
Chapter 4 

STRAIGHTNESS ON CYLINDERS AND CONES 

 

 

If a cut were made through a cone parallel to its base, how should we conceive of the two 

opposing surfaces which the cut has produced — as equal or as unequal? If they are unequal, 

that would imply that a cone is composed of many breaks and protrusions like steps. On the 

other hand, if they are equal, that would imply that two adjacent intersection planes are equal, 

which would mean that the cone, being made up of equal rather than unequal circles, must have 

the same appearance as a cylinder; which is utterly absurd. — Democritus of Abdera (~460 – 

~380 B.C.) 

 

This quote shows that cylinders and cones were the subject of mathematical inquiry 

before Euclid (~365 – ~300 B.C.). In this chapter we investigate straightness on cones and 

cylinders. You should be comfortable with straightness as a local intrinsic notion — this 

is the bug’s view.  This notion of straightness is also the basis for the notion of geodesics 

in differential geometry. Chapters 4 and 5 can be covered in either order, but we think that 

the experience with cylinders and cones in Problem 4.1 will help the reader to understand 

the hyperbolic plane in Problem 5.1. If the reader is comfortable with straightness as a local 

intrinsic notion, then it is also possible to skip Chapter 4 if Chapters 18 and 24 on geometric 

manifolds are not going to be covered. However, we suggest that you read the sections at 

the end of this chapter — Is “Shortest” Always “Straight”? and Relations to Differential 

Geometry — at least enough to find out what Euclid’s Fourth Postulate has to do with 

cones and cylinders. 
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When looking at great circles on the surface of a sphere, we were able (except in the 

case of central symmetry) to see all the symmetries of straight lines from global extrinsic 

points of view. For example, a great circle extrinsically divides a sphere into two 

hemispheres that are mirror images of each other. Thus, on a sphere, it is a natural tendency 

to use the more familiar and comfortable extrinsic lens instead of taking the bug’s local 

and intrinsic point of view. However, on a cone and cylinder you must use the local, 

intrinsic point of view because there is no extrinsic view that will work except in special 

cases. 

 

PROBLEM 4.1 STRAIGHTNESS ON CYLINDERS AND CONES 

a. What lines are straight with respect to the surface of a cylinder or a cone?          

Why? Why not? 

b. Examine: 

 Can geodesics intersect themselves on cylinders and cones? 

 Can there be more than one geodesic joining two points on cylinders 

and cones? 

 What happens on cones with varying cone angles, including cone angles 

greater than 360°? These are discussed starting in the next section. 

 

SUGGESTIONS 

 Problem 4.1 is similar to Problem 2.1, but this time the surfaces are cylinders and 

cones. Make paper models but consider the cone or cylinder as continuing indefinitely with 

no top or bottom (except, of course, at the cone point). Again, imagine yourself as a bug 

whose whole universe is a cone or cylinder. As the bug crawls around on one of these 

surfaces, what will the bug experience as straight? As before, paths that are straight with 

respect to a surface are often called the “geodesics” for the surface. 

As you begin to explore these questions, it is likely that many other related 

geometric ideas will arise. Do not let seemingly irrelevant excess geometric baggage worry 

you. Often, you will find yourself getting lost in a tangential idea, and that’s 

understandable. Ultimately, however, the exploration of related ideas will give you a richer 

understanding of the scope and depth of the problem. In order to work through possible 

confusion on this problem, try some of the following suggestions others have found helpful. 

Each suggestion involves constructing or using models of cones and cylinders. 

 

 You may find it helpful to explore cylinders first before beginning to explore 

cones. This problem has many aspects but focusing at first on the cylinder will 

simplify some things. 

 If we make a cone or cylinder by rolling up a sheet of paper, will “straight” 

stay the same for the bug when we unroll it? Conversely, if we have a straight 
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line drawn on a sheet of paper and roll it up, will it continue to be experienced 

as straight for the bug crawling on the paper? We are assuming here that the 

paper will not stretch, and its thickness is negligible. 

