GREEN'S FUNCTION FOR 5D $S U(2)$ MIC-KEPLER PROBLEM

MIKHAIL PLETYUKHOV and EUGENY TOLKACHEV
Institute of Physics, National Academy of Sciences of Belarus
Prospect F. Scoryna, 70, 220072 Minsk, Belarus

Abstract

The Green's function for 5-dimensional counterpart of the MIC-Kepler problem (Kepler potential plus $S U(2)$ Yang-Mills instanton plus Zwanziger-like $1 / R^{2}$ centrifugal term) is constructed on the basis of the Green's function for the 8 -dimensional harmonic oscillator.

1. Introduction

Coulomb Green's functions in a n-dimensional Euclidean space have been constructed in [1]. The results for the cases $n=2,3,5$ can be deduced from the oscillator Green's functions in $N=2,4,8$ dimensions due to Levi-Civita, Kustaanheimo-Stiefel [2] and Hurwitz transformations [3], respectively.

Moreover [4], the $N=4$ oscillator representation allows to obtain Green's function for 3-dimensional MIC-Kepler problem [5] (Kepler-Coulomb potential plus $U(1)$ Dirac monopole plus Zwanziger's [6] $1 / R^{2}$ centrifugal term).

In this paper we construct the Green's function for 5-dimensional counterpart of the MIC-Kepler problem [7] (Kepler potential plus $S U(2)$ Yang-Mills instanton plus Zwanziger-like $1 / R^{2}$ centrifugal term). We avoid a tedious procedure of path integration and deduce our result from the well-known expression for the 8 -dimensional oscillator Green's function by exploiting the Hurwitz correspondence between these 5 - and 8 -dimensional problems [7-9].

2. Correspondence Between 5- and 8-Dimensional Problems

Under the certain known conditions [7-9] there appears the correspondence between the 8 -dimensional harmonic oscillator problem

$$
\begin{equation*}
H \psi^{(8)}=E \psi^{(8)}, \quad H=-\frac{1}{2} \Delta_{8}+\frac{\omega^{2}}{2}\left(|u|^{2}+|v|^{2}\right) \tag{1}
\end{equation*}
$$

and 5-dimensional $S U(2)$ MIC-Kepler problem

$$
\begin{equation*}
\mathcal{H}^{l} \phi^{l}=\mathcal{E}^{l} \phi^{l}, \quad \mathcal{H}^{l}=\frac{\pi_{\mu}^{2}}{2}+\frac{l(l+1)}{2 R^{2}}-\frac{a}{R} \tag{2}
\end{equation*}
$$

where the covariant derivative $\pi_{\mu}=-i \partial_{\mu}-A_{\mu}^{a} \Lambda_{a}^{2 l+1}$ contains $S U$ (2) YangMills instanton [10] as the gauge potential defined due to

$$
\begin{align*}
A_{\mu}^{a} d r_{\mu} & =\frac{1}{R\left(R+r_{0}\right)}\left(-r_{4} d r_{a}+r_{a} d r_{4}-\varepsilon_{a b c} r_{b} d r_{c}\right) \tag{3}\\
\mu & =0, \ldots, 4, \quad a, b, c=1,2,3
\end{align*}
$$

and $\Lambda_{a}^{2 l+1}$ are the generators of the $(2 l+1)$-dimensional representation of $S U(2)$.
These conditions are the following.

1. The coordinates of $5 D$ Euclidean space are expressed through that of $8 D$ one by means of the Hurwitz transformation

$$
\begin{align*}
r_{0} & =|u|^{2}-|v|^{2} \tag{4}\\
r & =2 u \bar{v}, \tag{5}
\end{align*}
$$

where $u=u_{0}+u_{a} e_{a}, v=v_{0}+v_{a} e_{a}, r=r_{4}+r_{a} e_{a}(a=1,2,3)$ are the real quaternions.
We recall that quaternion's algebra

$$
e_{a} e_{b}=-\delta_{a b}+\varepsilon_{a b c} e_{c}, \quad e_{0} e_{a}=e_{a} e_{0}=e_{a}
$$

has the involution - quaternionic conjugation - which is an antiautomorphism of the algebra: $\overline{(u \bar{v})}=v \bar{u}$. One can define the norm $|u|=\sqrt{u \bar{u}}$, $\operatorname{scalar}(u)_{S}=1 / 2(u+\bar{u})=u_{0}$ and vector $(u)_{V}=1 / 2(u-\bar{u})=u_{a} e_{a}=$ u parts.
The Hurwitz transformation possesses the property

$$
\begin{equation*}
R \equiv \sqrt{r_{0}^{2}+|r|^{2}}=|u|^{2}+|v|^{2} \tag{6}
\end{equation*}
$$

