
Chapter 5 

STRAIGHTNESS ON HYPERBOLIC PLANES 

 

[To son János:] For God’s sake, please give it [work on hyperbolic geometry] up. Fear it no less 

than the sensual passion, because it, too, may take up all your time and deprive you of your 

health, peace of mind and happiness in life. — Wolfgang Bolyai (1775–1856) [EM: Davis and 

Hersh], page 220 

We will now study some hyperbolic geometry. As with the cone and cylinder, we must use 

an intrinsic point of view on hyperbolic planes. This is especially true because, as we will 

see, there is no standard embedding of a complete hyperbolic plane into 3-space. 

 

A SHORT HISTORY OF HYPERBOLIC GEOMETRY 

Hyperbolic geometry initially grew out of the Building Structures Strand through the work 

of János Bolyai (1802–1860, Hungarian), and N. I. Lobachevsky (1792–1856, Russian). 

Hyperbolic geometry is special from a formal axiomatic point of view because it satisfies 

all the postulates (axioms) of Euclidean geometry except for the parallel postulate. In 

hyperbolic geometry straight lines can converge toward each other without intersecting 

(violating Euclid’s Fifth Postulate), and there is more than one straight line through a point 

that does not intersect a given line (violating the usual high school parallel postulate, which 

states that through any point P not on a given line l there is one and only one line through 

P not intersecting l). See Figure 5.1. 
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Figure 5.1 Two geodesics through a point not intersecting a given geodesic 

The reader can explore more details of the axiomatic nature of hyperbolic geometry in 

Chapter 10. Note that the 450° cone also violates the two parallel postulates mentioned 

above. Thus the 450° cone has some of the properties of the hyperbolic plane.  

Hyperbolic geometry has turned out to be useful in various branches of higher 

mathematics. For example, in the classical theory of modular functions, algebraic 

geometry, differential geometry, complex variables, and dynamic systems. Hyperbolic 

geometry is used in biology and medicine, cosmology, physics, quantum computing, 

chemistry, architecture. The geometry of binocular visual space appears experimentally to 

be best represented by hyperbolic geometry (see [HY: Zage]). In addition, hyperbolic 

geometry was considered as one of the possible geometries for our three-dimensional 

physical universe — we will explore this connection more in Chapters 18 and 24. 

In many books hyperbolic geometry and non-Euclidean geometry are treated as 

being synonymous, but as we have seen there are other non-Euclidean geometries, 

especially spherical geometry. It is also not accurate to say (as many books do) that non-

Euclidean geometry was discovered about 200 years ago. As we discussed in Chapter 2, 

spherical geometry (which is clearly not Euclidean) was in existence and studied (within 

the Navigation/Stargazing Strand) by at least the ancient Babylonians, Indians, and Greeks 

more than 2000 years ago. For more detailed discussion of the history and applications of 

hyperbolic geometry see [Taimina, Crocheting Adventures with the Hyperbolic Planes, 2nd 

ed., 2018; ch.5 and 9] 

Most texts and popular books introduce hyperbolic geometry either axiomatically 

or via “models” of the hyperbolic geometry in the Euclidean plane. These models are like 

our familiar map projections of the surface of the earth. Like these maps of the earth’s 

surface, intrinsic straight lines on the hyperbolic plane are not, in general, straight in the 

model (map) and the model, in general, distorts distances and angles. We will return to the 

subject of projection and models in Chapter 17. These “models” grew out of the Art/Pattern 

Strand. 

 

In this chapter we will introduce the geometry of the hyperbolic plane as the intrinsic 

geometry of a particular surface in 3-space, in much the same way that we introduced 

spherical geometry by looking at the intrinsic geometry of the sphere in 3-space. This is 
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more in the flavor of the Navigation/Stargazing Strand. Such a surface is called an 

isometric embedding of the hyperbolic plane into 3-space. We will construct such a surface 

in the next section. Nevertheless, many texts and popular books say that David Hilbert 

(1862–1943, German) proved in 1901 that it is not possible to have an isometric embedding 

of the hyperbolic plane onto a closed subset of Euclidean 3-space. These authors miss what 

Hilbert actually proved. In fact, Hilbert [HY: Hilbert] proved that there is no real analytic 

isometry (that is, no isometry defined by real-valued functions that have convergent power 

series). In 1902 Holmgren improved Hilbert’s theorem showing that given a smooth 

embedding of a piece of the hyperbolic plane in three-dimensional space, the embedding 

cannot be extended isometrically and smoothly beyond the finite distance d. Unfortunately, 

d depends on the local embedding, and there is not a uniform bound for the size of the 

“largest” piece of the hyperbolic plane that can be isometrically embedded in 3-space. 

