain “ distinct forever” . Thomason’s solution is to 
interpret «  as an equivalence relation Ep on A p, with perhaps Ep φ A. 
However by introducing the transitions A pq we are able to give «its 
natural interpretation and still not have the above instance of XII come 
out valid. For it is quite possible to have xt φ xu in A p, but A m(xt) = 
ApqfX). We thus give an account of the notion that things not known to 
be identical could come to be so known later, and also formalise some of 
the discussion of §1 0 .1 .

Now if φ is an i£-formula to which m is appropriate, we may define the 
relation

2Ϊ h=<Pl>i, · · · , ^m]
for x1?. . . ,  Xn g A p, of satisfaction of φ in 31 at p.

In the interest of legibility we will abbreviate A pq(x) to xq.
(1) If φ is atomic, 21 hp <p[xu . . . ,  xm] iff 2ΪΡ Νφ[χ1?. . . ,  xm] in the classi­

cal sense.
(2 ) 21 Np φ λ  ψ[χ1?. . . ,  xm] iff 21 hp φ[χ1?. . . ,  xm] and 21 Np ψ[χ1?. . . ,  xm].
(3) 2t Np φ v ψ[χ1?. . . ,  xm] iff 21 Np <p[x1?. . . ,  xm] or 21 Np ψ[χ1?. . . ,  x^].
(4) 21 Np ~  <p[xi,.. ·, xm] iff for all q with p^q, not 21 hq <p[x?,. . . ,  xqJ .
(5) 21 Np φ φ[χι , . . . ,  xm] iff for all q with p^q, if 21 Nq <p[xi,. . . ,  x^J 

then 21 Nq ψ[χ?,. . . ,  x£j.
(6) 21 l=p 3u^[x1?. . . ,  xm] iff for some a e Ap, 21 Np φ[χχ,. . . ,  Xj_i, a, 

Xi+l, · · · > x™l
(7) 21 l=p Vu^[x1?. . . ,  xm] iff for every q with pEq, and every a e  Aq, 

si l=q · - ■, Xi-1, a, Xi+1, · · · ,
Thus 3υφ is to be true at stage p iff φ is true of some individual present 

at stage p, while the truth of Vucp at p requires φ to be true not only of all 
individuals present at p but also all that occur at later stages.

If φ(υίχ, . . . ,  ViJ has index n, we put 211=ρ φ[χ1?. . . , Xn] iff 
Si Np <p[yi,. . . ,  ym] for some (hence any) appropriate m and y i , . . . ,  ym 
having yit = x1?. . . ,  y  ̂= x*.

Then we put SI Np φ (φ is true at p) iff 2ί Np φ[χχ,. . . ,  x*J for all 
x1?. . . ,  xn e A p, and finally 21 \=φ (21 is a model of φ) iff for all peP , 
SlNp<p.
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E x e r c is e . 1. Show that this definition reduces to the classical notion of 
££-model when P has only one member.

E x e r c is e  2. Show that if 2Ϊ hp <p[x1?. . . ,  and pCq, then 
51K, <pLxi> ■■·, any φ. □

Now the P-model 21 is turned into a Set1’ model 21* = (A, r, fc), by taking
(i) A  : P —> Set as the functor associated with 2C described earlier.
(ii) r : A x  A  -r> il as the natural transformation with components 

rp :A px A p^  Ωρ given by

rp({x,y)) = {q :p ^ q  and A pq(x)jRqA pq(y)}.

(iii) /c :l-r> A  as the arrow with components (/C)P :{0 }—> A p having
(/c)p(0) =  Cp.

E x e r c is e  3. Show that rp((x, y>) is an hereditary subset of [p).

E x e r c is e  4. Show that xRpy iff rp((x, y)) = [p) and hence (cf. §10.3) 

*P<=-------> A p

1 fl,

is a pullback.

E x e r c is e  5 . Verify that r and fc are natural transformations. □

The exercises tell us how to reverse the construction. Given a See  
model (A,r,fc) we specify 2lp by defining cp by the equation (iii) in 
Exercise 2, and defining Rp by the equation in Exercise 4. This estab­
lishes a bijective correspondence between i?-models 21 based on P and 
Setp-models 21* for SE.

Undoubtedly the reader has anticipated that corresponding models 
have the same formulae true in them. Indeed the connection is much finer 
than that. Let us calculate [<p]]m, relative to 2Ϊ*, for φ an atomic formula.



We have

(Pf Pu) ) ĵ 2

itRur

Ω

where A m is the product functor having A™ = (Ap)m etc., and 
pt : A m -r> A  has components

(pt)P : A 1̂ —» Ap,

where

(Pt)p«*l, · · .,Xrn)) = Xf

From this we see that the component [[/RmI"1 : A "‘ —> ilv assigns to 
<xl5. . . ,  x™> the set

rp({x,,Xu)) = {q'-P^q and x?jRqXS·
= {q :p C q  and St iRu[x?,. . . ,  x£j}.

This situation is quite typical, as expressed in the:

T r u t h  L em m a. For any φ, and appropriate m , then relative to 21* the 
Set1* -arrow I<p]m : A m —> Ω has p-th component

[<pJ™:A™^i2p,
where

[<?]£*« * ! , . . . , : 0 )  = {q : pCq and Si |= <p[x?,. . . ,  x£j}.

Given the analysis of Set*’ in Chapter 10, the proof of the Truth Lemma 
for the inductive cases of the connectives should be evident. For identities 
and quantification we need to examine the arrows δΑ, VA, and 3A, for a 
Set^object A  : P Set.

T h e o r e m  1. δΑ : A  x A  -r> Ω has

(δΑ)Ρ: A p x A p -» Ω Ρ

given by

(SA)p«x, y » = {q : pC q and x“ = y q}.

P r o o f . Aa :A  A  x A  has (Aa )p as the map (1Ap, 1Ap): A p —> A p. (Aa )p
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then can be identified with the identity relation Ap ={(x, y): x = y}^  
A p x A p. The characteristic function of this set is (δΑ)ρ, and so (cf. §10.3)

(δΑ)ρ«χ, y »  = {q :p C q  and <Apq(x), A pq(y ))e 4 J

as required. □

E x e r c is e  6 . Use Theorem 1 to prove the Truth Lemma for the case that 
φ has the form (i~w). □

The definition of VA uses the operation of exponentiation in Set1*. 
Given functors F and G from P to Set, this operation produces a functor 
Gf  : P —> Set consisting of a collection {(GF)P : p e P} of sets indexed by P, 
together with transitions (GF)pq : (GF)P —> (GF)q whenever p!=q. Now for 
each p we define the restriction of F  to the category [p) to be the functor 
F  Ϊ p : [p) —» Set that assigns to each object q e  [p) the set Fq, and to each 
arrow q r in [p) (i.e. pC qC r) the function Fqr. Similarly we define the 
functor G \ p, and then put

(GF)P = { σ : F \ p -?—> G \ p}

to be the set of all natural transformations from F \ p to G \ p. Thus an 
element σ  of (GF)P may be directly described as a collection {crq: p L q} 
of functions, indexed by the members of [p), with crq : Fq —> Gq, such that

Fr   ̂ Gr
commutes, whenever pL qC r.