 Lay a stiff ribbon or straight strip of paper on a cylinder or cone. Convince 

yourself that it will follow a straight line with respect to the surface. Also, 

convince yourself that straight lines on the cylinder or cone, when looked at 

locally and intrinsically, have the same symmetries as on the plane. 

 If you intersect a cylinder by a flat plane and unroll it, what kind of curve do 

you get? Is it ever straight? (One way to see this curve is to dip a paper 

cylinder into water.) 

 On a cylinder or cone, can a geodesic ever intersect itself? How many times? 

This question is explored in more detail in Problem 4.2, which the interested 

reader may turn to now. 

 Can there be more than one geodesic joining two points on a cylinder or cone? 

How many? Is there always at least one? Again, this question is explored in 

more detail in Problem 4.2. 

 

There are several important things to keep in mind while working on this problem. 

First, you absolutely must make models. If you attempt to visualize lines on a cone or 

cylinder, you are bound to make claims that you would easily see are mistaken if you 

investigated them on an actual cone or cylinder. Many students find it helpful to make 

models using transparent material.  

Second, as with the sphere, you must think about lines and triangles on the cone and 

cylinder in an intrinsic way — always looking at things from a bug’s point of view. We are 

not interested in what’s happening in 3-space, only what you would see and experience if 

you were restricted to the surface of a cone or cylinder. 

And last, but certainly not least, you must look at cones of different shapes, that is, 

cones with varying cone angles. 
 

CONES WITH VARYING CONE ANGLES 

Geodesics behave differently on differently shaped cones. So an important variable 

is the cone angle. The cone angle is generally defined as the angle measured around the 

point of the cone on the surface. Notice that this is an intrinsic description of angle. The 

bug could measure a cone angle (in radians) by determining the circumference of an 

intrinsic circle with center at the cone point and then dividing that circumference by the 

radius of the circle. We can determine the cone angle extrinsically in the following way: 

Cut the cone along a generator (a line on the cone through the cone point) and flatten the 

cone. The measure of the cone angle is then the angle measure of the flattened planar sector. 
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Figure 4.1 Making a 180° cone 

 

For example, if we take a piece of paper and bend it so that half of one side meets 

up with the other half of the same side, we will have a 180-degree cone (Figure 4.1). A 90º 

cone is also easy to make — just use the corner of a paper sheet and bring one side around 

to meet the adjacent side. 

Also be sure to look at larger cones. One convenient way to do this is to make a 

cone with a variable cone angle. This can be accomplished by taking a sheet of paper and 

cutting (or tearing) a slit from one edge to the center. (See Figure 4.2.) A rectangular sheet 

will work but a circular sheet is easier to picture. Note that it is not necessary that the slit 

be straight! 
 

 
Figure 4.2 A cone with variable cone angle (0 –360°) 

 

You are already familiar with a 360º cone — it’s just a plane. The cone angle can 

also be larger than 360º. A common larger cone is the 450º cone. You probably have a cone 

like this somewhere on the walls, floor, and ceiling of your room. You can easily make one 

by cutting a slit in a piece of paper and inserting a 90º slice (360º + 90º = 450º) as in Figure 

4.3. 

 
 

 
Figure 4.3 How to make a 450º cone 
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Two cone angles on a ceiling 

You may have trouble believing that this is a cone but remember that just because 

it cannot hold ice cream does not mean it is not a cone. If you will look around in the room 

you are, perhaps you can locate a corner where five right angles meet – that is 450º cone. 

It is important to realize that when you change the shape of the cone like this (that is, either 

it is with ruffles or straight lines), you are only changing its extrinsic appearance. 

Intrinsically (from the bug’s point of view) there is no difference.  

It may be helpful for you to discuss some definitions of a cone, such as the 

following: Take any simple (non-intersecting) closed curve a on a sphere and the center P 

of the sphere. A cone is the union of the rays that start at P and go through each point on 

a. The cone angle is then equal to (length of a)/ (radius of sphere), in radians. Do you see

why?