Hilbert’s theorem was also improved by Amsler in 1955, who showed that every 

sufficiently smooth immersion of the hyperbolic plane into 3-space has a singular 

“edge,”i.e., a one-dimensional submanifold beyond which the embedding is no longer 

smooth. In 1964, N. V. Efimov [HY: Efimov] extended Hilbert’s result by proving that 

there is no isometric embedding defined by functions whose first and second derivatives 

are continuous. Without giving an explicit construction, N. Kuiper [HY: Kuiper] showed 

in 1955 that there is a differentiable isometric embedding onto a closed subset of 3-space. 

 

 
 

The first hyperbolic plane model made by E. Beltrami in 1868 and David’s model made more than 100 years later 

 

The construction used here was shown to David by William Thurston (b.1946-2012, 

American) in 1978; and it is not defined by equations at all, because it has no definite 

embedding in Euclidean space. The idea for this construction is also included in [DG: 

Thurston], pages 49 and 50, and is discussed in [DG: Henderson], page 31. In Problem 5.3 

we will show that our isometric model is locally isometric to a certain smooth surface of 

revolution called the pseudosphere, which is well known to locally have hyperbolic 

geometry. Later, in Chapter 17, we will explore the various (non-isometric) models of the 

hyperbolic plane (these models are the way that hyperbolic geometry is presented in most 

texts) and prove that these models and the isometric constructions here produce the same 

geometry. 
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DESCRIPTION OF ANNULAR HYPERBOLIC PLANES 

In Appendix A we describe the details for five different isometric constructions of 

hyperbolic planes (or approximations to hyperbolic planes) as surfaces in 3-space. It is very 

important that you actually perform at least one of these constructions. The act of 

constructing the surface will give you a feel for hyperbolic planes that is difficult to get 

any other way. We will focus our discussions in the text on the description of the hyperbolic 

plane from annuli that was proposed by W. Thurston. 

Figure 5.2 Annular strips for making an annular hyperbolic plane 

A paper model of the hyperbolic plane may be constructed as follows: Cut out many 

identical annular (“annulus” is the region between two concentric circles) strips as in Figure 

5.2.(See template in Appendix). Attach the strips together by taping the inner circle of one 

to the outer circle of the other. It is crucial that all the annular strips have the same inner 

radius and the same outer radius, but the lengths of the annular strips do not matter. You 

can also cut an annular strip shorter or extend an annular strip by taping two strips together 

along their straight ends. The resulting surface is of course only an approximation of the 

desired surface. The actual hyperbolic plane is obtained by letting  → 0 while holding the 

radius  fixed. Note that since the surface is constructed (as  → 0) the same everywhere it 

is homogeneous (that is, intrinsically and geometrically, every point has a neighborhood 

that is isometric to a neighborhood of any other point). We will call the results of this 

construction the annular hyperbolic plane. We strongly suggest that the reader take the 

time to cut out carefully several such annuli and tape them together as indicated. 

Daina discovered a process for crocheting the annular hyperbolic plane as described in 

Appendix A. The result is pictured in Figures 5.1 and 5.3 and other photos in this book. 
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Figure 5.3 Daina’s first crocheted annular hyperbolic plane (1997) 

There is also a polyhedral construction of the hyperbolic plane that is not directly related 

to the annular constructions but is easier for students (and teachers!) to construct. This 

construction (invented by David’s son Keith Henderson) is called the hyperbolic soccer 

ball. See Appendix for the details of the constructions (and templates) and Figure 5.4 for a 

picture. It also has a nice appearance if you make the heptagons a different color from the 

hexagons. As with any polyhedral construction we cannot get closer and closer 

approximations to the hyperbolic plane. There is also no apparent way to see the annuli. 
 

