
 

 

Chapter 23 

POLYHEDRA 

 
... if four equilateral triangles are put together, three of their plane angles meet to form a single 

solid angle,... When four such angles have been formed the result is the simplest solid figure ...  

The second figure is composed of ... eight equilateral triangles, which yield a single solid angle 

from four planes. The formation of six such solid angles completes the second figure.  

The third figure ... has twelve solid angles, each bounded by five equilateral triangles, and twenty 

faces, each of which is an equilateral triangle. 

 ... Six squares fitted together complete eight solid angles, each composed by three plane right 

angles. The figure of the resulting body is the cube ...  

There is remained a fifth construction, which the god used for arranging the constellations on 

the whole heaven. — Plato, Timaeus, 54e–55c [AT: Plato] 

DEFINITIONS AND TERMINOLOGY 

 [The text in the brackets applies to polyhedra on a 3-sphere or a hyperbolic 3-space.] A 

tetrahedron, ΔABCD, in 3-space [in a 3-sphere or a hyperbolic 3-space] is determined by 

any four points, A, B, C, D, called its vertices, such that all four points do not lie on the 

same plane [great 2-sphere, great hemisphere] and no three of the points lie on the same 

line [geodesic]. The faces of the tetrahedron are the four [small] triangles ΔABC, ΔBCD, 

ΔCDA, ΔDAB. The edges of the tetrahedron are the six line [geodesic] segments AB, AC, 

AD, BC, BD, CD. The interior of the tetrahedron is the [smallest] 3-dimensional region 

that it bounds. 

 Tetrahedra are to three dimensions as triangles are to two dimensions. Every 

polyhedron can be dissected into tetrahedra, but the proofs are considerably more difficult 

than the ones from Problem 7.5b, and in the discussion to Problem 7.5b there is a 

polyhedron that is impossible to dissect into tetrahedra without adding extra vertices. There 
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are numerous congruence theorems for tetrahedra, analogous to the congruence theorems 

for triangles. We say two tetrahedra are congruent if one can be transformed by an isometry 

of 3-space to coincide with the other. All of the problems below apply to tetrahedra in 

Euclidean 3-space or a 3-sphere or a hyperbolic 3-space.  

 The dihedral angle, ∠AB, at the edge AB is the angle formed at AB by ΔABC and 

ΔABD. The dihedral angle is measured by intersecting it with a plane that is perpendicular 

to AB at a point between A and B. The solid angle at A, ∠A, is that portion of the interior 

of the tetrahedron “at” the vertex A. See Figure 23.1.  

 
Figure 23.1 Dihedral and solid angles 

You may find it helpful with these problems to construct some tetrahedra out of cardboard. 

 

PROBLEM 23.1    MEASURE OF A SOLID ANGLE 

The measure of the solid angle is defined as the ratio 

m(∠A) = [limr → 0]area{(interior of  ΔABCD) ∩ S}/r2 , 

where S is any small 2-sphere with center at A whose radius, r, is smaller than the distance 

from A to each of the other vertices and to each of the edges and faces not containing A. 

Note that this definition is analogous to the definition of radian measure of an angle. Do 

you see why? 

a. Show that the measures of the solid and dihedral angles of a tetrahedron satisfy the 

following relationship:  

m(∠A) = m(∠AB) + m(∠AC) + m(∠AD) − π. 

  

b. Show that two solid angles with the same measure are not necessarily congruent. 

We say the two solid angles are congruent if one can be transformed by an isometry 

to coincide with the other. 

 SUGGESTIONS  

Solid angles, whether in Euclidean 3-space or a 3-sphere or a hyperbolic 3-space, are 

closely related to spherical triangles on a small sphere around the vertex. You can think of 

starting with a sphere, S, and creating a solid angle by extending three sticks out from the 
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center of the sphere. If you connect the ends of these sticks, you will have a tetrahedron. 

The important thing to notice is how the sticks intersect the sphere. They will obviously 

intersect the sphere at three points, and you can draw in the great circle arcs connecting 

these points. Look at the planes in which the great circles lie. In this problem you need to 

figure out the relationships between the angles of the spherical triangle and the dihedral 

angles.  

The formula given above for the definition of the solid angle uses the intersection 

of the interior of the solid angle with any small sphere S. This intersection is the small 

triangle that you just drew, and the area of the intersection is the area of the triangle. 