You can also make a cone with variable angle of more than 180°: Take two sheets 

of paper and slit them together to their centers as in Figure 4.4. Tape the right side of the 

top slit to the left side of the bottom slit as pictured. Now slide the other sides of the slits. 

Try it! 

Figure 4.4 Variable cone angle larger than 360° 
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Experiment by making paper examples of cones like those shown in Figure 4.4. 

What happens to the triangles and lines on a 450º cone? Is the shortest path always straight? 

Does every pair of points determine a straight line? 

Finally, also consider line symmetries on the cone and cylinder. Check to see if the 

symmetries you found on the plane will work on these surfaces and remember to think 

intrinsically and locally. A special class of geodesics on the cone and cylinder is the 

generators. These are the straight lines that go through the cone point on the cone or go 

parallel to the axis of the cylinder. These lines have some extrinsic symmetries (can you 

see which ones?), but in general, geodesics have only local, intrinsic symmetries. Also, on 

the cone, think about the region near the cone point — what is happening there that makes 

it different from the rest of the cone? 

Few more explorations of geodesics on the cone can be found 

http://www.rdrop.com/~half/Creations/Puzzles/cone.geodesics/index.html 
 

It is best if you experiment with paper models to find out what geodesics 

look like on the cone and cylinder before reading further. 

 

GEODESICS ON  CYLINDERS 
 

Let us first look at the three classes of straight lines on a cylinder. When walking on the 

surface of a cylinder, a bug might walk along a vertical generator. See Figure 4.5. 
 

 
Figure 4.5 Vertical generators are straight 

 

It might walk along an intersection of a horizontal plane with the cylinder, what we 

will call a great circle. See Figure 4.6 
 

 
Figure 4.6 Great circles are intrinsically straight 

http://www.rdrop.com/~half/Creations/Puzzles/cone.geodesics/index.html
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Or, the bug might walk along a spiral or helix of constant slope around the cylinder. 

See Figure 4.7 and the photo at the beginning of this chapter depicting lightening damage 

to the tree. Watch a squirrel running up the tree! 
 

 
 

        
 

Figure 4.7 Helixes are intrinsically straight 
Helixes can be seen on outside parking garages and in sculptures 

 

Why are these geodesics? How can you convince yourself? And why are these the 

only geodesics? 
 

GEODESICS ON CONES 

Now let us look at the classes of straight lines on a cone. 

Walking along a generator: When looking at straight paths on a cone, you will 

be forced to consider straightness at the cone point. You might decide that there is no way 

the bug can go straight once it reaches the cone point, and thus a straight path leading up 

to the cone point ends there. Or you might decide that the bug can find a continuing path 

that has at least some of the symmetries of a straight line. Do you see which path this is? 

Or you might decide that the straight continuing path(s?) is the limit of geodesics that just 

miss the cone point. See Figure 4.8. 
 

 

Figure 4.8 Bug walking straight over the cone point 

 

Help! 
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Walking straight and around: If you use a ribbon on a 90º cone, then you can 

see that this cone has a geodesic like the one depicted in Figure 4.9. This particular geodesic 

intersects itself. However, check to see that this property depends on the cone angle. In 

particular, if the cone angle is more than 180°, then geodesics do not intersect themselves. 

And if the cone angle is less than 90°, then geodesics (except for generators) intersect at 

least two times. Try it out! Later, in Problem 4.2, we will describe a tool that will help you 

determine how the number of self- intersections depends on the cone angle. 
 

 
Figure 4.9 A geodesic intersecting itself on a 90° cone 

 

PROBLEM 4.2   GLOBAL PROPERTIES OF GEODESICS 
 

Now we will look more closely at long geodesics that wrap around on a cylinder 

or cone. Several questions have arisen. 

a. How do we determine the different geodesics connecting two points? How many 

are there? How does it depend on the cone angle? Is there always at least one 

geodesic joining each pair of points? How can we justify our conjectures? 

b. How many times can a geodesic on a cylinder or cone intersect itself? How are 

the self-intersections related to the cone angle? At what angle does the geodesic 

intersect itself? How can we justify these relationships? 