 

Figure 5.4 Keith Henderson with his hyperbolic soccer ball 

HYPERBOLIC PLANES OF DIFFERENT RADII (CURVATURE) 

Note that the construction of a hyperbolic plane is dependent on  (the radius of the annuli), 

which we will call the radius of the hyperbolic plane. As in the case of spheres, we get 

different hyperbolic planes depending on the value of . In Figures 5.5–5.7 there are 

crocheted hyperbolic planes with radii approximately 4 cm, 8 cm, and 16 cm. The pictures 

were all taken from approximately the same perspective and in each picture, there is a 

centimeter rule to indicate the scale. 
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Figures 5.5-5.7 Hyperbolic planes with   4 cm,   8 cm and   16 cm 

Note that as  increases, a hyperbolic plane becomes flatter and flatter (has less and less 

curvature). Both spheres and hyperbolic planes, as  goes to infinity, become 

indistinguishable from the ordinary flat (Euclidean) plane. Thus, the plane can be called a 

sphere (or hyperbolic plane) with infinite radius. In Chapter 7, we will define the Gaussian 

Curvature and show that it is equal to 1/ 2 for a sphere and −1/ 2 for a hyperbolic plane. 
 

PROBLEM 5.1  WHAT IS STRAIGHT IN A HYPERBOLIC PLANE? 

a. On a hyperbolic plane, consider the curves that run radially across each annular 

strip. Argue that these curves are intrinsically straight. Also, show that any two of 

them are asymptotic, in the sense that they converge toward each other but do not 

intersect. 

 

Look for the local intrinsic symmetries of each annular strip and then global symmetries in 

the whole hyperbolic plane. Make sure you give a convincing argument why the symmetry 

holds in the limit as  → 0. 
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We shall say that two geodesics that converge in this way are asymptotic geodesics. 

Note that there are no geodesics (straight lines) on the plane that are asymptotic. 
 

b. Find other geodesics on your physical hyperbolic surface. Use the properties of 

straightness (such as symmetries) you talked about in Problems 1.1, 2.1, and 4.1. 

 

Try holding two points between the index fingers and thumbs on your two hands. Now pull 

gently — a geodesic segment with its reflection symmetry should appear between the two 

points. If your surface is durable enough, try folding the surface along a geodesic. Also, 

you may use a ribbon to test for geodesics. 

 

c. What properties do you notice for geodesics on a hyperbolic plane? How are they 

the same as geodesics on the plane or spheres, and how are they different from 

geodesics on the plane and spheres? 
 

Explore properties of geodesics involving intersecting, uniqueness, and symmetries. 

Convince yourself as much as possible using your model — full proofs for some of the 

properties will have to wait until Chapter 17. 

 

PROBLEM 5.2   COORDINATE SYSTEM ON ANNULAR    

    HYPERBOLIC PLANE 

 

First, we will define coordinates on the annular hyperbolic plane that will help us to study 

it in Chapter 17. Let    be the fixed inner radius of the annuli and let H  be the 

approximation of the annular hyperbolic plane constructed from annuli of radius  and 

thickness . On H pick the inner curve of any annulus, calling it the base curve; and on this 

curve pick any point as the origin O and pick a positive direction on this curve. We can 

now construct an (intrinsic) coordinate system x : R2 → H  by defining x (0, 0) = O,  

x  (w, s) to be the point on the base curve at a distance w from O, and x  (w, s) to be the 

point at a distance s from x (w, 0) along the radial geodesic through x (w, 0), where the 

positive direction is chosen to be in the direction from outer to inner curve of each annulus. 