Now one way of obtaining such a σ  would be to take an arrow 
t:F -t> G  in Set1* and restrict it to the subcategory [p), i.e. let σ  = 
{Tq: pLq}. This process also yields the transition map (GF)pq when p^q. 
For σ  g (GF)P we put

(<JF)Pq(<T) = {<rr: qCr}.

The arrow eu : GF x F -τ» G has p-th component 

evp:(GF)pxFp^ G p

given by

βυρ«σ , x »  = <Tp(x),
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for each

σ  e (GF)P and x e Fp.

E x e r c is e  7. Verify that (GF)pq(or) is a natura* transformation F \ q-r> 
G\q.

E x e r c is e  8 . Relate this construction to its analogue for Set  ̂ in Chapter 
9. □

Now for an arrow r :HxF-r>  G the exponential adjoint 

f

has as p-th component a function 
τP:HP^ ( G F)P.

For each y in Hp,

rp(y )= {< :p C q }  
is a natural transformation

f  r p g  r p.

Its q-th component
T*:Fq ->G„

has, for each x e Fq,

T = x).

The reader should now take a deep breath and go through that again. 
Having done so he may test his understanding of the definition in some 
further exercises:

E x e r c is e  9. trueA ° prA : 1 x A  —> Ω has as p-th component {0} x A p τ» Ωρ 
the function assigning [p) to each input (0 , x).

E x e r c is e  10. The p-th component [trueA]p :{0} —> (ΩΛ)Ρ of 1 true  ̂ : 1 
Ω A may be identified with the natural transformation σ : A  \ p —> Ω \ p 
that has <xq : A q i2q, where pCq, given by crq(x) = [q), all x e Aq. Thus 
<rq = trueq ° lA,i? i.e. [trueA\(0) = {trueq ° lAii :pC q}. □

T h e o r e m  2 . VA : ΩΑ —> Ω has 

(νΑ)ρ:(ΩΑ)ρ̂ Ω ρ
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given by

(VA)P fa) = {q :p ^ q , and for every r with qCr, 
and every x e A r, ar(x) = [r)}.

P r o o f .  For σ  e ( i l A )p, since VA is the character of hrue^ we have 

(VA)p(<x) = {q: pCq  and (ilΑ)ρί|(σ) =  rtrueA]„(0)}
= {q: pCq and {<7r: qEZr} = {truer ° lA :qE=r}}
= {q : p C q, and if q C r then <xr = imer ° lAJ 

from which the theorem follows. □

If, for each p, we define ep^(f2A)px A p to be the set ep = 
{(σ-, x): σρ(χ) = [p)} then

( β Α)ρ χ Α ρ

(«ϋΑ)ρ

is a pullback, by §10.3, and the description of evA given above. Thus the 
inclusions (eA)p are the components of the “membership relation” on A, 
i.e. the arrow eA : e  >-r> ΩΛ x A  whose character is evA.

E x e r c is e  11. The collection { e p: p e P }  gives rise to a functor (Setp- 
object) e as just mentioned. What are its transitions e pq?

E x e r c is e  12. Show that the component (pA ° e A)p of the composite of 
eA and the first projection pA : Ω A x A t>  i2A has (pA ° ε Λ)ρ((σ, x)) = σ.

E x e r c is e  13. Let t be the image arrow of pA ° eA. Show that the p-th 
component of t is the inclusion

Lp ^  ( β Α )ρ?

where

tp = {σ:  for some x e A p, (σ, x) e  ep}. □

T h e o r e m  3. 3  A : ΩΑ —> Ω has 

(3a )p : (ΏΑ)Ρ —> Ωρ



given by

(3A)p(o\) = {q: pEq and for some xg Aq, σ^χ)  = [q)}

P r o o f . 3a is the character of the image arrow of pA ° e A. Using 
Exercise 13 then,

(3A)P(<r)= fa: pC q and (i2A)pq(<r) e iq}
= { q :p ^ q  and for some x e Aq, (<r', x ) e e j

(where <r' = 12A(or) = {σν: qCr})
= {q :p C q  and for some x e A q, crq(x) = [q)},

and since <jq = crq, the result follows. □

The descriptions of VA and 3A in Theorems 2 and 3 reflect the
structure of the satisfaction clauses for V and 3 in Kripke models. The
explicit link is given by

THEORfeM 4. For each SE-formula φ and appropriate m, the Set*-arrow 

|φ|™: A m -τ» i2A 

has as p-th component the function 

fp : A^1—> (12A)P, 

which assigns to (x1?. . . ,  ^ g A ™  the natural transformation 

fP((xi> ■■■, Xm»  = {aq :pC q} from A  \ p to Ω \ p, 

with crq : Aq —> 12q having

crq(x) = 1 φ ί ? ( ( χ ϊ , X?-i, x, x?+i, ■■■, *m>) □

E x e r c is e  14. Prove Theorem 4.

E x e r c is e  15. Show that A™ —» 12p assigns to (xl5. . . ,  x J g A J 1
the collection

{q: p ^ q  and for some x e A q,
Ι<ρ1ΪΓ«*ΐ’ · · · >xi-i> x> x?+i> · · · > Xm>) = [q)}·

E x e r c is e  16. Derive the corresponding description of ||Vu,cpJ"' in terms of 
the [<p£’s.

E x e r c is e  17. Hence complete the inductive proof of the Truth Lemma.
□
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11.7. Completeness

Our first application of the Truth Lemma is a description of Ιφ\ : A n -r> 
12, in Set^ where φ has index n.

T h e o r e m  1. ϊφ]]ρ : A p —> i2p has

Ιφ]|ρ«*ι, · · ·, Xn))={q' p ^ q  and ^  \ψ<ρ[χϊ, · · · > < ]}·

P r o o f . Exercise -  use the fact that there is a commuting triangle
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whenever m is appropriate to <p. □

T h e o r e m  2. For any SE-model 31 based on P, and associated Se^ model 
31*, we have for all SE-formulae <p,

« 1=<ρ iff

P r o o f . Take any p, and x l 7 . . .  , xh g A p, where n is the index of φ. 
Then

pel<plp« x 1; iff MU<*i> · · ·, *n» = [p)

by properties of hereditary sets (§10.2, Exercise 3(ii)). Thus by Theorem 
1

2ί|=ρφ|>ι , •••,xvJ iff M p«Xi, ■ · - , xn)) = (trueA»)p
«Xi, . . . ,  Xn»·

Since this is the case for all n-length sequences from A p, we have

311=5= φ iff Ιφΐρ = (trueAn)p.

Since that is the case for all peP ,

31 Ι=φ iff [φΐα = irweAn. □

Now by the methods used by Thomason [68] (and also by Fitting [69]), 
we can construct a canonical poset P#, and a canonical model 81̂  based
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on such that for any φ,

 ̂φ iff [tc <P'

(Thomason’s models interpret ~  as an equivalence relation Ep on A p. 
However by taking A p instead to be the set of Ep -equivalence classes, 
and A pq the transition that maps the Ep -equivalence class of x to the 
jEq-equivalence class of x, we realise SLg as a canonical IL-model on which 
~  is interpreted as the diagonal relation A.)