To make the change of coordinates (4)-(5) complete, we represent $u=$ $|u| g$ (and, therefore, $v=|v| \bar{r} g /|r|$) where g is unimodular quaternion. It is relevant to note that there is the isomorphism between the unimodular
quaternions and the group $S U(2)$. We can introduce parameters (following [11] we shall call them vector parameters)

$$
\begin{equation*}
g= \pm \frac{1+\mathbf{z}}{\sqrt{1+\mathbf{z}^{2}}}, \quad \mathbf{z}=\frac{\mathbf{u}}{u_{0}} \tag{7}
\end{equation*}
$$

and choose $z_{a}=u_{a} / u_{0}$ as an additional coordinates.
2. The eigenvalues of one problem are expressed through the parameters of another one and vice versa:

$$
\begin{equation*}
E=4 a, \quad \omega^{2}=-8 \mathcal{E}^{l} ; \tag{8}
\end{equation*}
$$

3. The equivariance condition

$$
\begin{equation*}
\mathbf{K}^{2} \psi^{(8)}=l(l+1) \psi^{(8)} \tag{9}
\end{equation*}
$$

is supposed to hold. It allows to establish the correspondence between the respective Hilbert spaces

$$
\begin{equation*}
\psi^{(8)}(u, v)=\operatorname{trace}\left(\Psi^{l}(\bar{g}) \phi^{l}\left(r_{\mu}\right)\right), \quad \Psi^{l}(\bar{g})=\left[\Psi^{l}(g)\right]^{\dagger} \tag{10}
\end{equation*}
$$

Here $\Psi^{l}(g)$ is the matrix of the $(2 l+1)$-dimensional representation of $S U(2)$ which components are the eigenfunctions of the mutually commuting operators $\mathbf{K}^{2}, K_{3}, T_{3}$:

$$
\begin{align*}
\mathbf{K}^{2} \Psi_{m m^{\prime}}^{l}=l(l+1) \Psi_{m m^{\prime}}^{l}, & -K_{3} \Psi_{m m^{\prime}}^{l}=m \Psi_{m m^{\prime}}^{l} \\
T_{3} \Psi_{m m^{\prime}}^{l}=m^{\prime} \Psi_{m m^{\prime}}^{l}, & -l \leq m, m^{\prime} \leq l \tag{11}
\end{align*}
$$

When written in the vector parametrization, the operators K_{a} and T_{a} read [11]

$$
\begin{align*}
K_{a} & =-\frac{\mathrm{i}}{2}\left(z_{a} z_{b} \frac{\partial}{\partial z_{b}}+\frac{\partial}{\partial z_{a}}+\varepsilon_{a b c} z_{b} \frac{\partial}{\partial z_{c}}\right), \tag{12}\\
T_{a} & =\frac{\mathrm{i}}{2}\left(z_{a} z_{b} \frac{\partial}{\partial z_{b}}+\frac{\partial}{\partial z_{a}}-\varepsilon_{a b c} z_{b} \frac{\partial}{\partial z_{c}}\right) . \tag{13}
\end{align*}
$$

The well-known formula for the $S U(2)$ matrix elements [12]

$$
\begin{align*}
\Psi_{m m^{\prime}}^{l}(g)= & \sqrt{\frac{(l-m)!\left(l-m^{\prime}\right)!}{(l+m)!\left(l+m^{\prime}\right)!}} \frac{\delta^{m+m^{\prime}}}{\beta^{m} \gamma^{m^{\prime}}} \\
& \times \sum_{j=\max \left(m, m^{\prime}\right)}^{l} \frac{(l+j)!(\beta \gamma)^{j}}{(l-j)!(j-m)!\left(j-m^{\prime}\right)!} \tag{14}
\end{align*}
$$

where $g=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ with $\{\alpha, \beta, \gamma, \delta \in \mathbb{C} ; \alpha \delta-\beta \gamma=1\}$ can be expressed in terms of vector parameters if we choose

$$
g= \pm \frac{1}{\sqrt{1+\mathrm{z}^{2}}}\left(\begin{array}{cc}
1-\mathrm{i} z_{3} & -\mathrm{i}\left(z_{1}-\mathrm{i} z_{2}\right) \tag{15}\\
-\mathrm{i}\left(z_{1}+\mathrm{i} z_{2}\right) & 1+\mathrm{i} z_{3}
\end{array}\right)= \pm \frac{1-\mathrm{i} \sigma_{a} z_{a}}{\sqrt{1+\mathrm{z}^{2}}}
$$