Such coordinates are often called geodesic rectangular coordinates. See Figure 5.8. 
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Figure 5.8 Geodesic rectangular coordinates on annular hyperbolic plane 

a. Show that the coordinate map x is one-to-one and onto from the whole of R2 onto 

the whole of the annular hyperbolic plane. What maps to the annular strips, and 

what maps to the radial geodesics? 

b. Let  and  be two of the radial geodesics described in part a. If the distance 

between  and  along the base curve is w, then show that the distance between 

them at a distance s = n from the base curve is, on the paper hyperbolic model, 

𝑤 (
𝜌

𝜌 + 𝛿
)

𝑛

= 𝑤 (
𝜌

𝜌 + 𝛿
)

𝑠/𝛿

 

Now take the limit as  → 0 to show that the distance between  and  on the 

 annular hyperbolic plane is w exp(−s/).  

 

Thus, the coordinate chart x preserves (does not distort) distances along the (vertical) 

second coordinate curves but at x(a, b) the distances along the first coordinate curve are 

distorted by the factor of exp(−b/) when compared to the distances in R2. 
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PROBLEM 5.3 THE PSEUDOSPHERE IS HYPERBOLIC 

Show that locally the annular hyperbolic plane is isometric to portions of a (smooth) 

surface defined by revolving the graph of a continuously differentiable function of z 

about the z-axis. This is the surface usually called the pseudosphere. 

 

OUTLINE OF PROOF 

1. Argue that each point on the annular hyperbolic plane is like any other point. (Think 

of the annular construction. About a point consider a neighborhood that keeps its 

size as the width of the annular strips, , shrinks to zero.) 

2. Start with one of the annular strips and complete it to a full annulus in a plane. Then 

construct a surface of revolution by attaching to the inside edge of this annulus other 

annular strips as described in the construction of the annular hyperbolic plane. (See 

Figure 5.9.) Note that the second and subsequent annuli form truncated cones. 

Finally, imagine the width of the annular strips, , shrinking to zero. 

3. Derive a differential equation representing the coordinates of a point on the surface 

using the geometry inherent in Figure 5.9. If f(r) is the height (z-coordinate) of the 

surface at a distance of r from the z-axis, then the differential equation should be 

(remember that  is a constant) 
𝑑𝑟

𝑑𝑧
=

−𝑟

√𝜌2−𝑟2
 .   𝑊hy? 

   

 

Figure 5.9 Hyperbolic surface of revolution — pseudosphere 

4. Solve (using tables or computer algebra systems) the differential equation for z = 

f(r) as a function of r. Note that you are not getting r as a function of z. This curve 

is usually called the tractrix. 

5. Then argue (using a theorem from first-semester calculus) that r is a continuously 

differentiable function of z. 

 



Chapter 5 Straightness on Hyperbolic Planes     74 
 

  
 

Beltrami model wrapped as pseudosphere 

 

 

 
 

Pseudosphere models (made by Edmund Harriss) 

 

You can make a pseudosphere from annuli as you can see in Figure 5.9. Make your own 

model, it does not have to be perfect. But it will give you a tactile sense of the surface 

anyway. We can also crochet a pseudosphere by starting with 5 or 6 chain stitches and 

continuing in a spiral fashion, increasing as when crocheting the hyperbolic plane. See 

Figure 5.10. Note that, when you crochet beyond the annular strip that lays flat and forms 

a complete annulus, the surface forms ruffles and is no longer a surface of revolution (nor 

smooth). 

 

Figure 5.10 Crocheted pseudospheres with ruffles 

The term “pseudosphere” seems to have originated with Hermann von Helmholtz (1821–

1894, German), who was contrasting spherical space with what he called pseudospherical 

space. However, Helmholtz did not actually find a surface with this geometry. In 1866 

Eugenio Beltrami (1835–1900, Italian) constructed the surface which he called 

“pseudospherical” and showed that its geometry is locally the same as (locally isometric 
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to) the hyperbolic geometry constructed by Lobachevsky. Beltrami in his construction also 

used annuli. Unfortunately, all the known (until 1960) surfaces with constant negative 

curvature could not be extended indefinitely. Beltrami partially overcame this problem by 

considering a surface wrapped infinitely many times around a pseudospherical surface. 