Now if 21* is the associated model in the topos ^  = Setp̂ , by Theorem 
2  we have

51 %\^<P iff φ.

Hence, with the Soundness Theorem we get 

%sê <P iff φ*

From this follows a general

C o m p l e t e n e s s  T h e o r e m . If φ is valid in every topos, then h IL φ.

An example of a topos model in which the Law of Excluded Middle 
fails is now readily given. We take P as the ordinal poset 2 = ({0,1}, ^ ). 
21 has

«ο  = <{6, c}9 R0, c )
2I1 = <{c},K1 ,c>,

where b and c are two distinct entities, R0 and R x are any relations on 
A 0 = {b, c} and A x = {c } of the reader’s fancy, and A 01:{b, c } ^ { c }  is the 
only map it can be. Then if φ is the sentence (Vu1)(u1 ~c), φ is true at 21 x 
but false at 2t0.

Thus we have not 21 t=0 <p, but we do have SI \=x <p, so not SI N0 — φ, hence 
not SI l=o φ V  ~ φ.

Now we saw in §7.4 that, for propositional logic, a topos can validate 
all instances of α ν  — a (since Sub(l) is a BA) but still not be Boolean 
(since Sub(i2) is not a BA). This occurs for example in the topos M2. 
Similarly we have M21: φ ν ~ φ  whenever φ is an ^-sentence, since then 

is a truth-value 1 —> Ω. However the situation is not the same for 
open formulae.
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T h e o r e m  3 . If ^ Ν φ ν —φ for every SE-formula φ, then <£ is a Boolean 
topos.

P r o o f . Let 91 be a ^-model of the form (Ω, r, true), i.e. a model in which 
c is interpreted as the element true : 1 —> Ω of Ω. Let φ(υΛ) be the formula 
(u !~c). Then Icpfc :Ω ->Ω  is δπ °(1Ω, truen). By Exercise 2 of §5.1, 
the equaliser of 1n and truen is true 1 -^ /2  so (Theorem 2, §11.5) [cpt = 
Xtrue = 1β· But 91 N φ v ~  <p, so [φ v ~  φ\ = truea, i.e.

Ιφ fc W (-I ° [φ t )  =
i.e.

1 n) = truen

which by Theorem 3 of §7.4 implies that Sub(12) is a BA. □

E x e r c is e . The proof of Theorem 3  used the fact that X  had an individual 
constant. Show that this assumption is not needed, by considering the 
process of “ adjoining” a constant to a language. □

11.8. Existence and free logic

The assumption of non-emptiness, (if(1, a )^ 0 ), for -models in a topos 
has been needed, not just for interpreting constants, but also for our 
definition of and hence of truth in a model. In Set of course the only 
empty object is the null set 0 , and if that is admitted as a model, then as 
Andrzej Mostowski [51] observed, the rule of d e t a c h m e n t  no longer 
preserves validity. Informally we regard any universal sentence Vvcp, or 
any open formula <p(v), as being true of 0 , since there is nothing in 0 of 
which φ is false. On the other hand an existential statement Ξνφ is false 
in 0 since the latter has no element of which φ is true. More formally, 
since 2° = {0}, V0: {0} —> 2 is simply the map true, while 30: {0} —> 2 is the 
map false. Moreover if <p has index n ^  1, then 0n = 0, so : 0 —> 2 is 
the empty map, i.e. the map true0. Thus, e.g., the open formulae

and
(Ul«th)

and true in 0 , while the sentence

is false.
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There are two basic methods that have been developed of doing logic 
when empty models are allowed (so called “ free” logic). Mostowski modi­
fied the rule of d e t a c h m e n t  to read:

From φ and φ => ψ infer ψ, provided that all variables free in φ 
are free in ψ.

(Alternatively we allow ψ to be detached only if 3υ(υ ~υ) has also been 
derived for each variable v that is free in φ.)

This approach is used in the topos setting by the Montreal school (cf. 
Robitaille-Giguere [75], Boileau [75]). The other method is to introduce 
a special existence predicate E, with E(i) read “ i exists” , and to modify 
the definition of satisfaction to accommodate the possibility that “ i may 
not denote anything” . This notion has been studied by Dana Scott and 
Michael Fourman [74], and has a very interesting interpretation for 
sheaves and bundles, as well as Kripke models.

Let us consider an object a = (A, f) in the topos Bn (I) of bundles over
1. An element s : 1 —> a of a is a global section s : I  —> A  of the bundle, 
picking one “ germ” s(i) out of each stalk A*. But if the stalk is empty, 
Aj = 0, then no such s(i) exists. So we see that if a has at least one empty 
stalk (because /  is not epic), that is enough to prevent there being any 
elements 1 —> a. (We also see that Bn(I) has many significant and non­
isomorphic objects that are empty in the categorial sense). At best we can 
consider local sections s :D  —» A, with f ° s  = D CL>I9 defined on some 
subset D  of I. This possible if A t Φ 0 for all i e D. Recall (§4.4 Example 
6) that the set D  c  I  can be regarded as a subobject of the terminal object 
1  under the isomorphism

3>(ί) =  Βη(Ι)(1, Ω) =  Sub(l)

that obtains for Bn (I).
A  similar situation arises in the context of a Setp model (A, r, fc). If the 

object (functor) A  has element fc : 1 -τ» A, then for each p, (/c)p(0) e A p, so 
A p φ 0. So if just one A p were empty, A  would have no elements. 
However even if A  does have elements, it may be undesirable to 
interpret a constant as an arrow of the form 1 -r> A. We may for instance 
wish to expand our language ££ to include a “ name” c0 for a particular 
element c0 of some Ap. c0 would then be interpreted (as eg) only in those 
Slq for q E [p). Notice that [p) being hereditary can be identified (Exercise
2, §10.6) with a subobject D>^> 1 of the terminal object in Setp. The 
interpretation of c0 then yields an arrow fC o A  with (fCo)q :Dq —> A q 
picking out eg whenever pCq, i.e. Dq ={0}, and (fCo)q = !: 0 -> Aq other­
wise.
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We are thus lead to replace elements 1 —> a of an object a by arrows 
d —> a whose domains are subobjects 1 of the terminal 1. Such 
things are called partial elements of a. This comes from the more general 
notion of partial arrow. In Set we say that /  is a partial function from A  to 
B, written f :A^>B,  if f  is a function from a subset of A  to B, i.e. 
dom/ c  A  and cod f  — B. In a general category we put f :a~*b  if / i s  a 
Harrow with cod f= b ,  and there is a ^-monic dom /  >-» a. Thus a partial 
element of a is an arrow s . l ^ a .

Now in the Set case, if f :A ~ * B  there may be some elements x e A  
with x^dom /. This is often expressed as “ /(* ) is undefined” . But if we 
introduce some new entity *, with * φB, and write “ /(x) = * ” whenever 
x φ dom /  then we can regard f  as being defined on all of A  (we need 
* φΒ, or else “ /(x) = * ” could be compatible with x e dom /). A  conve­
nient choice for * would be the null set 0 (/(x) = 0 means “ x has null 
denotation” ). However it may be that 0eB.  We can get around this by 
replacing each element y of B by the singleton subset {y} and replacing B 
by the collection of these singletons, i.e. we replace B by its isomorphic 
copy B' = {{y}:y eB}.  Then 0φΒ'  so we add 0 to B' to form

B = {{y }:y eB }U {0 }.

