
CHAPTER 7

ALGEBRA OF SUBOBJECTS

4'Since new paradigms are bom 
from old ones, they ordinarily in­
corporate much of the vocabulary 
and apparatus, both conceptual 
and manipulative, that the 
traditional paradigm had previ­
ously employed. But they seldom 
employ these borrowed elements 
in quite the traditional way.”

Thomas Kuhn

7.1. Complement, Intersection, union

At the beginning of Chapter 6 it was asserted that the structure of 
(^ (D ), c )  as BA depends on the rules of classical logic, through the 
properties of the connectives “ and” , “ or” , and “ not” . This can be made 
quite explicit by the consideration of characteristic functions. We see 
from the following result just how set operations depend on truth- 
functions.

T h e o r e m  1. If A  and B are subsets of D, with characters x ^  : D ^  2, 
Xb : D —» 2, then

(i) X-a = - i°Xa
( ϋ )  Χλπβ =Χλ ^Χβ ( = ^ ° < * a ,  Χ β »

(iii) Xau b=Xa ^Xb-

Proof. If χ_Α(χ;) = 1, for x e D ,  then x e  —A, sox^A,  whence aaM  = 0? 
so ~̂ Xa (x) = 1. But if X-a(x) = 0, then x& —A, s o x e A ,  whence χΑ(χ) = 1 
and —i*a(x) = 0. Thus χ_Α and ~ι°χΑ give the same output for the same 
input, and are identical. The proofs of (ii) and (iii) follow similar lines, 
using the definitions of Π, r\, U, kj. □

Theorem 1 suggests a generalisation -  the result in one context be­
comes the definition in another, as follows.
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Let % be a topos, and d an ^-object. We define operations on the 
collection Sub(d) of subobjects of d in % thus:

(1) Complements: Given f : a >—> d, the complement of f  (relative to d) 
is the subobject —f : —a >-* d whose character is ° xf. Thus —f  is defined 
to be the pullback

—a )>— » d

“ i°Xf

1 — ^  i2
of T along —i°xf, yielding x_f = —\°xf, by definition.

(2) Intersections: The intersection of f : a >-> d and g : b >~> d is the 
subobject f n g : a n b > - >  d obtained by pulling T back along xf r\x& =
r^°(Xf,Xg>·

a (lb > ^ng » d

Hence xfng=Xf^Xg·
(3) Unions: f Ug : aUb > - > d  is the pullback of T along xf \jx% = 

^°(xf ,xgX

aU 6 /Ui

a

and so xfUg= x f wxg. □
There is in fact a completely different approach available to the 

description of intersections and unions in Set.
(a) Intersection: The diagram

Α Π Β B
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is a pullback. Now in the poset (^(D ), c ) 5 Α Π Β  is the g.l.b. of A  and B, 
hence their product, and indeed pullback. But we are saying something 
stronger than this, namely that the diagram is a pullback, not just in 
0*(D), but in Set itself, as the reader may verify.

(b) Unions: In ^ (D ), AUjB is the co-product of A  and B. This 
description cannot be generalised as we do not yet know if Sub(d) has 
co-products, and moreover in Set itself the co-product A + B  is the 
disjoint union of A  and B , s o A + B ^ A U B  unless A  and B are disjoint.

However, A U B  can be described as the union of the images of the 
inclusions / : Α ° —>D and g : B £—>D, and in §6.6, in defining the disjunc­
tion arrow w, we gave a general construction for the union of two images. 
We form the co-product arrow [/, g ]: A  + B —» D, and then A U B  obtains 
as the image of A  + B under [/, g], i.e.

commutes as an epi-monic factorisation of [/, g].
Although we have two descriptions of Π and U in Set we are about to 

see that they present us with no choice in i.e. that they lead to the same 
operations on Sub(d) (topoi really are the right generalisations of Set). 
The full proof is somewhat lengthy and intricate, and so we shall confine 
ourselves to outlining the basic strategy and leave the details to the reader 
who has developed a penchant for “ arrow-chasing” .