Beltrami’s model of this wrapping is the first known physical model of the hyperbolic 

plane. For more historical discussion, see ([HI: Katz], pages 781–783.) Mathematicians 

searched further for a surface (in those days “surface” meant “real analytic surface”) that 

would be the whole of the hyperbolic plane (as opposed to only being locally isometric to 

it). This search was halted when Hilbert proved that such a surface was impossible (in his 

theorem that we discussed above at the end of the first section in this chapter, A Short 

History of Hyperbolic Geometry). 

 

INTRINSIC/EXTRINSIC, LOCAL/GLOBAL 

On the plane or on spheres, rotations and reflections are both intrinsic in the sense that 

they are experienced by a 2-dimensional bug as rotations and reflections. These intrinsic 

rotations and reflections are also extrinsic in the sense that they can also be viewed as 

isometries of 3-space. (For example, the reflection of a sphere through a great circle can 

also be viewed as a reflection of 3-space through the plane containing the great circle.) 

Thus, rotations and reflections are particularly easy to see on planes and spheres. In 

addition, on the plane and sphere all rotations and reflections are global in the sense that 

they take the whole plane to itself or whole sphere to itself. (For example, any intrinsic 

rotation about a point on a sphere is always a rotation of the whole sphere.) On cylinders 

and cones, intrinsic rotations and reflections exist locally because cones and cylinders are 

locally isometric with the plane. However, some intrinsic rotations on cones and cylinders 

are extrinsic and global: for example, rotations about the cone point on a circular cone with 

cone angle <360°, or half turns about any point on a cylinder. Rotations about the cone 

point on (>360°)-cones are global but not extrinsic. Rigid-motion-along- geodesic 

symmetries are extrinsic and global on cylinders but are neither on any cone. (Do you see 

why?) Reflections, in general, are neither extrinsic nor global (Can you see the exceptions 

on cones and cylinders?). 

 

PROBLEM 5.4   ROTATIONS AND REFLECTIONS ON SURFACES 

We can see from our physical hyperbolic planes that geodesics exist joining every pair of 

points and that these geodesics each have reflection- in-themselves symmetry. (If you did 

not see this in Problem 5.1c, then go back and explore some more with your physical 

model. In Chapter 17 we will prove rigorously that this is in fact true by using the upper 

half-plane model.) In Chapter 17 we will show that these reflections are global reflections 

of the whole hyperbolic space. Note that there do not exist extrinsic reflections of the 

hyperbolic plane (embedded in Euclidean 3-space). Given all this, it is not clear that there 

exist intrinsic rotations, nor is it necessarily clear what exactly intrinsic rotations are. 
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a. Let l and m be two geodesics on the hyperbolic plane that inter- sect at the point 

P. Look at the composition of the reflection Rl through l with the reflection Rm 

through m. Show that this composition RmRl deserves to be called a rotation 

about P. What is the angle of the rotation? 

 

Figure 5.11 Composition of two reflections is a rotation 

Let A be a point on m and B be a point on l, and let Q be an arbitrary point (not on m or l). 

Investigate where A, B, and Q are sent by Rl and then by RmRl. See Figure 5.11. Why are 

all points (except P) rotated through the same angle and in the same direction? 

We will study symmetries and isometries in more detail in Chapter 11. In that 

chapter we will show that every isometry (on the plane, spheres, and hyperbolic planes) is 

a composition of one, two, or three reflections. 

 

 b.  Show that Problem 3.2 (VAT) holds on cylinders, cones (including the cone  

 points), and hyperbolic planes. 

 

If you check your proof(s) of Problem 3.2 and modify them (if necessary) to involve only 

symmetries, then you will be able to see that they hold also on the other surfaces. 

 

c. Define “rotation of a figure about P through an angle  ” without mentioning 

reflections in your definition. What does a rotation do to a point not at P? 

 

d. One of high school textbooks defines a rotation as the composition of two 

reflections. Is this a good definition? Why or why not? 
 

Exploring Curvature 

 
[At this point David had made a note that there should be a new chapter on exploring curvature to have more 

experience with intrinsic and extrinsic properties of surfaces. He was thinking of explorations we described in 

Crocheting Adventures with the Hyperbolic Planes. I am just inserting that part of the book here.] 