 

SUGGESTIONS 

Here we offer the tool of covering spaces, which may help you explore these 

questions. The method of coverings is so named because it utilizes layers (or sheets) that 

each cover the surface. We will first start with a cylinder because it is easier and then move 

on to a cone. 

 

n -SHEETED COVERINGS OF A CYLINDER 

 

To understand how the method of coverings works, imagine taking a paper cylinder 

and cutting it axially (along a vertical generator) so that it unrolls into a plane. This is 

probably the way you constructed cylinders to study this problem before. The unrolled 

sheet (a portion of the plane) is said to be a 1-sheeted covering of the cylinder. See Figure 
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4.10. If you marked two points on the cylinder, A and B, as indicated in the figure, when 

the cylinder is cut and unrolled into the covering, these two points become two points on 

the covering (which are labeled by the same letters in the figure). The two points on the 

covering are said to be lifts of the points on the cylinder. 
  

Figure 4.10 A 1-sheeted covering of a cylinder 
 

Now imagine attaching several of these “sheets” together, end to end. When rolled 

up, each sheet will go around the cylinder exactly once — they will each cover the cylinder. 

(Rolls of toilet paper or paper towels give a rough idea of coverings of a cylinder.) Also, 

each sheet of the covering will have the points A and B in identical locations. You can see 

this (assuming the paper thickness is negligible) by rolling up the coverings and making 

points by sticking a sharp object through the cylinder. This means that all the A’s are 

coverings of the same point on the cylinder and all the B’s are coverings of the same point 

on the cylinder. We just have on the covering several representations, or lifts, of each point 

on the cylinder. Figure 4.11 depicts a 3-sheeted covering space for a cylinder and six 

geodesics joining A to B. (One of them is the most direct path from A to B and the others 

spiral once, twice, or three times around the cylinder in one of two directions.) 
 

                cut 
 

 
 

     
 
 

Figure 4.11 A 3-sheeted covering space for a cylinder 
 

cut 

A 

B 

 A 

 

 

B 
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We could also have added more sheets to the covering on either the right or left side. 

You can now roll these sheets back into a cylinder and see what the geodesics look like. 

Remember to roll sheets up so that each sheet of the covering covers the cylinder exactly 

once — all of the vertical lines between the coverings should lie on the same generator of 

the cylinder. Note that if you do this with ordinary paper, part or all of some geodesics will 

be hidden, even though they are all there. It may be easier to see what’s happening if you 

use transparencies. 

This method works because straightness is a local intrinsic property. Thus, lines that 

are straight when the coverings are laid out in a plane will still be straight when rolled into 

a cylinder. Remember that bending the paper does not change the intrinsic nature of the 

surface. Bending only changes the curvature that we see extrinsically. It is important 

always to look at the geodesics from the bug’s point of view. The cylinder and its covering 

are locally isometric. 

Use coverings to investigate Problem 4.2 on the cylinder. The global behavior of 

straight lines may be easier to see on the covering. 

 

n-SHEETED (BRANCHED) COVERINGS OF A CONE 

 

 
 

Figure 4.12 1-sheeted covering of a 270° cone 
 

Figure 4.12 shows a 1-sheeted covering of a cone. The sheet of paper and the cone 

are locally isometric except at the cone point. The cone point is called a branch point of 

the covering. We talk about lifts of points on the cone in the same way as on the cylinder. 

In Figure 4.12 we depict a 1-sheeted covering of a 270° cone and label two points and their 

lifts. 