T h e o r e m  2 . In any topos <g, if / :  a  >-> d an d  g : b > ^ d  have pullback

then a :c d, where 0L = g ° f  = f og' has character xf r\x^ Thus χα = 
Xfn& so oL—fC\g and there is a pullback of the form

A + B [f,g] D

A U B

v v

g g

a >
f

d

a Db,> b



CH. 7, §7.1 COMPLEMENT, INTERSECTION, UNION 149

S t r a t e g y  o f  P r o o f . The heart of the matter is to show that the top 
square of

a

(Xp Xg>

Ω χ Ω

1 -----1-----► Ω
is a pullback. The bottom square is a pullback, by definition of so by 
the PBL the outer rectangle is a pullback, which by the Ω -axiom leads to 
the desired result that χα =r\°(xf, *g). □

The analogous result for unions needs a preliminary 
L e m m a . In any if

is a pullback, then there is an arrow h : / ( a ) —>g(c) that makes the right 
hand square of

f(a) >-sa*—  b

a pullback. 
P r o o f . Consider
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The right hand square obtains by pulling back im g along v, so i is monic. 
The existence of making the whole diagram commute follows from the 
universal property of the right hand square as a pullback, given that the 
“ boundary” of the diagram is the pullback given in the hypothesis of the 
Lemma. The PBL then gives the left hand square as a pullback, and since 
the latter preserve epics (Fact 1, §5.3), i ° f  is an epi-monic factorisation 
of /. Hence there is a unique iso k : e - ^ f ( a )  such that

commutes. Then h = hf °k  1 is the arrow required for the conclusion of

T h e o r e m  3. Given f : a >—> d and g : b >-> d in a topos <§, then the -arrow 
a : c >—> d which is the image arrow of [/, g ] : a + b —> d,

has character xf w xg.
Thus = XfUg> so a - / U g  and there is an epi-monic factorisation

the Lemma. □

c

a\Jb

S t r a t e g y  o f  P r o o f . The idea is to show that the two smaller squares of



are pullbacks. Since co-products preserve pullbacks (Fact 2, §5.3) we then 
get a pullback of the form

a + b  ------------£*2-----------► d

<Xf, Xg)

Ω + Ω  Ω χ Ω

The Lemma then yields a pullback of the form
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(Xf, Xg>

c — ► Ω χ Ω

where i is the image arrow of [(Tn, Λη ), (Λη, ΤΩ)]; But i is the arrow 
whose character is w : Ω x Ω -> Ω, i.e.

e — l-— ► Ω χ Ω

is by definition a pullback. Putting these last two diagrams together and 
invoking the PBL shows that = u °(x f, xg). □

In view of Theorem 3 we can now describe the disjunction truth arrow 
kj as the character of

.Οι ) ^ ><τη·1«>υ<Ί«·Τ«> Ω χ Ω

7.2. Sub(d) as a lattice

T h e o r e m  1. (Sub(d), c )  is a lattice in which
(1) fH g  is the g.l.b. (lattice meet) of f  and g;
(2) /U g  is the l.u.b.(join) of f  and g.

P r o o f . (1) The characterisation of /Π  g as a pullback of f  and g makes it 
relatively easy to see why /  Π g is the g.l.b. of f  and g. The details are left 
to the reader.
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(2) The characterisation of /U g  in Theorem 3 and the co-universal 
property of [/, g] shows that

a + b <— b

commutes and so each of f  and g factors through /Ug. Thus / c / U g ,  
g c / U g ,  and / U g  is an upper bound of f  and g. To show it is the least 
such, suppose f^ h  and g^h.  Then f  and g each factor through h, so 
there are ha, hb making

a

K

o - ^ d

hb 

b

commute. Then

[ / ,  g] = [h°ha,h°hb]
= h ° [ha, hb] (dual of Exercise 3.8.3)

and so [/, g] is the composite of

[ha, hb] : a + b —> c and h : c >-> d.

Replacing [ha, hb] by its epi-monic factorisation we get [/, g] as the 
composite of

I 1 j  ̂  ̂ Ia + o —» e > c a

for some j and k. But then j followed by h ° k is an epi-monic factorisa­
tion of [/, g]. By the uniqueness, up to isomorphism, of such things there
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is an iso u such that

a\Jb

commutes. Then k°u  factors /U g  through h, yielding f U g ^ h  as 
required. □

C o r o l l a r y . (1 ) / e g  iff f H g ^ f  i f f / U g - g .
(2) f ^ g  iff (xf, x g) factors (uniquely) through the equaliser

of r\ and pr±.

P r o o f . (1) In any lattice, xC y iff x n y = x  iff xi_jy = y.
(2) / c g iff f n g ^ f

iff Xfng =Xf

if! η » (xf, Xg) = prx o(xf, xg)

and the result follows by the universal property of equalisers. □
Part (2) of this Corollary is an analogue of the fact that in Set we have 

A ^ B  iff Xa^Xb (the latter meaning XaW ^X bW j  all x^D) .

T h e o r e m  2. (Sub(d), c )  is a bounded lattice with unit 1d and zero 0d.