 

Curvature is a mathematical notion widely used in differential geometry. What does 

it mean in simple words?  If you look, for example, on the surface of your desk or on the 

floor in your room, you will notice that it is flat—there is no curvature, or we say that the 

curvature is zero. If you look at an orange or an egg, you will see that it is curved 

“outward”—we say that the curvature is positive. The egg is curved more at its tips and 
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curved less in between and thus does not have constant positive curvature, but many 

oranges have almost constant positive curvature.  

 
Two surfaces with positive curvature: on an egg it is varying, but on an orange it is (almost) constant 

 

 Now look at the surface of the pear. Most of its surface has positive curvature like 

an orange or an egg, but there are some points were the curvature is different. How can we 

describe this difference? 

 

Not all points on the pear have positive curvature 

 In the early 19th century Carl Friedrich Gauss (1777–1855), explored the idea that 

surfaces can be distinguished by their curvature at different points, which can be positive, 

negative, or zero. In the 1820s Gauss was a professional surveyor. This work inspired him 

to study the intrinsic geometry of surfaces. His concern was how one can determine the 

curvature of an arbitrary surface without knowing anything about how this surface might 

be embedded in space—in other words, asking whether and how one could determine the 

curvature of a surface through measurements made only along this surface, without 

knowing anything about the shape of this surface.  

 

An ant on a curve can go in only two directions, but  
on a surface there are more choices 

 Consider an ant crawling on a big sphere, where the ant cannot see that it is on a 

sphere; how could this ant distinguish whether it is on a flat surface or on a curved surface? 

If the ant crawls on a straight line or on any other one-dimensional curve, it can move only 
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in two directions: forward or backward. If the ant is on a two-dimensional surface, then it 

can choose to go backward or forward but also right or left. Still, the ant cannot see the 

surface it is on from the outside; it can explore the surface only intrinsically, not leaving 

this surface. Another great mathematician, Leonard Euler (1707–1783), had already 

introduced a notion of surface curvature, which was used in eighteenth-century calculus. 

But to use Euler’s method for surfaces, you had to know how the surface is embedded in 

space. This means that you had to be able to see the surface from another dimension. Gauss 

was able to prove that it is possible to find a way to determine the curvature of a surface 

that depends only on intrinsic properties of the surface. Consider the same ant on a sphere. 

Suppose that she plants a post at point P, ties one end of a length of rope to the pole and 

ties the other end to herself. She walks away from the pole until the rope is taunt and marks 

that spot. Keeping the rope taunt, she walks around in a circle until she returns to that mark, 

measuring how far she walks.  If the ant is on a flat surface than the distance of her walk, 

d, should equal the circumference of a circle with radius equal to the length of her rope, r. 

If d < 2πr, then the ant is on a sphere. 

 If a surface has constant positive curvature, it will become closed, and it is called a 

sphere. Gauss used the radius of the sphere to determine the magnitude of the curvature. 

Every point on a sphere is the intersection of two great circles with the radius R. As defined 

earlier, the curvature of each of those circles is 1/R, so Gauss measured the curvature of a 

sphere as the product of the curvatures of these two great circles. Therefore, he defined the 

curvature of a sphere with radius R as the quantity 1/R2; so, as the radius, R, gets larger, the 

curvature, 1/R2, gets smaller.  

  

 Let us now look at a sketch of a three-dimensional landscape. There are hills, a pass, 

and the bowl-shaped bottom of the bay. We can draw two intersecting curves to define a 

point on the top of a hill and a point in the bay. Then, surface curvature at each of these 

points will be the product of curvatures of the two intersecting curves. Therefore, in both 

cases—on the top of a hill and in the bottom of the bay—we have positive curvature, since 

positive times positive equals positive and negative times negative equals positive. But at 

the pass, where there is one positive curve and one negative curve, the surface curvature 

will be negative. In general, we will define the curvature of the surface at a point in terms 

of the one-dimensional curvatures of two curves on the surface that intersect at that point. 