Then given f  :D -> B ,  with D ^ A ,  define f : A —>B by

7, x ((/(*)} if xedom  f  = D  
(0 otherwise

It is clear then that

D  c  A

ΤΠΒ
Β > > B

commutes, where rjB(y )— {y}> all y eB.
Moreover the pullback of τηΒ and /  has domain

(<y, x): {y}=f(x)} = {(y, x ) : x e D  and y = /(x )}
= { ( f ( x ) , x ) : x e D }  =  D.

Thus, knowing /, we pull it back along τηΒ to recover /. In fact (exercise) it 
can be shown that /  as defined is the only map A  —» B making this 
diagram a pullback. Thus the arrow ύ]β :Β —> J5 is a generalisation of 
true: 1 ^ 2 . It acts as a “partial function classifier” , providing a bijective
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correspondence between (equivalence classes of) partial maps f  :A~*B  
with codomain B , and “ total” maps /: A  —> jB with codomain B.

P a r t ia l  A r r o w  C l a s s if ie r  T h e o r e m . If is any topos, then for each 
object b there is an <g-object b and an arrow rjb : b b such that given 

any pair (/, g) of arrows as in the following diagram, there is one and only 
one arrow f  as shown that makes the diagram a pullback.

d >— > a

f f

b b
□

The proof of this theorem is given in detail by Kock and Wraith [71]. 
To define r)b, the arrow { ' }h :b —> Q b is introduced as the exponential 
adjoint to 8b: b x b - ^ 0  (in Set {*}b maps y to {y}). {*}b proves to 
be monic, and so is ({-}b, 1b>: b O b x b. The latter has a character 
h : i l b x b —» Ω and this in turn has an exponential adjoint h :O b I7b (in 
Set ίτ is the identity on singletons and maps all other subsets of b to 0). 
It is then shown that h ° {· }b = {· }b, so

6 >-------- ► n b 1 i n b
h

b

defining b as the (domain of the) equaliser of 1 nb and h, η5 is the unique 
arrow factoring {* }b through b.

E x e r c i s e  1 . Examine the details of this construction in Set.

E x e r c is e  2 . Show that 

rii: 1  —̂ 1
is a subobject classifier in any topos. □

Returning now to free logic, a semantical theory in the classical case 
may be developed by allowing variables and constants to be interpreted in
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a model 21 = (A ,. . . )  as elements of A  U{*}. The existence predicate E is 
interpreted as the set (one-place relation) A, i.e. for a e A U {* }

2ΪΙ=Ε(ι;)[a] iff a e A ,

while the range of quantification remains A  itself, i.e.

2H=Vn<p iff for all a e A ,  2ΪΙ=φ[α].

Under this semantics, d e t a c h m e n t  preserves validity, while the axioms ui 
and e g  are modified to

(Vt>)cp aE (i) => <p(v/t)
and

φ(ν/ί) ΛΕ(ί) (3υ)φ

More details of this type of theory may be found in Scott [67] -  where, as 
is often done, E(r) is taken to stand for a formula of the form 3v(v ~  t).

Moving to models 21 = (a ,. . . )  in a general topos, we see that instead of 
dealing with partial elements l ^ a  as suggested by the examples discus­
sed earlier, we may deal with elements 1  —> a of the “ object of partial 
elements of a” (a always has elements, since a has at least the partial 
element 0 >->a). The interpretation of the predicate E becomes the 
character e : a —> Ω of the monic ηα : a >-> a, and each formula φ deter­
mines an arrow : (α)η —̂ Ω. Then given a partial element fc :l^>a,

dom fc >-

true Ω

we have |[E(c)] = e ° fc, and so as the diagram indicates, 

QE(c)J is the character of dom fc >-> 1 .

Hence

2iNE(c) iff [E (c )t  = true
iff dom fc >-> 1 — 1! in Sub(l) 
iff fc is a “ total” element of a.
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In the case of a bundle a = (A, /), α is a bundle of (disjoint) copies of the 
sets A i? with r\a acting on the stalk A t being the map ηΑ. : A t —> A t. An 
element fc : 1  —> d is essentially a partial element fc :l^>a, i.e. a local 
section fc with

dom fc = { i : fc(i) ^ 0 in A }

Identifying truth values with subsets of I  we may then simply say that

|[E(c)fc = dom/c,
and

2II=E(c) iff fc is a global section.

Now the set A  is isomorphic in Set to A  +1, the latter being the disjoint 
union of A  and {0}. The iso arrow in question is the co-product arrow 
[ηΑ, 0a1 where 0A : {0} —> A  has 0A(O) = 0. Thus 0A “ is” the element of 
A  corresponding to the partial element 1:0—> A  of A. The obvious 
question then arises as to whether a is isomorphic to a +1 in general. If 
this were so, we would have in particular 1 =  1 + 1. But (Exercise 2 above) 
1 is an object of truth values, and we know that Ω =  1 +1 only in Boolean 
topoi.

To formulate the situation precisely, let 0a : 1 —> a, where a is an object 
of topos be the unique arrow making

a pullback, and form the co-product arrow

L e m m a . In Sub(a), 0a is the pseudo-complement of ηα.
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P r o o f . If —ηα : —a a is the pseudo-complement of ηα, then ηα Π  

~Va — 0d (§7.2) and so

0 >- —a

a >-

is a pullback. But the Partial Arrow Classifier Theorem then implies that 
—rja is the only arrow that makes the diagram thus a pullback.

Now consider

0 —a

Va

The top square is a pullback (exercise), and the bottom square is the 
pullback defining 0a. Hence by the PBL the outer rectangle is a pullback. 
In view of the unique role of —ηα just mentioned, it follows that

—a

commutes, showing that —ηα c  0a. But the pullback square defining 0a 
shows that ηα Π0α — 0d. In view of the description of — ηα as the largest 
element of Sub(a) disjoint from ηα, we get then 0a c  — ηα, and altogether 
0a—~Va· Π

T h e o r e m . In any topos if, the following are equivalent
(1) For all objects α, [ηα, 0a] : a + 1 —> a is iso
(2 ) [ηΐ5 0X] : 1  + 1  —> 1  is iso
(3) % is Boolean.
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P r o o f . Clearly (1) implies (2). But 0X is defined by the pullback

0  1—+ 1

Φι

which shows that when r)1 is used as subobject classifier, i.e. /η1 = true, 
then 0! is the arrow false. Hence (2) asserts that the co-product [true, 
false] is iso, which yields Booleanness as we saw in §7.3.

Finally, if (3) holds, then applying the Lemma to any ^-object a, we 
have

"Ία U 0α — ηα U —ηα — 1 a.