P r o o f . Given any f  :a>->d, the commutativity of 

d > 1d > d

f

a
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and of

a >— -—► d

0a

0

shows that 0d c  /  and /  ̂  1 d. □

E x e r c is e  1. In Sub(d), f  — 1d iff f  is iso, i.e. f  :a =  d. □

Sub(d) is in fact a distributive lattice, i.e. satisfies

/n(guh)-(fng)u(fnh).
Again this is something that could be proved directly but in fact follows 
from some deeper results-this time a more detailed description of 
Sub(d) to be developed in the next chapter. We leave the matter till then 
(cf. §8.3).

What about complements? To date we have not used the definition 
X-.f = —\°Xf. The first thing we shall prove in this connection is

T h e o r e m  3. For f :a>->d , we have

/n - /~  od.

P r o o f . The boundary of

is the pullback defining — the bottom square is the pullback defining —i, 
so the unique arrow — a —> 1 makes the whole diagram commute, and the 
top square a pullback.



Then each square of
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α Π— a >-

commutes (the left hand one is the pullback giving f D —f), so we get 
_L °! = Xf0/°g.  But Xf°f=truea (Ω-axiom), so Xf° f0g = truea°g = 
truean- a (4.2.3). Hence the outer square of

commutes. But the inner square is a pullback, so the arrow k : α Π —a —> 0 
does exist. But then α Π —a =  0 (§3.16), so α Π — a is an initial object and

0>- d

α Π —a

must commute. Thus f  Π — f  c  0d, and since 0d is the minimum element of 
Sub(d), the result follows. □

We seem to be well on the way to a proof that Sub(d) is a Boolean 
algebra, and hence complete the analogy with 3P(D) in Set. We know it to 
be a bounded distributive lattice, with f n —f  always the zero. It remains 
only to show that f U —f  is the unit. But we cannot do this! There are 
topoi in which it is false. To give an example we need

T h e o r e m  4 . In Sub(il), (for any topos), 

_L — —T.
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P r o o f .  χ± =  ~i (defin ition  o f  —i)

= ~i°1n
= l° Χτ

=  X -t · □

So in any topos, T U - T  = T U 1 .  Now in our favourite example M2, 1 a 
in Sub (12) can be identified with the set LM, while T  U _L, as the image of 
[ T ,  _ L]  (recall the description of the latter in Theorem 5.4.6), can be 
identified with the set {M2, 0 }^ L 2. Hence

T U l ^ 1 n,

and so —T  (— ± )  is not the lattice complement of T  in Sub(i2). But then, 
as the next result shows, Sub(i2) is not a Boolean algebra at all.

T h e o r e m  5. In any topos, if T : 1 —> Ω has a complement in Sub(i2), then 
this complement is the subobject _L : 1 —> Ω.

P r o o f .  If T  has a complement, f  say, then T  O f — 0n, so

/

is a pullback. The 12-axiom then gives f  = χ0α = ±  °\a (cf. Exercise 5.4.3). 
But _L °la obviously factors through l , s o / c l .  Lattice properties then 
give T U / c T U  - L ,  and since Τ ϋ / - 1 β , TU ±  — 1 n. But by Theorems 3 
and 4 above, T Π _L = 0^, and so ±  is a complement of T. But in a 
distributive lattice, complements are unique, hence f —±.  □

7.3. Boolean topoi

A  topos g will be called Boolean if for every g’-object d, (Sub(d), c )  is a 
Boolean algebra.

T h e o r e m  1. For any topos the following statements are equivalent:
(1) % is Boolean
(2) Sub(i2) is a BA
(3) T : 1 —» Ω has a complement in Sub(i2)
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(4) _L : 1 —> Ω is the complement of T  in Sub(il)
(5) T U  -L — 1n in Sub(il)
(6) is classical, i.e. [τ, ± ] :  1 + 1 —>12 is iso
(7) it: 1 —> 1 + 1 is a subobject classifier.

P r o o f . (1 )  implies (2 ) : definition of “ Boolean”
(2) implies (3): definition of “ BA”
(3) implies (4): Theorem 7.2.5
(4) implies (5): definition of “ complement”
(5) implies (6): [T, _L] is always monic, so

is an epi-monic factorisation of [ T ,  _ L] ,  i.e. in Sub(i2), T U 1 - [ T ,  _L] .  

Then if T U  JL — Λα, we get [ T ,  _l_] —1ω, making [ T ,  _L]  iso by Exercise 
7.2.1.