 

 

Positive curvature is on the top of a hill (as a product of two positive curvatures) and in the bay (as a product of two 
negative curvatures), but on a pass the curvature is negative (as a product of positive and negative curvatures). 
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Cut from paper some regular hexagons. Try to put them next to each other. You can see 

that around each hexagon you can place six other hexagons, and then at each vertex there 

will be three hexagons and they will lay flat on the table. If you continue adding more 

hexagons, it looks like the surface of a honeycomb. 

 

Regular hexagons tile the plane without gaps or overlaps. 

 

Design of this sidewalk also uses a property that regular hexagons tile a plane 

 

A. Some of the hexagons are removed, so that at each vertex there are only two hexagons  

 

B. Gluing the hexagons so that there is a pentagonal hole surrounded by five hexagons causes the surface to bend 
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Glue five hexagons together (like in picture A). Notice that this surface is no longer flat. If 

you continue doing (see the figures A, B, and C) this then you will get a polyhedron that is 

sometimes called a truncated icosahedron or an approximation of a soccer ball (in most of 

the world this is called a football). 

 

Five hexagons around a pentagon make a soccer ball (football) with approximately constant positive curvature 

Finally, see what happens if instead you surround with hexagons a heptagon, a regular 

seven-sided polygon, with the same side lengths as the hexagons. Notice that this surface 

also is not flat. What are the differences between these two non-flat surfaces? 

 

Seven hexagons around a heptagon approximates a hyperbolic plane (constant negative curvature) 

 

Notice that the surface with constant positive curvature will close in on its self, but the 

surface with negative constant curvature will extend out indefinitely. Another way to think 

about this is looking at what happens when you “flatten” a surface so that it lies in the 

plane. For constant positive curvature, the surface covers less area than the plane. For 

constant negative curvature, the surface covers more area than the plane.  

 

Flattening positive and negative curvature  
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Why are we talking about surfaces with constant curvature? In order to talk about a 

surface having a geometry (spherical, Euclidean, or hyperbolic), we need it to be “the 

same” everywhere. There are other surfaces with both positive and negative curvatures that 

are not constant (for example, the surface of a banana or a pear).  

On the surface of a banana, there are both positive and negative curvatures 

James Casey in his book Experiencing Curvature (Vieweg, 1996, p.190) suggests a 

following exploration of the intrinsic geometry of a sphere: 

Take a thin-walled plastic ball and cut it into two unequal pieces. Draw some identical 

figures on both pieces (intersecting lines; triangles). Bend one of the pieces and compare 

the figures on it to those on the other piece. Measure some intrinsic properties and discuss 

your findings. 

This question was asked on Twitter by James Tanton: Have you an intuitive sense 

of the curvature of the Earth? Draw a 1-mile segment tangent to surface. What's your guess 

as to the distance back to surface at endpoint? What is the actual value? (Assume perfect 

sphere, R=3963 miles.) 

Curvature is important not only in geometry. It affects, for example, chemical 

properties of carbon. It is already known how to mold it into precious diamonds or as the 

graphite in pencils and in graphene – the strongest material on Earth. In 2018 a new form 

of carbon has been created “schwarzites”. Schwarzites have long been predicted by 

chemists, who suggested they would have unique properties that make them useful in 

batteries and as catalysts. Fullerenes are fully composed from carbon molecules and are 

positively curved, graphene has no curvature, but schwarzites are negatively curved. 
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Einstein discovered that gravitation is the curvature of space-time, which can curl 

in on itself, pinching off into black holes. In 2013 a group of physicists from Austria 

proposed the existence of a new force called “blackbody force”. In 2017 study a team from 

Brazil theoretically demonstrated that the blackbody force depends not only on the 

geometry of the bodies themselves, but also on both the surrounding spacetime geometry 

and topology. In some cases, the local curvature significantly increases the strength of the 

blackbody force. They studied spherical and cylindrical blackbodies. 

 

 

 
 

4x100m shows how areas change in hyperbolic plane. Each of the four colors is 
crocheted with 100m of the yarn. White hyperbolic plane is crocheted adding a stitch in 

everyone (2:1 ratio). It shows that hyperbolic plane can be enclosed with a sphere whose 

radius depends on the radius of the hyperbolic plane (your challenge – find this 
relationship!) 