(compare with (7). Note that there is the representation for quaternion's basis $e_{a}=-\mathrm{i} \sigma_{a}$).
In the spherical coordinates

$$
\begin{align*}
z_{1} & =n_{1} \tan \chi=\tan \chi \sin \theta \cos \varphi \\
z_{2} & =n_{2} \tan \chi=\tan \chi \sin \theta \sin \varphi \tag{16}\\
z_{3} & =n_{3} \tan \chi=\tan \chi \cos \theta \\
0 \leq \chi & <\pi, \quad 0 \leq \theta<\pi, \quad 0 \leq \varphi<2 \pi
\end{align*}
$$

the group element g and its representation $\Psi^{l}(g)$ are parametrized

$$
\begin{align*}
g & =\exp (\mathbf{n} \chi)=\cos \chi-\mathrm{i} \sigma_{a} n_{a} \sin \chi \\
& =\left(\begin{array}{cc}
\cos \chi-\mathrm{i} \sin \chi \cos \theta & -\mathrm{i} \sin \chi \sin \theta \exp (-\mathrm{i} \varphi) \\
-\mathrm{i} \sin \chi \sin \theta \exp (\mathrm{i} \varphi) & \cos \chi+\mathrm{i} \sin \chi \cos \theta
\end{array}\right) \tag{17}
\end{align*}
$$

and

$$
\begin{align*}
\Psi_{m m^{\prime}}^{l}(g)= & \sqrt{\frac{(l-m)!\left(l-m^{\prime}\right)!}{(l+m)!\left(l+m^{\prime}\right)!}}\left(\frac{\cos \chi+\mathrm{i} \sin \chi \cos \theta}{-\mathrm{i} \sin \chi \sin \theta}\right)^{m+m^{\prime}} \mathrm{e}^{\mathrm{i}\left(m-m^{\prime}\right) \varphi} \\
& \times \sum_{j=\max \left(m, m^{\prime}\right)}^{l} \frac{(l+j)![-\mathrm{i} \sin \chi \sin \theta]^{2 j}}{(l-j)!(j-m)!\left(j-m^{\prime}\right)!} \tag{18}
\end{align*}
$$

respectively.
Representation $\Psi^{l}(g)$ coincides with that used in [7] up to the complex conjugation.

3. Green's Function

The equation defining the Green's function of the 8 -dimensional harmonic oscillator is

$$
\begin{equation*}
(H-E) G\left(u, v, u^{\prime}, v^{\prime} ; E\right)=-\mathrm{i} \delta^{(4)}\left(u-u^{\prime}\right) \delta^{(4)}\left(v-v^{\prime}\right) \tag{19}
\end{equation*}
$$

Its solution is well-known [3]

$$
\begin{align*}
& G=\int_{0}^{\infty} \mathrm{d} t \exp (\mathrm{i} 4 a t)\left(\frac{\omega}{2 \pi \sin \omega t}\right)^{4} \\
& \quad \times \exp [\frac{\mathrm{i} \omega}{2 \sin \omega t}\left(\left(|u|^{2}+|v|^{2}+\left|u^{\prime}\right|^{2}+\left|v^{\prime}\right|^{2}\right) \cos \omega t\right. \tag{20}\\
&\left.\left.\quad-2\left(u \bar{u}^{\prime}+v \bar{v}^{\prime}\right)_{S}\right)\right] .
\end{align*}
$$