But ηα and 0a are disjoint monies, so the Lemma following Theorem 3 of 
§5.4 implies that [ηα, 0α] is monic, and hence is its own epi-monic 
factorisation, i.e. ηα U0a =  [ηα, 0 J  in Sub(a). Thus 13 =[η α, 0α1  and so 
the latter is iso (Exercise, 7.2.1). □

E x e r c is e  3. Let a = f : A - > B  be an object in the topos Set"* of set 
functions. Form the co-product function

[f, id ]
A + B -------— >B,

and let [/, idB] : (A +JB) —> B be defined by the — construction in Set. 
Then

(A + B )-

/

B Vb

commutes, where g is the composite of iA : A  —> A + B  and ηΑ+Β.
Show that τ]α : a —> a is a partial arrow classifier with respect to a in 

SeL", where a is the function [/, idB] and ηα is the pair (g, ηΒ).
Apply the construction just given to the terminal 1 in Set^ to recover 

the description of the subobject classifier for Set-* given in Chapter 4.
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11.9. Heytmg-valued sets

Building on the ideas of the previous section, we might regard an object 
in a topos as a “ set-like” entity consisting of potentially existing (partially 
defined) elements, only some of which possess actual existence (are 
totally defined). The variables in a formula that are bound by quantifiers 
are then taken to range over actually existing elements. In the context of 
this “ logic of partial elements” we distinguish two concepts of sameness. 
The sentence 3v(v ~ c) is tantamount to the assertion that the individual 
c exists, in that it asserts that there actually exists an individual that is 
equal to c. So the sentence
(i) E(c) =  3i?(t> ~ c )
is valid on this account. Here the symbol =  is the biconditional connec­
tive read “ if and only if” . The expression φ =  φ is formally introduced as 
an abbreviation for the formula

(φ =>ψ)Λ(ψ=>φ).
In arriving at (i) we have implicitly invoked the principle that anything 
equal to an existing entity must itself exist. But more strongly than this we 
are going to require that elements can only be equal if they exist. Equality 
implies existence, and we thus have
(ii) (v ~  w) => E(u) λ  E(w)
The other notion of sameness, for which we use the symbol is a 
weaker concept of equivalence which does not differentiate elements in 
regard to their lack of existence. Thus v and w will be equivalent if
neither of them exists, or if they both exist and are equal (~ ). We can
express this in a positive form as “ if either of them exists then they are 
equal” (and hence the other exists by (ii)). Thus equivalence is character­
ised by
(iii) (v w) =  (E(t>) v E(w) w).

But then we see, conversely, that we may describe equality in terms of
equivalence, since equal elements are those that exist and are equivalent, 
i.e.
(iiia) (t> ~  w) =  ((v ss w)aE(t>) λ  E(w)).

These notions are simply illustrated in the topos Bn (I). Let f  and g be 
two partial elements I*» A  of a bundle A  - » I  over I, and put

I f= gl = {»' e I : f(i) = g(i)}
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Then [f ~  gl, being a subset of I, is a truth-value in Bn(I). We regard it as 
the truth-value of the statement “ /  = g” , or alternatively as a measure of 
the extent to which /  and g are equal. The expression “ /  = g” is 
interpreted to mean that f(i) and g(i) are both defined (i.e. i is a member 
of the domains of both f  and g) and they are the same element of A. In 
particular we must have

1/ ~  gl ̂  dom / (Ίdom g

and so by the analysis of 1 1 .8  we can put

I /-g l^ lE ( / ) ln lE (g)l

which accords with (ii) above.
Notice that

If «  f l = { i : m  = /(i)} = dom /  = lE(f)l

and so [ / ~ / l  is a measure of the degree of existence of /.
For the weaker concept of sameness, we regard the local sections /  and 

g as equivalent if they agree whenever they are defined. Thus as a 
measure of the extent of their equivalence we take those i where neither 
is defined, together with those where they are both defined and agree. 
Thus

1/ ^  gl = -(dom  /  Udom g) U[ / «  gl 
= - ( [E (/) lu lE (g )l)U l/-g l  

which corresponds to (iii), since — B U C = B => C in ^(1).

Analogously, in Top(I) we define a measure of the degree of equality 
of partial elements (continuous local sections) of a sheaf of germs by 
putting

tt/^ g l= { c /(0  = g(0 }°,
applying the interior operator ( )° to ensure that I /~  gl is an open set, 
i.e. a truth-value. |[E(/)1 = I f~ /I  remains as dom/, since local sections 
always have open domains. For equivalence we put

Hf s  g i= m m  u iE(g)i => i f « gi,

where Β Φ  C = (~B U C)° is the relative pseudo-complementation of 
open sets in I. Notice that whereas I/ — /1 may be a proper subset of I  
(“ /  = / ” is not totally true) we always have [[/ — /]  = I.
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Emerging from this discussion is a generalised concept of a “ set” as 
consisting of a collection of (partial) elements, with some Heyting- 
algebra-valued measure of the degree of equality of these elements. This 
notion admits of an abstract axiomatic development in the following way: 

Let (Ω, C ) be a complete Heyting algebra (CHA), i.e. an HA in which 
every subset Α ς β  has a least upper bound, denoted UA, and a greatest 
lower bound, denoted ΓΊ A, in Ω. (Recall the definitions of l.u.b. and g.l.b. 
given in §8.3). An Ω-valued set (Ω-set) is defined to be an entity A  
comprising a set A  and a function A  x A  —> il assigning to each ordered 
pair (x, y) of elements of A  an element Ix~yJA of Ω, satisfying

I x « y lAc [ y « x ] A
and

I* =  ylAri|Iy ~  z]Ac Ix  «  z]A

for all x, y, z e A .  These two conditions give the il-validity of the 
formulae

(x =  y)=>(y=i x)

(x==y)A(y =  z )z5(x =  z)

that express the symmetry and transitivity of the equality relation. The 
element [x ~  xJA will often be denoted lExlA. We introduce the definition

lx  s= y lA =  (llEx]AL j[E y lA) =>1U =  y lA

The A-subscripts in these expressions will be deleted whenever the 
meaning is clear without them.

E x e r c is e  1 . Prove that the following conditions hold for any Ω -valued 
set:

Ix — y t lE x ]
Ix ~  y 1 = [x 23 y Jn[Ex]]ri[[Ey]
[[Εχ1γί[χ s  y ld E y l
[x 22 x J is the unit (greatest element) of Ω
I x - y t e l y s x l
Ix s  ylrily ss z J d x  s  zj
p d x  s  yl iff p n lE x fc lx  — yl and prnlE yfclx s y j.  □
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The justification for using the subobject-classifier symbol for our CHA 
is that the Ω -sets form the objects of a category, denoted il-Set, which is a 
topos, and in which the object of truth-values is Ώ itself! More precisely, 
this object of truth-values is the 12 -set i l  obtained by putting

Ip=qln  = (?<£><?)
for each p, q e Ω, where

(p q) =  (p Φ  q ) n (q => p)

is the Ω -operation that interprets the biconditional connective =. Since 
the members of Ω are going to serve as truth-values we will use the 
symbols _L and T to denote the least (zero) and greatest (unit) elements of 
Ω respectively.

E x e r c is e  2. Ip ~  =  T iff p =  q.

E x e r c i s e  3 . lEp\l = T.

E x e r c is e  4 .  Ι ρ — τ ί β ^ ρ .

E x e r c is e  5 . [p  ~  ± ] ft =  —ip □

An arrow from A  to B in Ω -Set may be thought of in the first instance 
as a function f : A  —> B. Its graph would then be a subobject of A  x B and 
so should correspond to a function of the form A  xB  —> Ω. We interpret 
the latter as assigning to (x, y ) the truth-value lf(x) ~  yj, giving the degree 
of equality of f(x) and y, i.e. a measure of the extent to which y is the 
/-image of x. With this idea in mind we turn to the formal definition. 