(6) implies (7): Exercise-the essential point being that anything 
isomorphic to a classifier will be one itself.

(7) implies (1): Given / :  a >-> d, we wish to show that fU  — f — 1d, and 
so by the work of §7.2 —f  will be a complement for f, and Sub(d) will be a

If we can show that [/, —/] is epic, then the iso k as shown will exist to 
factor 1d through fU  — f  to make f U —f —lti. We need first the following:

L e m m a . In any topos,

1 + 1 [T,-L] Ω

1 + 1

BA.
The basic strategy can be seen in the diagram 

a U —a

0 1

1 1 + 1

is a pullback, where ih i2 are the two injections for the co-product 1 + 1.
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P r o o f . The square commutes as 0 is initial. It is also a pushout by the 
co-universal property of the pair (/,, i2). But the outer square of

commutes, indeed is a pullback by the Ω -axiom, so the unique k exists as 
shown to make the diagram commute.

Then if the outer square of

commutes, k can be used to show the outer square of

commutes, giving the unique a —> 0 for the previous diagram as required.
□

To finish our Theorem we shall denote by χ'-, _L' etc. the arrows 
defined in the same way as xf9 _L, etc., but using f,: 1 —> 1 Η-1 in place of 
T : 1 —> Ω. Now the Lemma tells us that i2 = _L\ so by the argument at the
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beginning of Theorem 3 of §7.2,

—a - f d

xi

1 + 1

is a pullback. But so is

f ,

Xf

1 + 1

and co-products preserve pullbacks, so

a + — a >-

1 + 1 [+ i2]

Xi

1 + 1

is a pullback. But [/,, i2] = 1 i+ i  is epic, whence [/, —/]  is the pullback of an 
epic, i.e. an epic itself. □

7.4. Internal vs. External

T h e o r e m  1. If Έ is Boolean, then for any sentence a.

P r o o f . Let V  be an ^-valuation. Form the pullback
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Now if % is Boolean, Sub(l) is a BA, so /U — / —11? whence xfu- f = 
χΊι = Τ. But

λ /υ - f  =  X f ^ - i 0 Xf

= V (a )^ —1° V(a)
= V (a v ~ a ) .

Hence V ( a v ~ a ) = T .  □

One might think that if our theory was working well then the converse 
of Theorem 1 should hold. However our example M2 is non-Boolean, 
since in it Sub(12) is not a BA, and yet M2ha v as observed at the end 
of Chapter 6. The proof of Theorem 1 in fact only required that Sub(l) 
be a BA. That this is the relevant condition is shown by

T h e o r e m  2 . In any topos <£, the following are equivalent:
(1) %\=a iff hCLa, all sentences a
(2) ^l=av~a, all a
(3) Sub(l) is a BA.

P r o o f . Clearly (1 )  implies (2 ) . Assuming (2 )  we take a subobject / : a  >-> 
1 in Sub(l) and observe that xf is a truth value 1 —>12. Taking an 
^-valuation that has V(7r0) = xf, we have xfu-f — Xf^~^Xf= VC^o)^ 
—\V(tt0)=  V(7r0v~7r0) = T = x;i1. Hence f U —f —'lx. This means that 
Sub(l) is a BA.

Finally assume (3), in order to derive (1). The “only if” part of (1) 
holds in any topos. The “ if”  part requires a proof that the CL-axioms are 
g-valid and that detachment preserves ^-validity. We shall explain later 
why axioms I-XI are valid in any topos, and why Detachment is always 
validity preserving. For the present we note only that the proof of 
Theorem 1 shows that if Sub(l) is a BA, then axiom XII is g5-valid. □

C o r o l l a r y . “ Sub(l) is a BA” does not imply that % is Boolean.

The situation seems at first sight anomolous (at least it did to the 
author). In Set the logic is based on the BA 2 ,  and in the general topos it 
seems to be intimately related to Sub(l). In Set, Sub(l)=9>(l) =  2  —so far 
so good. But the work of the previous sections shows that the properties 
of the “ generalised power-sets”  Sub(d) are determined by Sub(il), 
whereas in Set, Sub(12) is a four-element set that has played no special 
role to date.
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Some clarification of this situation is afforded by the observation that 
Sub(d) is a collection of subobjects of d and may well not be itself an 
actual ^-object. Thinking of & as a “ general universe of mathematical 
discourse” then a person living in that universe, i.e. one who uses only the 
individuals that exist in that universe, does not “ see” Sub(d) at all as a 
single entity. Sub(d) is external to What the topos-dweller does see is 
the power object Ωά, which is the “ object of subsets” of the object d. Ωά 
is an individual in the universe g, and is the internal version of the notion 
of power set, while Sub(d) is the external version.