A 4-sheeted covering space for a cone is depicted in Figure 4.13. Each of the rays 

drawn from the center of the covering is a lift of a single ray on the cone. Similarly, the 

points marked on the covering are the lifts of the points A and B on the cone. In the covering 

there are four segments joining a lift of A to different lifts of B. Each of these segments is 

the lift of a different geodesic segment joining A to B. 
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Figure 4.13 4-sheeted covering space for a 89° cone 

Think about ways that the bug can use coverings as a tool to expand its exploration 

of surface geodesics. Also, think about ways you can use coverings to justify your 

observations in an intrinsic way. It is important to be precise; you don’t want the bug to get 

lost! Count the number of ways in which you can connect two points with a straight line 

and relate those countings with the cone angle. Does the number of straight paths only 

depend on the cone angle? Look at the 450° cone and see if it is always possible to connect 

any two points with a straight line. Make paper models! It is not possible to get an 

equation that relates the cone angle to the number of geodesics joining every pair of points. 

However, it is possible to find a formula that works for most pairs. Make covering spaces 

for cones of different size angles and refine the guesses you have already made about the 

numbers of self-intersections. 

In studying the self-intersections of a geodesic l on a cone, it may be helpful for you 

to consider the ray R that is perpendicular to the line l. (See Figure 4.14.) Now study one 

lift of the geodesic l and its relationship to the lifts of the ray R. Note that the seams between 

individual wedges are lifts of R. 

Figure 4.14 Self-intersections on a cone with angle  

A recent tidbit about coverings: In 1914 Henri Lebesgue (French, 1875-1941) posed a 

question: What is the shape with the smallest area that can completely cover a host of other 

shapes (which all share a certain trait in common)? The shapes should be such that no two 

points are further than one unit apart. In 2014 retired software engineer Philip Gibbs ran 

computer simulations on 200 randomly generated shapes with diameter 1. He kept 

“trimming corners” of hexagon and found that to be smallest known covering. 

(https://www.quantamagazine.org/amateur-mathematician-finds-smallest-universal-

cover-20181115/) 

https://www.quantamagazine.org/amateur-mathematician-finds-smallest-universal-cover-20181115/
https://www.quantamagazine.org/amateur-mathematician-finds-smallest-universal-cover-20181115/
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LOCALLY ISOMETRIC 

 

By now you should realize that when a piece of paper is rolled or bent into a cylinder 

or cone, the bug’s local and intrinsic experience of the surface does not change except at 

the cone point. Extrinsically, the piece of paper and the cone are different, but in terms of 

the local geometry intrinsic to the surface they differ only at the cone point. 

 

Two geometric spaces, G and H, are said to be locally isometric at the points G in 

G and H in H if the local intrinsic experience at G is the same as the experience at H.  That 

is, there are neighborhoods of G and H that are identical in terms of their intrinsic geometric 

properties. A cylinder and the plane are locally isometric (at each point) and the plane and 

a cone are locally isometric except at the cone point. Two cones are locally isometric at the 

cone points only if their cone angles are the same. Because cones and cylinders are locally 

isometric with the plane, locally they have the same geometric properties. Later, we will 

show that a sphere is not locally isometric with the plane — be on the lookout for a result 

that will imply this. 

 

IS “SHORTEST” ALWAYS “STRAIGHT”? 
 

We are often told that “a straight line is the shortest distance between two points,” 

but is this really true? As we have already seen on a sphere, two points not opposite each 

other are connected by two straight paths (one going one way around a great circle and 

one going the other way). Only one of these paths is shortest. The other is also straight, but 

not the shortest straight path. 

Consider a model of a cone with angle 450°. Notice that such cones appear 

commonly in buildings as so-called “outside corners” (see Figure 4.3). It is best, however, 

to have a paper model that can be flattened. 
 