Let us express it in $\left(r_{\mu}, \mathbf{z}\right)$-coordinates. In this section we now assume $u=|u| h$ and $u^{\prime}=|u| h^{\prime}$. The notation g we shall reserve for $g=h \bar{h}^{\prime}$.
First of all, note that

$$
\begin{align*}
2\left(u \bar{u}^{\prime}+v \bar{v}^{\prime}\right)_{S} & =2\left(|u|\left|u^{\prime}\right| h \bar{h}^{\prime}+|v|\left|v^{\prime}\right| \frac{\bar{r}}{|r|} h \bar{h}^{\prime} \frac{r^{\prime}}{\left|r^{\prime}\right|}\right)_{S} \\
& =2\left(\left(|u|\left|u^{\prime}\right|+|v|\left|v^{\prime}\right| \frac{r^{\prime} \bar{r}}{\left|r^{\prime}\right||r|}\right) h \bar{h}^{\prime}\right)_{S}=(\bar{F} g)_{S} \tag{21}
\end{align*}
$$

where

$$
\begin{align*}
F & =2\left(|u|\left|u^{\prime}\right|+|v|\left|v^{\prime}\right| \frac{r \bar{r}^{\prime}}{\left|r^{\prime}\right||r|}\right)=2|u|\left|u^{\prime}\right|\left(1+\frac{r \bar{r}^{\prime}}{4|u|^{2}\left|u^{\prime}\right|^{2}}\right) \\
& =\frac{R R^{\prime}+R r_{0}^{\prime}+r_{0} R^{\prime}+r_{\mu} r_{\mu}^{\prime}+\left(r \bar{r}^{\prime}\right)_{V}}{\sqrt{\left(R+r_{0}\right)\left(R^{\prime}+r_{0}^{\prime}\right)}} . \tag{22}
\end{align*}
$$

The norm of the quaternion F is

$$
\begin{align*}
|F| & =\sqrt{2\left(R R^{\prime}+r_{\mu} r_{\mu}^{\prime}\right)}=2 \sqrt{R R^{\prime}} \cos \frac{\Theta}{2} \tag{23}\\
\cos \Theta & =r_{\mu} r_{\mu}^{\prime} / R R^{\prime}
\end{align*}
$$

and then we can introduce the unimodular quaternion f which is

$$
\begin{equation*}
f \equiv \frac{F}{|F|}=\frac{R R^{\prime}+R r_{0}^{\prime}+r_{0} R^{\prime}+r_{\mu} r_{\mu}^{\prime}+\left(r \bar{r}^{\prime}\right)_{V}}{\sqrt{2\left(R R^{\prime}+r_{\mu} r_{\mu}^{\prime}\right)\left(R+r_{0}\right)\left(R^{\prime}+r_{0}^{\prime}\right)}} \tag{24}
\end{equation*}
$$

Then

$$
\begin{align*}
G\left(r_{\mu}, r_{\mu}^{\prime}, g ; E\right)= & \int_{0}^{\infty} \mathrm{d} t\left(\frac{\omega}{2 \pi \sin \omega t}\right)^{4} \exp \left[\mathrm{i} 4 a t+\frac{\mathrm{i} \omega}{2}\left(R+R^{\prime}\right) \cot \omega t\right] \\
& \times \exp \left(-\frac{\mathrm{i} \omega|F|}{2 \sin \omega t}(\bar{f} g)_{S}\right) \tag{25}
\end{align*}
$$

To obtain the expression for the 5-dimensional Green's function we make the following simple manipulations on Eq. (19):

$$
\begin{equation*}
4 R \Psi^{l}(\bar{h})\left(\mathcal{H}^{l}-\mathcal{E}^{l}\right) \Psi^{l}(h) G=-\mathrm{i} \delta^{(4)}\left(u-u^{\prime}\right) \delta^{(4)}\left(v-v^{\prime}\right) \tag{26}
\end{equation*}
$$

then

$$
\begin{equation*}
\left(\mathcal{H}^{l}-\mathcal{E}^{l}\right) \Psi^{l}\left(h \bar{h}^{\prime}\right) G=-\frac{1}{4 R} \mathrm{i} \delta^{(4)}\left(u-u^{\prime}\right) \delta^{(4)}\left(v-v^{\prime}\right) \Psi^{l}\left(h \bar{h}^{\prime}\right) \tag{27}
\end{equation*}
$$

On the analogy to the symbolic identity $\delta(x) f(x)=\delta(x) f(0)$ we can write

$$
\begin{equation*}
\delta^{(4)}\left(u-u^{\prime}\right) \Psi^{l}\left(\frac{u \bar{u}^{\prime}}{|u|\left|u^{\prime}\right|}\right)=\delta^{(4)}\left(u-u^{\prime}\right) \Psi^{l}(1)=\delta^{(4)}\left(u-u^{\prime}\right) \tag{28}
\end{equation*}
$$