Now the Law of Excluded Middle does have an internal version. The 
validity of a v ~ a  in Set corresponds to the truth of the equation

x\j—ix = 1, for x g 2 .

The truth of this equation is equivalent to the commutativity of

2 2x2

! vj

(since (id2, ~i)(x) = (x, nx)).
Now this diagram has an analogue in any topos g, and we have the 

interesting

T h e o r e m  3 . Sub(i2) is a BA iff the diagram

Ω  Ω χ Ω

Ω

(EM)

commutes.

P r o o f . EM commutes when 

W ln ,-| >  = Tii

i .e .
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—1 =-·χχ, and Tn = Xi«> so
iff T U ± “ 1n (§7.3)
iff Xtux = Xlfi
iff
iff 1 = Ti2. □

E x e r c is e  1. Show explicitly why EM does not commute in M2. □

Now in our theory of topos semantics we use the collection ^(1, Ω) of 
truth-values. This again is an external thing-the internal version of the 
collection of arrows from 1 to Ω would be the object of truth-values 
Ω 1 =  Ω. Also a valuation V : Φ —> <£(1, Ω) is external, i.e. is not an actual 
g’-arrow.

Thus the semantical theory we have developed is an external one, and 
this is why there can be topoi like M2 that look classical “ from the 
outside” and yet can have non-classical properties (curiously, M2 is 
internally bivalent while “ from the outside” Ω has three elements). We 
now see that a topos also has an internal logic, in the form of commuting 
diagrams like EM (cf. Exercise 2 below). It is precisely when this internal 
logic is classical that the topos is Boolean.

From the viewpoint that topoi offer a complete alternative to the 
category Set as a context for doing mathematics it is finally the internal 
structure that is important. Nonetheless the present external theory is 
very useful for elucidating the logical properties of topoi, and as we shall 
see, for describing the link between topoi and intuitionistic logic.

E x e r c is e  2 . Describe the validity of the CL-axioms I-XI in terms of 
commutativity of diagrams involving truth-arrows. (All of them commute 
in any topos -  can you prove some of them?)

7.5. Implication and its implications

In the same way that we used the truth arrows r\, w, —ι to define 
operations Π, U, — on Sub(d) we can use implication => to define the 
following operation: if / :a >-> d and d are subobjects of d, then
f  (φ- g : (α f=> b) ̂ > d is the subobject obtained by pulling T back along



CH. 7, § 7.5 IMPLICATION AND ITS IMPLICATIONS 163

Xf => Xg = => ° (Xf, Xs)· Thus

Ω

is a pullback, i.e. xf^ g = xf ^>xs.
In order to study the properties of this new operation we need some 

technical results.

L e m m a  1. If f, g, and 0h are subobjects of d (in any topos), then

(1) f n h ^ g D h  iff xf °h = xs °h, 

and hence

(2) Xf^xh = xgr^xh iff xf °h = xs °h.

P r o o f . (1) Consider

a He

In each diagram the bottom squares are pullbacks by the Ω -axiom, and 
the top squares are pullbacks by the characterisation of intersections. So 
by the PBL, xf °h = xhi and xs °h = xhz. Thus xf ° h = xg ° h iff hx =* h2. But 
this last condition holds only if there is an iso k giving h1°k = h2, and so 
h°h1°k = h°h2, i.e. ( f nh ) ° k  = g n h , and so f n h  — gDh.  The argu­
ment reverses to show f n h  — gDh  only if hx — h2. Part (2) is immediate 
from (1). □

C o r o l l a r y

/ H f i c  g iff xfng °h = xf °h.
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P r o o f

/ H h c g  iff ( fnh)r\g — f n h  
iff ( f n g ) n h - f n h  
iff Xfng °h = xf °h

T h e o r e m  1. In Sub(d) we have:
(1) h ^ f  & g iff f n h ^ g
(2) f ^ g i f f f  ΙΦ g — 1a
(3) g iff Xf => *g -  trued.

(lattice properties) 
(Lemma). □

P r o o f . (1) First consider

(a\5>b): f\=> g

The boundary commutes by definition of f  (=$> g. The bottom square is a 
pullback, so the unique arrow j exists to make the whole thing commute. 
Then the PBL gives the top square as a pullback.