Figure 4.15 There is no straight (symmetric) path from A to B 

 

Use your model to investigate which points on the cone can be joined by straight 

lines (in the sense of having reflection-in-the-line symmetry). In particular, look at points 

such as those labeled A and B in Figure 4.15. Convince yourself that there is no path from 

A to B that is straight (in the sense of having reflection-in-the-line symmetry), and for these 

points the shortest path goes through the cone point and thus is not straight (in the sense of 

having symmetry). 
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Figure 4.16 The shortest path is not straight (in the sense of symmetry) 

 

Here is another example: Think of a bug crawling on a plane with a tall box sitting 

on that plane (refer to Figure 4.16). This combination surface — the plane with the box 

sticking out of it — has eight cone points. The four at the top of the box have 270° cone 

angles, and the four at the bottom of the box have 450° cone angles (180° on the box and 

270° on the plane). What is the shortest path between points X and Y, points on opposite 

sides of the box? Is the straight path the shortest? Is the shortest path straight? To check 

that the shortest path is not straight, try to see that at the bottom corners of the box the two 

sides of the path have different angular measures. (If X and Y are close to the box, then the 

angle on the box side of the path measures a little more than 180° and the angle on the 

other side measures almost 270°.) 

 

RELATIONS TO DIFFERENTIAL GEOMETRY 

We see that sometimes a straight path is not shortest, and the shortest path is not 

straight. Does it then make sense to say (as most books do) that in Euclidean geometry a 

straight line is the shortest distance between two points? In differential geometry, on 

“smooth” surfaces, “straight” and “shortest” are more nearly the same. A smooth surface 

is essentially what it sounds like. More precisely, a surface is smooth at a point if, when 

you zoom in on the point, the surface becomes indistinguishable from a flat plane. (For 

details of this definition, see Problem 4.1 in [DG: Henderson,  

https://projecteuclid.org/euclid.bia/1399917369]. 

See also the last section and especially the endnote in Chapter 1.) Note that a cone 

is not smooth at the cone point, but a sphere and a cylinder are both smooth at every point. 

The following is a theorem from differential geometry: 

THEOREM 4.1: If a surface is smooth, then an intrinsically straight line (geodesic)        

 on the surface is always the shortest path between “nearby” points. If the surface 

 is also complete (every geodesic on it can be extended indefinitely), then any two 

 points can be joined by a geodesic that is the shortest path between them. See [DG: 

 Henderson], Problems 7.4b and 7.4d. 

 

Consider a planar surface with a hole removed. Check that for points near opposite 

sides of the hole, the shortest path (on the planar surface with hole removed) is not straight 

https://projecteuclid.org/euclid.bia/1399917369
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because the shortest path must go around the hole. We encourage the reader to discuss how 

each of the previous examples and problems is in harmony with this theorem. 

Note that the statement “every geodesic on the surface can be extended indefinitely” 

is a reasonable interpretation of Euclid’s Second Postulate: Every limited straight line can 

be extended indefinitely to a (unique) straight line. Note that the Second Postulate does not 

hold on a cone unless you consider geodesics to continue through the cone point. 

Also, Euclid defines a right angle as follows: When a straight line intersects another 

straight line such that the adjacent angles are equal to one another, then the equal angles 

are called right angles. Note that if you consider geodesics to continue through the cone 

point, then right angles at a cone point are not equal to right angles at points where the cone 

is locally isometric to the plane. 

And Euclid goes on to state as his Fourth Postulate: All right angles are equal. Thus, 

Euclid’s Second Postulate or Fourth Postulate rules out cones and any surface with isolated 

cone points. What is further ruled out by Euclid’s Fourth Postulate would depend on 

formulating more precisely just what it says. It is not clear (at least to the authors!) whether 

there is something we would want to call a surface that could be said to satisfy Euclid’s 

Fourth Postulate and not be a smooth surface. However, we can see that Euclid’s postulate 

at least gives part of the meaning of “smooth surface,” because it rules out isolated cone 

points. 

When we were in high school geometry class, we were confused why Euclid would 

have made such a postulate as his Postulate 4 — how could they possibly not be equal? In 

this chapter we have discovered that on cones right angles are not all equal. 
 