Integrating (27) over the group we obtain

$$
\begin{equation*}
\left(\mathcal{H}^{l}-\mathcal{E}^{l}\right) \int \mathrm{d} \tau(g) \Psi^{l}(g) G=-\frac{1}{4 R} \mathrm{i} \int \mathrm{~d} \tau(g) \delta^{(4)}\left(u-u^{\prime}\right) \delta^{(4)}\left(v-v^{\prime}\right) \tag{29}
\end{equation*}
$$

Because the identity proven in [3]

$$
\begin{equation*}
\int \mathrm{d} \tau(g) \delta^{(4)}\left(u-u^{\prime}\right) \delta^{(4)}\left(v-v^{\prime}\right)=\frac{16 R}{\pi^{2}} \delta^{(5)}\left(r_{\mu}-r_{\mu}^{\prime}\right) \tag{30}
\end{equation*}
$$

we are led to the equation defining the Green's function for the 5-dimensional problem

$$
\begin{equation*}
\left(\mathcal{H}^{l}-\mathcal{E}^{l}\right) \mathcal{G}^{l}\left(r_{\mu}, r_{\mu}^{\prime} ; \mathcal{E}^{l}\right)=-\mathrm{i} \delta^{(5)}\left(r_{\mu}-r_{\mu}^{\prime}\right) \tag{31}
\end{equation*}
$$

It can be solved easily by evaluation of the integral

$$
\begin{equation*}
\mathcal{G}^{l}\left(r_{\mu}, r_{\mu}^{\prime} ; \mathcal{E}^{l}\right)=\frac{\pi^{2}}{4} \int \mathrm{~d} \tau(g) \Psi^{l}(g) G\left(r_{\mu}, r_{\mu}^{\prime}, g ; E\right) \tag{32}
\end{equation*}
$$

Due to the properties of the invariant measure $d \tau(g)$ the next expression is valid

$$
\begin{equation*}
\mathcal{G}^{l}\left(r_{\mu}, r_{\mu}^{\prime} ; \mathcal{E}^{l}\right)=\frac{\pi^{2}}{4} \Psi^{l}(f) \int \mathrm{d} \tau(g) \Psi^{l}(g) G\left(r_{\mu}, r_{\mu}^{\prime}, f g ; E\right) \tag{33}
\end{equation*}
$$

To achieve the final result we have to perform the integration over the group volume in the expression

$$
\begin{align*}
\mathcal{G}^{l}\left(r_{\mu}, r_{\mu}^{\prime} ; \mathcal{E}^{l}\right)= & \frac{\pi^{2}}{4} \Psi^{l}(f) \int_{0}^{\infty} \mathrm{d} t \int \mathrm{~d} \tau(g) \Psi^{l}(g) \exp \left(\mathrm{i} x(g)_{S}\right) \tag{34}\\
& \times\left(\frac{\omega}{2 \pi \sin \omega t}\right)^{4} \exp \left[\mathrm{i} 4 a t+\frac{\mathrm{i} \omega}{2}\left(R+R^{\prime}\right) \cot \omega t\right]
\end{align*}
$$

where it is introduced

$$
\begin{equation*}
x=-\frac{\omega|F|}{2 \sin \omega t} . \tag{35}
\end{equation*}
$$

Due to the identity

$$
\int \mathrm{d} \tau(g) \Psi^{l}(g) \exp \left(\mathrm{i} x(g)_{S}\right)=\mathrm{i}^{2 l} \frac{2}{x} J_{2 l+1}(x)
$$

where $J_{2 l+1}(x)$ is the Bessel function, we obtain

$$
\begin{align*}
\mathcal{G}^{l}\left(r_{\mu}, r_{\mu}^{\prime} ; \mathcal{E}^{l}\right)= & \Psi^{l}(f) \frac{(-\mathrm{i})^{2 l} \omega^{3}}{16 \pi^{2}|F|} \int_{0}^{\infty} \mathrm{d} t J_{2 l+1}\left(\frac{\omega|F|}{2 \sin \omega t}\right) \tag{36}\\
& \times \frac{\exp \left[\mathrm{i} 4 a t+\frac{\mathrm{i} \omega}{2}\left(R+R^{\prime}\right) \cot \omega t\right]}{\sin ^{3} \omega t}
\end{align*}
$$