The basic strategy of the main proof is seen in the diagram

(a&b)  — d

(Xf> Xg)

Ω χ Ω Ω
Pri

We have h c  f  |=> g precisely when there is an arrow k as shown making 
the top triangle commute. Since the square is a pullback, such a k exists 
precisely when (xf, xg)°h factors through e. By the universal property of e 
as an equaliser, this happens precisely when pr^ixf, xg)°h = ^  °(χρ xg)°h, 
i.e. xf °h = xfng°h. But this last equality holds iff fn-h^g,  by the last 
Corollary.
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(2) We use part (1). Suppose f c  g. Then for any h in Sub(d), / P l h c  
/ ^ g ,  so by (1), h c f  |=> g. This makes / 1=> g the unit 1d of Sub(d). 
Conversely if /  ΙΦ g - 1 d, then /<=/ [φ g, so / H / c  g, i.e. f c  g.

(3) From (2), and the definition of (Φ, since χΛά = iraed. □

E x e r c is e . Give a categorial proof of part (2), by using the Corollary to 
Theorem 1 of §7.2 and the diagram

□
C o r o l l a r y  t o  T h e o r e m  1. In Sub(d):

(1) l^ 1 d ~ 0 d l ^ l d —Od l=>0d^ 1 d.
(2) 1d t=̂> 0d — 0d.

P r o o f .  (1) By part (2 )  of the Theorem, as 1d c  1d? 0d ^  1d, 0d c  0d.
(2) Since 1d ^>Od g l d |=>0d, part (1) gives

1dn(1d ^>0d) c 0 d,

i.e.

1 d l=> 0d c  0d, (1a is maximum)

and hence

1 d ΙΦ  0 d —  0 d. □

Now in 5P(D), A  |=> Ό is —A  U D. (why?) The analogous situation does 
not obtain in all topoi. In M2, τ |=> T — 1 n in Sub(il) (by Theorem 1(2)),
while —T U T  = _L U T  = T U  _L, and we saw in §7.2 that T U  _L Α1Ω in M2.

To determine the conditions under which |=> can be defined from U 
and — we need

L e m m a  2 . (1) In any lattice, if m and n satisfy
(i) x £ m  iff a n x ^ b ,  all x

(ii) xC n  iff a\ ι x ET b, all x 
then m = n.



166 ALGEBRA OF SUBOBJECTS CH. 7, § 7.6

(2) In a Boolean algebra,

x £(α'ί_ι 6) iff arnxCfr, 

and so the only m that satisfies the condition of (l)(i) is m^a ' ub .

P r o o f . (1 )  Exercise-use m C m  etc.
(2) First, by properties of l.u.b.’s and g.l.b.’s, note that if xCz, then 

y γ ί  x C y γ ί  z  (any x, y, z ) .  Next note that in a BA, a γ ί  (α' ι_ι b) = (a rn a') lj 

(arn5) = 0i_j(arn6) = ar i i )^b so that if x£(a'i_ib) by the foregoing we 
have a n x E a n ( a 'u i ) ) c 6 ,  i.e. anxZZb.  Conversely, if a n x C b  then 
x = Ι γ ί χ  = (α'ι_ια)πχ = (a'rnx)i_i(arix)Ea'Lj6. □

T h e o r e m  2 . In any topos the following are equivalent:
(1) g is Boolean
(2) In each Sub(d), f  |=> g — — /U  g
(3) In Sub(i2), /  f=> g ^ - / U  g
(4) T t ^ T - T U - L .

P r o o f . (1 )  implies (2 ) : Theorem 1 (1 )  states that in the lattice Sub(d), 
h ^ f  ΙΦ g iff f n h c g .  But if Sub(d) is a BA, Lemma 2 (2 )  tells us that 
h ^ —f U g  iff / n f i c g .  Lemma 2 (1 )  then implies that f  |=> g = —f  U h.

(2) implies (3): obvious.
(3) implies (4): - T U T ^ T U i  as noted prior to Lemma 2.
(4) implies (1): We always have τ [ φ Τ — Λη. Use part (5) of the 

Theorem in §7.3. □

So we see that in a non-Boolean topos, |=> does not behave like a 
Boolean implication operator. What its behaviour is like in general will 
be revealed in the next chapter. Before proceeding to that however, we 
pause for the purpose of

7.6. Filling two gaps

1. Theorem 1 of §6.7 gave some tables for the behaviour of the 
truth-values T and ± under the arrows r\, w, and φ .  We are now in a 
position to show why these tables are correct.