An arrow from A  to B in i2-Set is a function f . A x B -^ Ω  satisfying

(iv) Ix =  x ']Lnf«x, y » C /« x ',  y>)
(v) f((x, y » n  ly =  y%^f((x ,  y '»
(vi) f((x, y))i ιf((x, y' » Cly =  y'1b
(vii) Ix =  x]A = U {/«x , y )) :y e  JB}

The first two conditions are laws of extensionality (indistinguishability of 
equals) and assert the Ω -validity Of the formulae

(x =  x') λ (f(x) ~  y) => (fix') =  y) 
(f  (x) «  y) λ (y «  y') => (f (x) == y')
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(which are instances of the axiom 12 of §11.3). Condition (vi) gives the 
validity of the “ unique output” property for the arrow /. It can be read 
“partial elements y and y' are each the /-image of x only to the extent that 
they are equal” . To understand condition (vii) we note that the complete­
ness of the HA Ω can be used to interpret an existential quantifier, by 
construing the latter as a (possibly infinite) disjunction (l.u.b.). That is, the 
sentence “ there exists a y e B  such that <p(y)”  is construed as “ <p(yi) or 
<p(y2) or <p(y3) or . . . ” where y1? y2, . . .  run through all the members of B, 
and hence is given the truth-value

U {^ (y )l: y eB }, or U II<p(y)l
y e B

(Dually, construing a universal quantifier as a conjunction, the sentence 
“ for all y eB, <p(y)” would be interpreted by

y eB }, or Π M y)l·)
y e B

Thus we see that (vii) gives the validity of the statement that each x e A  
has some /-image y eB, i.e. /  is a total function. By giving an equation of 
the form lExi = l<pl the suggestive reading “ x exists to the extent that φ” , 
we may read (vii) as “ each element of A  exists to the extent that it has an 
image in B” .

In summary then, an arrow from A  to B is represented, via its graph, as 
an extensional, functional and total Ω -valued relation from A  to B. But 
then it is not hard to see that the equality relation on A  satisfies these 
properties, i.e. the function (x, y)«->[[x~ylA is an arrow A -^  A  accord­
ing to (iv)-(vii). And indeed it will be the identity arrow for A, with the 
truth-value of “ id(x) = y” thus being precisely that of “ x = y” , as it 
should be.

The composite of arrows / : A ^ B  and g :B  —>C is the function g° 
/ :  A  x C —> i2 given by

g ° f{(x, Ζ» = U y » n g « y , z>)
y e B

(compare this to the statement “ for some yeB , f(x) = y and g(y) = z ” ).
These definitions complete the description of Ω -Set as a category. In 

order to describe its topos structure we will from now on use the 
notations f((x, y)) and I/(x )~  yl interchangeably in reference to an arrow 
/ :  A —>B.

Terminal Object: This is the Ω -set 1 comprising the ordinary set {0} with



10~ 0] = T. The unique arrow / :  A —> 1 is given by 

Hf(x)«0] = |Ex] 

i.e. “ /(x) equals 0 to the extent that x exists” .

Products: A xB  is the product set A  xB with the Ω -valued equality

y>«<*\ y'^Ix^x'Lnly^y'i
The projection arrow prA : A x B -> A  has

[prA«x, y)) ~  zj = lx ~  zJrn[[ExJri[[jEyJ

i.e. “ the A-projection of (x, y) equals z to the extent that x and y exist 
and x equals z ” .

Pullbacks: To realise the diagram
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as a pullback we define, for x e A  and y eB

Ed ((x, y » =  U (tt/(x) =  cli-|[g(y)«cD
c e C

(cf. “ there exists c e C  with f(x) = c and g(y) = c ” , i.e. “ /(x) = g(y)” )· 
Then D is the product set A  x B, with

l(x, y>=<*', y')lD = ED«^ y>)
n E D((x', y '»n|[x~x'lAn [y  — y'De

Then in fact,

lB < x ,y ) lD =  E D « x ,y ) )

i.e. “ (x, y) exists in D  to the extent that /(x) = g(y)” .
The “projection” f  is given by

I f  «x, y>) =  zl = Ed ((x, y » n lx  ~  z]A 
and similarly for g'.
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Subobjects: In Set, the pullback is a subset D  of A  x B specified by the 
condition “ /(x) = g(y)” . We have just seen that in /2-Set, D is a kind of
subobject of A x B  that has the same partial elements as the latter but
with degrees of existence determined by the pullback condition. This sort 
of phenomenon is typical of the description of subobjects in /2-Set.

Intuitively, a subset of A  may be represented by a function of the form 
s : A  —> 12. Such a function assigns to each x e A  an element s(x) of /2, 
which we think of as the truth-value of “ x g s ” , or as a measure of the 
extent to which x belongs to the “ set” s. Thus we also denote s(x) by 
Ix e s i  Formally, a subset of an /2-set A  is a function s : A  —> Ω that has

(viii) IxesJrnlx — y l d y e s J  (extensional) 

and

(ix) I x e s f c l E x J  (strict)

E x a m p le . Let E : A  —> Ω be given by 

jE(x) = |[x~x] = [Ex J.

E represents the set of existing elements of A. Since 

IEx} = Ix e E]

we have that “ x exists to the extent that it belongs to the set of existing 
elements of A ” . □

Now an arrow / :A -^ B  can be shown to be monic just in case it 
satisfies

I/(x )«  z }nlf (y)  *  z f c lx  «  yj

for all x, y e A  and z eB.  Such an arrow corresponds to a subset of B (the 
“ /-image” of A), and hence to a function sf -> /2. This is given by

Sf(y)= U II/(x) =  yl
x e A

i.e. “ y belongs to sf to the extent that it is the /-image of some x e A ” . 
Thus sf(y) is the truth-value of “ y e /(A ) ” .

Conversely, a subset s :B Ω of B determines a monic arrow 
/S:A S >->B. As has the same collection B of elements as B, but with 
equality given by

Ix ~  yJAs = Ix e  s]rnly e slrnlx ~  y t
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i.e. “ x and y are equal in A s to the extent that they are equal in B and 
belong to s” . The “ inclusion” arrow fs has

E x e r c is e  6 . (I) Prove that sfs = s.
(ii) Let fSf: A Sf >—> B be constructed from the set sf corresponding to a 

monic f :  A>->B as above. Then A Sf has the same collection of elements 
as B. Define g : A  A s by

Ig(x) =  y] = II/(x)«yl.

Show that g is iso in i2-Set and that

commutes. □

The import of this exercise is that subobjects A ^ B  of B are uniquely 
determined by subsets B —> Ω of B. The latter in fact form the power 
object 8P(B) of B. To define this, let S(B) be the collection of all subsets 
s :B —>β  of B. Then SP(B) comprises S(B) with the equality

Is«i]t>(B)= Π (s(x )O i(x ))
x e B

(cf. “ for all x e B, x e S iff x e  i” ).

E x e r c is e  7. E s~ it(B) = T  iff s = t (i.e. s and t are the same function). 