Because the measure of a solid angle is defined in terms of an area, it is possible for two 

solid angles to have the same measure without being congruent — they can have the same 

area without having the same shape.  

What you are asked to prove here is the relationship between the measure of a solid 

angle and the measures of its dihedral angles. Because they are closely related to spherical 

triangles on the small sphere, you can use everything you know about small triangles on a 

sphere. 

PROBLEM 23.2    EDGES AND FACE ANGLES 

We will study congruence theorems for tetrahedra that can be thought of as the three-

dimensional analogue of triangles. A tetrahedron has 4 vertices, 4 faces, and 6 edges and 

we can denote it by ΔABCD, where A, B, C, D are the vertices. Figure 23.2. 

Show that if ΔABCD and ΔA'B'C'D' are two tetrahedra such that 

∠BAC ≅ ∠B'A'C', ∠CAD ≅ ∠C'A'D', ∠BAD ≅ ∠B'A'D', 

CA ≅ C'A', BA ≅ B'A', DA ≅ D'A', 

then  ΔABCD ≅ ΔA'B'C'D'. 

Part of your proof must be to show that the solid angles ∠A and ∠A' are congruent and not 

merely that they have the same measure. 

Figure 23.2 Edges and faces 
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SUGGESTIONS

If S is a small sphere with center at A and radius r, then S ∩ (interior of ΔABCD) is a 

spherical triangle whose sides have lengths r ∠BAC, r ∠CAD, r ∠BAD. In the last problem, 

you saw how solid angles are related to spherical triangles. This problem asks you to prove 

the congruence of tetrahedra based on certain angle and length measurements. (Note that 

the angles shown above are not the dihedral angles of the tetrahedron.)  So, since you can 

use spherical triangles to relate solid and dihedral angle measurements, why not use them 

to prove tetrahedra congruencies? Use the hint given to see what measurements of the 

spherical triangle are defined by measurements of the tetrahedron. Then see if the 

measurements given do in fact show congruence and show why. 

PROBLEM 23.3    EDGES AND DIHEDRAL ANGLES 

 Show that if 

AB ≅ A'B', ∠AB ≅ ∠A'B', AC ≅ A'C', 

∠AC ≅ ∠A'C', AD ≅ A'D', ∠AD ≅ ∠A'D', 

then ΔABCD ≅ ΔA'B'C'D'. See Figure 23.3  

Figure 23.3 Edges and dihedral angles 

This is very similar to the previous problem but uses different measurements — here we 

have the dihedral angles instead of the angles on the faces of tetrahedron. Look at this 

problem the same way you looked at the previous one — see how the measurements given 

relate to a spherical triangle, and then prove the congruence. 

PROBLEM 23.4   OTHER TETRAHEDRAL CONGRUENCE THEOREMS 

Make up your own congruence theorems! Find and prove at least two other sets of 

conditions that will imply congruence for tetrahedra; that is, make up and prove 

other theorems like those in Problems 23.2 and 23.3. 

 It is important to make sure your conditions are sufficient to prove that the solid angles 

are congruent, not just that they have the same measure. 
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Alexander Graham Bell (1847-1922) is best known for his invention of the first practical 

telephone and co-founding AT&T. Less known are his experiments in aerodynamics, 

particularly his obsession with tetrahedral kites. Some historic pictures can be seen 

https://publicdomainreview.org/collections/alexander-graham-bells-tetrahedral-kites-1903-9/). 

 

PROBLEM 23.5   THE FIVE REGULAR POLYHEDRA 

A regular polygon is a polygon lying in a plane or 2-sphere or hyperbolic plane such that 

all of its edges are congruent, and all of its angles are congruent. For example, on the plane 

a regular quadrilateral is a square. On a 2-sphere and a hyperbolic plane a regular 

quadrilateral is constructed as shown in Figure 23.4. See also Figure 18.16 for a regular 

octagon on a hyperbolic plane.  

 Note that half of a regular quadrilateral is a Khayyam quadrilateral (see Chapter 12). 

On 2-spheres and hyperbolic planes there are no similar polygons; for example, a regular 

quadrilateral (congruent sides and congruent angles) will have the same angles as another 

regular quadrilateral if and only if they have the same area. (Do you see why?)  