The key lies in the lattice structure of Sub(l), where the unit is 1 x and 
the zero (V Thus we have 11 Π1 x —11? while 11Π 0X — 0X Π1 x — Οχ Π Οχ —
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Οχ. But χΛχ=Τ  and χ0ι= J_, so we have

T^_L= Aij^Aox = XiiHOx= Xox~ -L

Tr\T =  χΛιη χ Λι =  ΧΛιΠλ1 = Χλχ = T, 

and so on, yielding the table

ΓΛ T _L

T T JL
_L _L

Now using the Corollary to Theorem 1 of §7.5 we find τ φ  _L = χ 1ιΦ 
Xo1 = \:i,i ôa = Xo1= -L, -L Φ Τ = Χ0,|Φ11 = Χ11=Τ etc. leading to

Φ T _L

T T ±
JL T T

E x e r c is e . Derive the table

T

T T T
_L T _L

2. Theorem 5 of §5.4 asserted without proof that a classical (1 +1 =  Ω) 
topos in which every non-zero object is non-empty is in fact well-pointed. 
Now if % is classical, we now know it to be Boolean by §7.3. So let us take 
a pair of distinct parallel arrows / ,g : a =5 b in % and look for an element 
x : 1 —> cl that distinguishes them, i.e. has f ° x ? £g ox. We let h:c  a be 
the equaliser of f  and g, and —h : —c>^> a the complement of h in Sub(a) 
(remember g* is Boolean). Then — c is non-zero (in Set, — 0 as /  and g 
differ at some point of a). For, if — c =  0, then — h — 0a, so h — h U0a — 
h U —h — 1a, whence h is iso and since f ° h  = g°h  we would get /  = g.

Now if all non-zero ^-objects are non-empty there must then be an 
arrow y : 1 —> —c. Then let x be —h °y : 1 —> a. Then if f ° x  = g°x , as h
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equalises f  and g there would be some z : 1 —> c such that h ° z = x .  Hence 
the boundary of

would commute, giving an arrow l —>0. But this would make g* degener­
ate, contrary to the fact that c^O. We conclude f ° x ^ g ° x .

7.7. Extensionality revisited

In Chapter 5 we considered well-pointedness as a categorial formulation 
of the extensionality principle for functions. For sets themselves, exten­
sionality simply means that sets with the same elements are identical. It 
follows from this that identity of sets is characterised by the set inclusion 
relation: A = B  iff A  ^ B  and B c  A, since

This definition of the subset relation is readily lifted to the general 
category. If f : a  >-> d is a subobject of d, and x : 1 —>■ d an element of d, 
then as in §4.8 we say that x is an element of f, x e f ,  iff x factors 
through /.

A ^ B  iff every member of A  is a member of B.

1

i.e. for some fc : 1 —> a, x = f ° k .

T h e o r e m  1. In any topos in Sub(d) we have 

x e f H g  iff x e f  and x eg.

P r o o f . If x factors through /  Π g, then since /  Π g factors through both f  
and g, so too will x.
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Conversely, suppose that xef  and xeg, so that

x = f ° k  and x = g°h  for some elements k : 1 -> a and h : 1 —> b. But the 
inner square of the diagram is a pullback (§7.1) so the arrow t exists as 
shown making fC\g°t = f ° k  = x. This t factors x through /P i g ,  giving 
x e f  Π g. □

A  topos in which subobjects are determined by their elements will be 
called extensional. That is, Έ is extensional iff for any ^-object d, the 
condition

/ c  g iff for all x : 1 - »  d, x e f implies xeg 
holds in Sub(d).

T h e o r e m  2 . % is extensional iff well-pointed.

P r o o f .  Let f , g : a b be a pair of parallel ^-arrows, with f °  x = g ° x, all 
x : 1 —> a. Let h:c^-> a be the equaliser of f and g. Then if xe1a,

(which holds for any x : 1 —> a), we get x e h  by the universal property of 
h as equaliser. Extensionality of ^ then gives 1a ^ h, and so h°k  = 1a, for 
some k. Since f ° h  = g°h , this yields f = h  upon composition with k.

Conversely, suppose that g  is well-pointed. The “only if” part of the 
extensionality condition is straightforward and holds in any category. For 
the “ if”  part, suppose that every x e f  has xeg .  In order to establish /  ̂  g, 
it suffices to show / f i g - / ,  i.e. xfng = Xf- Since in general /H g c / ,  
Theorem 7.5.1 (3), gives

Φ °(Xfns,Xf) = trued.
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Then if x : 1 —> d is any element of d,

Φ  °<Xfng, Xf ) ° x  = trued °x
i.e.