E x e r c is e  8. [ E s ^ b ) =  T

E x e r c is e  9. Ix e s]rnls ~  i f c lx  e i]  □

Now the function e : A  x S(A) —> Ω having e((x, s)) = s(x) satisfies (viii) 
and (ix), and so is a subset of the 11-set A x ^ (A ). The corresponding 
subobject fe is precisely the membership relation e A^ A x ^ ( A )  on A. 
The definition of e thus gives that “ (x, s) belongs to e A to the same 
extent that x belongs to s” .
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S u b o b j e c t  C l a s s i f i e r : The arrow true: 1 —* i l  has

ltrue( 0) ~  pi = [p « Τ ΐη

(“ p is irae to the extent that p equals "f” ) and so

[irue(0) ~ p l = (p ^ T )  = p.

Now let f : A D be a monic, with corresponding subset sf : D —> il of D.
The character xf :D —> i l  of f  has

lXf(d) ̂ p l  = lEd\>mlsf(d) «  pln

i-e· “ Xf(d) equals p to the extent that d exists and p is the truth-value of 
“ d e f ( A )” ” .

E x e r c i s e  1 0 .  Show that this construction satisfies the Ω -axiom.

E x e r c i s e  11. lfalse(0) ~ pi =  [p ~  _Lja = (p _L) =  —ip

E x e r c i s e  1 2 .  The truth arrows w  have 

lpr\q «  rj = [[ (pnq ) «  rja

E x e r c i s e  1 3 .  Ip^jq ~  r] = | [ ( p L j q ) ~  rlft

E x e r c i s e  1 4 .  Show that the r.p.c. operation φ  : ί2 x Ω 12 on the HA 12 
is a subset of il x il in the sense of (viii) and (ix) and that the correspond­
ing subobject is © ^ > 1 1 x 0 . Show that the character of the latter, i.e. 
the implication arrow φ ' ι ί ΐ χ ί ΐ —>il has

Ip  φ ' q  ^  rJ =  (p  φ  q)  <=> r =  [ ( p  φ  q) «  r j ft. □

Object of partial elements

In Set, a “ singleton” is a set with exactly one member. In the present 
context of partial elements we are more interested in sets with at most 
one member. Formally a subset (extensional, strict function) s : A  —> Ω of 
A is a singleton if it satisfies

(x) [x e s jn ly  e ~  y]

i.e. “ elements of A  belong to s only to the extent that they are equal” .

E x a m p l e  1 . Ii a e A ,  then the map {a}: A  —> Ω that assigns to x e A  the 
degree [x — aj of its equality with a is a singleton in this sense, with 
[xe{a}l = [x «a ].



CH. 11, § 11.9 HEYTING-VALUED SETS 283

Example 2. Suppose A  is the 12-set (with Ω =9*(I)) of all local sections of 
some bundle over I, as considered earlier. Included in A  is the empty 
section 0A, the unique section whose domain is the empty subset of I. For 
any other section x, we have flx ~ 0AJ = 0. Generalising to an arbitrary Ω 
and arbitrary 11-set A, the map {0a} : A ^  11 assigning _L to each x e A is 
a singleton, with [x e {0A}1 = _L. □

Exercise 15. If s is a singleton

I x e s t  (fly e s]< [̂[y ~ x])

Exercise 16. {a} = {b} iff la ^ b }  = lEai = lEbi.

Exercise 17. Let seS(A) and p e l2. The restriction of s to p is the
function s \ p: A  —> Ω assigning s(x)np to x. Show that s \ p e S(A) and
that s \ p is a singleton if s is. □

Now the object A is to be regarded as the Ω-set of all subsets of A that 
are singletons in the present sense. Thus A is to be thought of as itself 
being a subobject of ^(A) and hence corresponds to a function 
sing: S(A) —> Ω. The formal definition, for s e S(A), is

IsesmgJ= ΓΊ (IxGslrntty cs]=>Ix~y])
x,y e A

(cf. “ for all x, y e A, if x and y belong to s then x = y” .)
The inclusion arrow η A: A >-> A  of A into A has

ΙηΑ(α) *  si = [Εα1Α π  [s *  {a}lg>(A)

(“Va.W  is s to the extent that a exists and s is {a}” ).

E x e r c is e  18. [sGsing] =  T iff s is a singleton.

Exercise 19. [{a} ~  sfcfls e  sing]. □

Now we know that each bundle over I  gives rise to an Ω -set, where 
Ω = 9*(I), whose elements are the partial sections of the bundle. Con­
versely, given an arbitrary 9P(i)-set A, each i e I  determines an equival­
ence relation on the set

A i = { x e A : i e  |[Ex]}
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that is defined by

x ~ {y iff ie|[x~y].

We then obtain a bundle over I by taking the quotient set as the
stalk over the point i. These constructions may be used to establish that 
the categories Bn (I) and & (!)- Set are equivalent. They can also be 
adapted to the case of sheaves of sets of germs, showing that Top(I) is 
equivalent to Θ-Set, where Θ is the CHA of open subsets of a topological 
space I. These facts are a special case of a result of D. Higgs [73] to the 
effect that 12-Set, for any CHA 12, is equivalent to the category of 
4 'sheaves over Ω ” . Precisely what that means will be explained in Chapter 14, 
where we shall see also that 12-Set is equivalent to a subcategory of itself 
in which arrows A —>B may be identified with actual set-functions 
A ^ B .

Elementary Logic in ii-Set

We have been interpreting the operations Π and U informally as 
universal and existential quantifiers in order to understand the construc­
tions that define 12-Set. When we come to interpret a first-order language 
in this topos, these same operations may serve to give meanings to the 
formal symbols V and 3. Moreover, instead of assigning a formula an 
arrow of the type A -> i l ,  we may work directly with functions of the 
form A  —» 12, and take advantage of the presence of the extents lEa} of 
individuals to formalize the principle that quantifiers are to range over 
existing individuals.

To illustrate this approach, suppose that our language SE has a single 
two-place relation symbol R. Our basic alphabet is presumed to include 
the existence predicate E and the identity (equality) symbol ~ . The 
symbol «  for equivalence is introduced according to clause (iii) at the 
beginning of this section. Alternatively, ~  may be defined in terms of ss 
by (iiia).

For this language, a model in 12-Set is a pair % = (A, r) comprising an 
12-set A  and a subset r : A  x A  ->12 of A x  A. (By Exercise 6 , r corres­
ponds to a unique subobject of A x  A, hence to a unique arrow A x  A —> 
il, and so this approach accords within the definition of “ model” in 
§11.4). We then extend SE by adjoining an individual constant c for each 
element ce A . A  truth-value ϊφ]^ e 12 can then be calculated for each
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sentence φ by induction as follows:

Atomic Sentences :
flc ~  dj^ = [c ~  d]A ^

IcRdfc = r«c, d))

Propositional Connectives:

a , v ,  =>, ~  are interpreted by γ ί ,  u ,  Φ ,  —i in Ω.

Quantifiers:

[Vi*pfc= Π (lE(c)3 (pW c)y
c e  A

(“ <p(c) holds for all existing c ” )

I3u<pt= U (|E(c)A(p(t)/c)|()
c e A

(“ <p(c) holds for some existing c ” ).