 A polyhedron in 3-space [or in a 3-sphere or in a hyperbolic 3-space] is regular if 

all of its edges are congruent, all of its face angles are congruent, all of its dihedral angles 

are congruent, and all of its solid angles are congruent. The faces of a polyhedron are 

assumed to be polygons that lie on a plane [a great 2-sphere, a great hemisphere]. 

 
Figure 23.4    Regular quadrilaterals on a sphere and on a hyperbolic plane 

 

Show that there are only five regular polyhedra. In Euclidean 3-space, to say “there 

are only five regular polyhedra” is to mean that any regular polyhedra is similar 

(same shape, but not necessarily the same size) to one of the five. It still makes sense 

on a 3-sphere and a hyperbolic 3-space to say that “there are only five regular 

polyhedra,” but you need to make clear what you mean by this phrase. 

 

These polyhedra are often called the Platonic Solids and are described by Greek 

philosopher Plato (429–348 B.C.) as “forms of bodies which excel in beauty” (Timaeus, 

53e [AT: Plato]), but there is considerable evidence that they were known well before 

Plato’s time. See T. L. Heath’s discussion in [AT: Euclid, Elements], Vol. 3, pp. 438–39, 

for evidence that the five regular solids were known by Greeks before the time of Plato. 

https://publicdomainreview.org/collections/alexander-graham-bells-tetrahedral-kites-1903-9/
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There is a description of the discovery in Scotland of a complete set of the five regular 

polyhedra carefully carved out of stone by Neolithic persons some 4000 to 6000 years ago 

in [HI: Critchlow], pp. 148–49. The regular polyhedra are also the subject of the thirteenth 

(and last) book in [AT: Euclid, Elements]. 

 

        
 

Neolithic stone polyhedra 

SUGGESTIONS 

Your argument should be essentially the same whether you are considering 3-space, or a 

3-sphere, or a hyperbolic 3-space. There are many widely different ways to do this problem. 

The following are some approaches that we suggest:  

 First Approach: Note that the faces of a regular polyhedron must be regular 

polygons. Then focus on the vertices of regular polyhedra. Show that if the faces are regular 

quadrilaterals or regular pentagons, then there must be precisely three faces intersecting at 

each vertex. Show that it is impossible for regular hexagons to intersect at a vertex to form 

the solid angle of a regular polyhedron. If the faces are regular (equilateral) triangles, then 

show that there are three possibilities at the vertices.  

 Second Approach: Refer to Problem 18.5. Each regular polyhedron can be 

considered to be projected out from its center onto a sphere and thus determine a cell 

division of the sphere. The Euler number of this spherical subdivision is v − e + f = 2, 

where v is the number of vertices, e is the number of edges, and f is the number of faces. 

Then  

2e = n f and  2e = k v . (Why?) 

Thus, deduce that, 

𝑒 =  
2

2
𝑘

+
2
𝑛

− 1
 

and remember that e must be a positive integer. 

 In both approaches you should then finish the problem by using earlier problems 

from this chapter to show that any two polyhedra constructed from the same polygons, with 

the same number intersecting at each vertex, must be congruent. This step is necessary 

because there are polyhedra that are not rigid (that is, there are polyhedra that can be 
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continuously moved into a non-congruent polyhedra without changing any of the faces or 

changing the number of faces coming together at each vertex). See Robert Connelly’s “The 

Rigidity of Polyhedral Surfaces” (Mathematics Magazine, vol. 52, no. 5 (1979), pp. 275–

83 http://pi.math.cornell.edu/~web3040/Math-mag-rigidity.pdf). The five regular polyhedra are 

usually named the tetrahedron, the cube, the octahedron, the dodecahedron, and the 

icosahedron. (See Figure 23.5.) There is a duality (related to but not exactly the same as 

the duality in Chapter 20, Trigonometry and Duality) among regular polyhedra: If you pick 

the centers of the faces of a regular polyhedron, then these points are the vertices of a 

regular polyhedron, which is called the dual of the original polyhedron. You can see that 

the cube is dual to the octahedron (and vice versa), that the icosahedron is dual to the 

dodecahedron (and vice versa), and that the tetrahedron is dual to itself. 

(https://www.georgehart.com/virtual-polyhedra/duality.html) 

 
Figure 23.5    The five Platonic solids 

http://pi.math.cornell.edu/~web3040/Math-mag-rigidity.pdf
https://www.georgehart.com/virtual-polyhedra/duality.html