XfngoX=>XfoX^ ime

(Exercise 3.8.3 and 4.2.3).
Now xfng ° x and xf °x are both truth-values 1 —>Ω, and ^ is bivalent 

(being well-pointed), so that each is true or false. But by Exercise 4.8.2, if 
Xf ° x  = true, then x e f ,  so by our hypothesis x e g ,  and hence by Theorem 
1, x e f  Pig, yielding xfn&°x = true. In view of the last equation derived 
above, and the table for => established in §7.6, xfng ° x and xf °x must be 
either both true, or both false.

What we have shown then is that the parallel arrows xfng, xf : d - ^ 0  
are not distinguished by any element x : 1 —> d of their domain. Since % is 
well-pointed, this implies xfng = xg as required. □

Theorem 2 points up the advance of topos theory over Lawvere’s 
earlier work [64] on a theory of the category of sets. That system included 
well-pointedness as an axiom, but the derivation of extensionality re­
quired an essential use of a version of the “ axiom of choice” (cf. Chapter 
12).

It is noteworthy that the analogues of Theorem 1 for the other set 
operations, viz

(a) x e  — f  iff not x e f  

and

(b) x e f U g  iff x e f  or x e g

fail in some topoi. Take for instance any % that is Boolean but not 
bivalent-the simplest example would be the topos Set2 of pairs of sets. 
Then % has a truth value x : 1 —> Ω distinct from T and _L. Then neither of

commute, so χ ύ Τ  and χ έ —T (since _L = —T always). Moreover as Έ is 
Boolean, Τ ϋ - Τ - 1 Ω, and so xeTU —T. Hence both (a) and (b) fail.

T h e o r e m  3 . % is bivalent iff (a) holds in every Sub(d).
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P r o o f .  The argument just given to show that (a) fails at least in Sub(il) if 
% is not bivalent works in any On the other hand if % is bivalent, then if 
y : 1 - »  Ω is a truth-value with y Φ T, then y = _L and so —i ° y = T. Using 
this, we find, for f : a ^ d  and x : 1 d,

x e —f  iff x_f °x =T  (Exercise 4.8.2)
iff —\°xf ° x = T  
iff xf °x 9̂  T
iff not xe f .  □

T h e o r e m  4 . satisfies (b) for all -̂objects d iff % satisfies the condition 
(c):

For any truth values y : 1 — > Ω and z : 1 —> ̂ 2, y \j z  —  true iff y =  true or 
z = true.

P r o o f . If (b) holds in Sub(l), then let and g:b'
that xf = y, xg = z. Then taking x : 1 - »  1, i.e. x = 1 l9

y y j z = T  iff (ywz)°x=T

1 be such

iff x:fUg °x = T
iff x e / U g
iff x e f  or xeg
iff Xf°x= T  or Yg°x= T
iff y = T or z = T.

Conversely if (c) holds, then in any Sub(d) we find that 

x e /U g  iff xf Us° x = T
iff uo(xf,x g) o ^ T
iff u°(xf °x, Yg°x) = T 
iff xf ° x =  T or xg ° x = T 
iff x e f  or xeg . □

A  topos satisfying (c), equivalently (b), will be called disjunctive. Obvi­
ously every bivalent topos is disjunctive. However, the converse is not 
true, and so (b) does not imply (a) in general. The category Set-* of set
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functions has three truth values, and so violates (a). However, it does 
satisfy (c), since the disjunction arrow yields the table

where x is the third element of Ω. This will perhaps be easier to see from 
the alternative description of Set^ to emerge from Chapters 9 and 10. 
Indeed, Exercise 4 of §10.6 will provide a method of constructing an 
infinity of disjunctive, non-bivalent, and non-Boolean topoi.

T h e o r e m  5 . If is Boolean and non-degenerate, then % is disjunctive iff % 
is bivalent.

P r o o f .  Since fU — f — 1d in a Boolean topos, for any x : 1 —> d we have 
x e f U —f. Thus if is disjunctive, from (b) we get x e f  or x e —f. 
However, we cannot have x e f  and x e —f, for then x e f  Π — /  — 0d, and so 
1 =  0. Thus exactly one of “ x e - f  and “ x e f ” obtains, making Έ 
bivalent. □

E x e r c is e . Suppose that % is well-pointed, and x e f  implies xeg .  Use 
Theorem 5.5.1 to show that the pullback h

kj T x _L

T T T T

x T x x
_L T x _L

α Π b b

h g

a > d
f

of g along f  is iso, making /Π  g — /. Hence give an alternative proof that 
any well-pointed topos is extensional.