Satisfaction: For a formula <p(vl9. . . ,  vn) we define 21 h<p[c1?. . . ,  cn], 
where cl9. . . ,  cn e A, to mean that [φίιτΛτ,. . . ,  vJcn)%i=T. Then truth- 
21 1= φ - of φ in 21 can then be defined as usual by

2Ϊ h <p[c1?. . . ,  cn] for all cl9. . . ,  cn e A.

E x e r c is e  20. Show that the following are true in 21:
(f ~  u) Α φ(ν/u) => φ(υ/ί)
\/Vi ((Vi ^Vj) =  (Vi ZSVk))=> (Vj t$BVk)
Vucp λΕ(ι) => φ(ν/ί) 
φ(υ/ί)ΛΕ(ί) =5 3υφ 
Ε(ί) =  3υ(υ ~ ί)
3υ(υ ~t) =  3υ(υ ~t)
VViVVjdVi SS ϋ,·) =  «  Vj))
Vtxp=Vu(E(t;)=><p)
3ηφ =3υ(Ε(υ)Λφ)
VdE(u)
(E(u0  ν Ε (ν̂ ) => s  Vj)) ^ s  u,·)
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E x e r c is e  21. Show that the following rules preserve truth in 21:

From φ aE(d) => ψ infer φ => Vt>t/r 
From φ λ E(n)=><p infer 3 υψ=>φ 

provided in both cases that v is not free in φ. □

This semantical theory will be used in Chapter 14 to define number- 
systems in 12-Set. We will find it convenient there to have available the 
following result, which simplifies the calculation of the truth-value of 
quantified formulae in some cases by allowing the range of quantification 
to be further restricted.

We say that a subset C of A  generates the 12-set A  if for each a e A ,

HEaJA = U la ~  c]A
c e C

E x e r c is e  22. If C generates A  then 

[Vucpla = Π ([E(c) => <p(u/c)t)
c e C

and

ptxpHjt = u  (ΐΕ(ο)Λφ(υ/ί)|,) □
c e C

11.10. Higher-order logic

In closing this chapter on quantificational logic we mention briefly the 
study that has been made of the relationship between higher order logic 
and topoi.

Higher order logic has formulae of the form (VX)<p and (3X)<p, where 
X  may stand for a set, a relation, a set of sets, a set of relations, a set of 
sets of sets of . . . ,  etc. So for a classical model 21 = ( A , . . . )  the range of X  
may be any of 0>(A), ^ (A n), ^ (^ (A n)), etc. Analogues of these exist in 
any topos, in the form of ί2α, Ω α\ etc., and so higher order logic is 
interpretable in In fact the whole topos becomes a model for a many 
sorted language, having one sort (infinite list) of individual variables for 
each ^-object. Given a theory Γ  (i.e. a consistent set of sentences) in this 
language, a topos ΈΓ can be constructed that is a model of Γ. Conversely 
given a topos ^ a theory can be defined whose associated topos is 
categorially equivalent to These results were obtained for the logic of
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partial elements by Fourman [74] and subsequently for the other ap­
proach to free logic by Boileau [75]. They amount to a demonstration 
that the concept of “ elementary topos” is co-extensive with that of 
“ model for many-sorted higher-order intuitionistic free logic” , and hence 
provide a full explication of Lawvere’s statement in [72] that “ the notion 
of topos summarizes in objective categorical form the essence of ‘higher- 
order logic’ .” The work of Fourman incorporates a number of interesting 
and unusual logical features, which we will outline briefly.

Firstly, as already noted in §11.8, variables are to be thought of as 
ranging over, and constants denoting, potential elements of an ^-object a. 
Thus a formula is interpreted by an arrow of the form [<pj: (a)n Ω, 
corresponding to the subobject of all n-tuples of potential elements that 
satisfy φ.

Next, the system includes a theory of definite descriptions as terms of 
the formal language. A  definite description is an expression of the form 
Ινφ, which is read “ the unique v such that φ” . The expression serves as a 
name for this unique t> whenever it exists. The basic axiom governing this 
descriptions-operator is

Vu((u 22 lvcp(v)) =  Vv((p(v) =  (v ss u)))

which has the reading “ an existing element u is equivalent to the element 
\νφ(ν) iff u is the one and only existing element satisfying φ” (recall that 
quantifiers range over existing elements).

To interpret a definite description semantically in suppose, by way of 
example, that the g’-arrow [<pj: a —> Ω has been defined, where φ(υ) has 
index 1. Let f : l —>Ωα be the name of the arrow Ιφΐ ° τηα : a Ω (cf. 
§4.1). (In Set, f  corresponds to the element

|<p| =  { x e a :  <ρ(χ)}

of the powerset of a, i.e. the subset of a defined by φ).
Form in g the pullback

b >---------> 1

α > Ωα
of f  along the “ singleton arrow” {· }α, that was defined in §11.8. (In Set 
we may regard g as the inclusion b a, with b = \φ\ if |φ| is a non-empty 
singleton, i.e. if |φ| ={x}  for some x e a , and b = 0  otherwise). Notice that 
g : W a ,  i.e. g is a partial element of a, and so corresponds to an arrow
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g r l ^ a .  We take this g to be [Ιυφ]. (In Set, taking a as a U{*} ,  g 
corresponds to the element x of a if |φ| ={x}, and is the “ null entity” * 
otherwise.)

Of course the description operator and its semantic interpretation can 
be developed in the context of first-order logic. In higher order logic it 
becomes particularly useful, in that is provides simple and straightforward 
ways of expressing both the Comprehension Principle, and the operation 
of functional abstraction, the latter being the process of defining a term 
that denotes a function whose graph is specified by a formula.

To consider Comprehension, suppose by way of example that cp(v) has 
a single free variable whose range is a collection of entities of a certain 
level, or type, in a higher-order structure comprising subsets, sets of 
subsets, sets of sets of subsets etc. In a higher-order language there will 
also be variables w that range over the subsets of the range of v. Then the 
sentence

ElwVu(<p(u) =  w(v))

asserts the actual existence of the unique set whose elements are precisely 
those entities that satisfy φ.

If instead φ(υ, w) has two free variables, it defines a relation when 
interpreted. We denote by <p’(v) the term

lw<p(t>, w ).

If the interpretation of φ is a functional relation (one with the unique 
output property) then this term will provide a notation for function 
values. Functional abstraction may now be performed by forming the 
expression

ImVdVw(u(d, w) =  φ \ν)~  w)
(which is abbreviated to λυ · φ ’(υ)), where u is a variable that ranges over 
the relations from the range of v to the range of w. The expression 
λυ · φ ’(υ) may be read “ the function which for input v gives output 
φ ’(υ)” .

The details of this higher-order language and its use in characterising 
topoi as models of higher-order theories may be found in Fourman’s 
article “The Logic of Topoi” in Barwise [77]. This work is important for a 
broad understanding of the structural properties of topoi. It offers a 
different perspective to the one we are dealing with here. Our present 
concern is to develop the view of a topos as a universe of set-like objects 
and hence, qua foundation for mathematics, as a model of a first-order 
theory of set-membership. We take this up in earnest in the next chapter.