To bring our result to the notations of [1] we introduce $q=-\mathrm{i} \omega t, \omega=$ $2 \mathrm{i} k, p^{\prime}=-\mathrm{i} a / k$ and finally have

$$
\begin{align*}
\mathcal{G}^{l}\left(r_{\mu}, r_{\mu}^{\prime} ; \mathcal{E}^{l}\right)= & \Psi^{l}(f) \frac{(-\mathrm{i})^{2 l} k^{2}}{8 \pi^{2} \sqrt{R R^{\prime}} \cos \frac{\Theta}{2}} \int_{0}^{\infty} \mathrm{d} q J_{2 l+1}\left(\frac{2 k \sqrt{R R^{\prime}} \cos \frac{\Theta}{2}}{\sinh q}\right) \\
& \times \frac{\exp \left[-2 p^{\prime} q+\mathrm{i} k\left(R+R^{\prime}\right) \operatorname{coth} q\right]}{\sinh ^{3} q} \tag{37}
\end{align*}
$$

For the case of the trivial constraints $l=0$ the expression

$$
\begin{align*}
\mathcal{G}^{0}\left(r_{\mu}, r_{\mu}^{\prime} ; \mathcal{E}^{0}\right)= & \frac{k^{2}}{8 \pi^{2} \sqrt{R R^{\prime}} \cos \frac{\Theta}{2}} \int_{0}^{\infty} \mathrm{d} q J_{1}\left(\frac{2 k\left(R R^{\prime}\right)^{1 / 2}}{\sinh q} \cos \frac{\Theta}{2}\right) \tag{38}\\
& \times \frac{\exp \left[-2 p^{\prime} q+\mathrm{i} k\left(R+R^{\prime}\right) \operatorname{coth} q\right]}{\sinh ^{3} q}
\end{align*}
$$

appears to be the same as the respective result in [1] for $n=5$.

Acknowledgement

One of the authors (M.P.) would like to thank Prof. I. Mladenov for his hospitality, useful discussions and valuable remarks.

References

[1] Chetouani L. and Hammann T. F., Coulomb Green's Function, in n-dimensional Euclidean Space, J. Math. Phys. 27 (1986) 2944-2948.
[2] Duru I. H. and Kleinert H., Solution of the Path Integral for the H-atom, Phys. Lett. B 84 (1979) 185-188.
[3] Polubarinov I., Quantum Mechanics and Hopf Fibre Bundles, Preprint JINR P2-83-872, Dubna, 1983.
[4] Le Van Hoang and Nguen Thu Giang, On the Green Function for a Hydrogen-like Atom in the Dirac Monopole Field Plus the Aharonov-Bohm Field, J. Phys. A 26 (1993) 3333-3338.
[5] Cisneros A. and McIntosh H., Degeneracy in the Presence of a Magnetic Monopole, J. Math. Phys. 10 (1970) 896-916.
[6] Zwanziger D., Exactly Soluble Nonrelativistic of Particles with Both Electric and Magnetic Charges, Phys. Rev. 176 (1968) 1480-1488.
[7] Pletyukhov M. and Tolkachev E., $8 D$ Oscillator and 5D Kepler Problem: the Case of Nontrivial Constraints, J. Math. Phys. 40 (1999) 93-100.
[8] Iwai T. and Sunako T., The Quantized SU(2) Kepler Problem and its Symmetry Group for Negative Energies, J. Geom. Phys. 20 (1996) 250-272.
[9] Mardoyan L., Sissakian A., and Ter-Antonyan V., Oscillator as a Hidden NonAbelian Monopole, Preprint JINR E2-96-24, Dubna, 1996; hep-th /9601093.
[10] Yang C. N., Generalization of Dirac's Monopole to $S U(2)$ Gauge Fields, J. Math. Phys. 19 (1978) 320-328.
[11] Fedorov F. I., Lorentz Group, Nauka, Moscow 1979.
[12] Vilenkin N. Ja., Special Functions and the Theory of Group Representations, American Mathematical Society, Providence, 1968.
[13] Abramovitz M. and Stegun I. A., Handbook on Mathematical Functions, Dover, New York 1965.

