
 

 

Chapter 22 

3-SPHERES AND HYPERBOLIC 3-SPACES 

 
Let us, then, make a mental picture of our universe: ... as far as possible, a complete unity so that whatever 

comes into view, say the outer orb of the heavens, shall bring immediately with it the vision, on the one 

plane, of the sun and of all the stars with earth and sea and all living things as if exhibited upon a transparent 

globe. Bring this vision actually before your sight, so that there shall be in your mind the gleaming 

representation of a sphere, a picture holding all the things of the universe ... . Keep this sphere before you, 

and from it imagine another, a sphere stripped of magnitude and of spatial differences; cast out your inborn 

sense of Matter, taking care not merely to attenuate it: call on God, maker of the sphere whose image you 

now hold, and pray Him to enter. And may He come bringing His own Universe ... .  

 — Plotinus, The Enneads, V.8.9, Burdette, NY: Larson, 1992 

 

In this chapter you will explore hyperbolic 3-space and the 3-dimensional sphere that 

extrinsically sits in 4-space. But intrinsically, if we zoom in on a point in a 3-sphere or a 

hyperbolic 3-space, then locally the experience of the space will become indistinguishable 

from an intrinsic and local experience of Euclidean 3-space. This is also our human 

experience in our physical universe. We will study these 3-dimensional spaces both 

because they are possible geometries for our physical universe and in order to see that these 

geometries are closely related to their 2-dimensional versions. 

 Try to imagine the possibility of our physical universe being a 3-sphere in 4-space. 

It is the same kind of imagination a 2-dimensional (2-D) being would need in order to 

imagine that it was on 2-sphere (ordinary sphere) in 3-space. In Problem 18.6 we thought 

about how a 2-D bug could determine (intrinsically) that it was on a 2-sphere. Now, we 

want to explore how the bug could imagine the 2-sphere in 3-space, that is, how could the 

bug imagine an extrinsic view of the 2-sphere in 3-space. In Problems 22.2 and 22.3 we 

will use linear algebra to help us talk about and analyze the 3-sphere in 4-space, but this 

will not solve the problem of imagining the 3-sphere in 4-space.  
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PROBLEM 22.1   EXPLAIN 2-SPHERE IN 3-SPACE                          

       TO A 2-DIMENSIONAL BUG                       

  

 How would you explain a 2-sphere in 3-space to a 2-D bug living in a (Euclidean) 

 plane  or on a 2-sphere so large that it appears flat to the 2-D bug? See Figure 22.1. 

 
Figure 22.1 2-D bug on a large 2-sphere 

SUGGESTIONS  

This bug’s 2-dimensional experience is very much like the experience of an insect called a 

water strider that we talked about in Chapter 2. A water strider walks on the surface of a 

pond and has a very 2-dimensional perception of the universe around it. To the water 

strider, there is no up or down; its whole universe consists of the surface of the water. 

Similarly, for the 2-D bug there is no front or back; the entire universe is the 2-dimensional 

plane. 

 Living in a 2-D world, the bug can easily understand any notions in 2-space, 

including plane, angle, distance, perpendicular, circle, and so forth. You can assume the 

bug is smart and has been in geometry class.  

 A bug living in a 2-D world cannot directly experience three dimensions, just as we 

are unable to directly experience four dimensions. Yet, with some help from you, the 2-D 

bug can begin to imagine three dimensions just as we can imagine four dimensions. One 

goal of this problem is to try to gain a better understanding of what our experience in our 

imagination of 4-space might be. Think about what four dimensions might be like, and you 

may have ideas about the kinds of questions the 2-D bug will have about three dimensions. 

You may know some answers, as well. The problem is finding a way to talk about them. 

Be creative!  

 One important thing to keep in mind is that it is possible to have images of things 

we cannot see. For example, when we look at a sphere, we can see only roughly half of it, 

but we can and do have an image of the entire sphere in our minds. We even have an image 

of the inside of the sphere, but it is impossible to actually see the entire inside or outside of 

the sphere all at once. Another example — sit in your room, close your eyes, and try to 

imagine the entire room. It is likely that you will have an image of the entire room, even 

though you can never see it all at once. Without such images of the whole room it would 
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be difficult to maneuver around the room. The same goes for your image of the whole of 

the chair you are sitting on or this book you are reading.  

 Assume that the 2-D bug also has images of things that cannot be seen in their 

entirety. For example, the 2-D bug may have an image of a circle. Within a 2-dimensional 

world, the entire circle cannot be seen all at once; the 2-D bug can only see approximately 

half of the outside of the circle at a time and cannot see the inside at all unless the circle is 

broken. See Figure 22.2. 

 
Figure 22.2    The 2-D bug sees a circle 

 However, from our position in 3-space we can see the entire circle including its 

inside. Carrying the distinction between what we can see and what we can imagine one 

step further, the 2-D bug cannot see the entire circle but can imagine in the mind the whole 

circle including inside and out. Thus, the 2-D bug can only imagine what we, from three 

dimensions, can directly see. So, the 2-D bug’s image of the entire circle is as if it were 

being viewed from the third dimension. It makes sense, then, that the image of the entire 

sphere that we have in our minds is a 4-D view of it, as if we were viewing it from the 

fourth dimension.  

 When we talk about the fourth dimension here, we are not talking about time, which 

is often considered the fourth dimension. Here, we are talking about a fourth spatial 

dimension. A fuller description of our universe would require the addition of a time 

dimension onto whatever spatial dimensions one is considering.  

 Try to come up with ways to help the 2-D bug imagine a 2-sphere in 3-space. It may 

help to think of intersecting planes rotating with respect to each other: How will a 2-D bug 

in one of the planes experience it? Draw on the bug’s experience living in two dimensions 

as well as some of your own experiences and attempts to imagine four dimensions.  

 

WHAT IS 4-SPACE?  VECTOR SPACES AND BASES  

We could think of 4-space as R4:  

 Let R4 be the collection of 4-tuples of real numbers (x, y, z, w) with the distance 

 function (metric) 

𝑑((𝑎, 𝑏, 𝑐, 𝑑)(𝑒, 𝑓, 𝑔, ℎ)) = √(𝑎 − 𝑒)2 + (𝑏 − 𝑓)2 + (𝑐 − 𝑔)2 + (𝑑 − ℎ)2 

 and 

dot product  (a,b,c,d)  (e,f,g,h)  ae + bf + cg + de. 
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But this would be awkward sometimes because it fixes a given coordinate system; and we 

will find it geometrically useful to be able to change coordinates (or basis) to fit a particular 

problem. We will find it more powerful to have a description of space without given 

coordinates.  

 So instead of R4 we will think of 4-space as an (abstract) vector space. A vector 

space has a point we call the origin O. Then designate every point P by a directed straight 

line segment v from O to P. These directed line segments are, of course, what we call 

vectors. We consider O itself also as a vector. If you have studied vector spaces only 

algebraically, then it may be difficult to see the geometric content. We assume that we can 

add vectors by geometrically defining u + v to be the diagonal of the parallelogram 

determined by v and u, as in Figure 22.3. For this definition to make sense we need to 

assume that we can form the parallelograms. It is also possible to not identify an origin and 

create what is called an affine space. You can read about geometric affine spaces in [DG: 

Henderson], Appendix A, or [DG: Dodson & Poston]. 

 
Figure 22.3 Adding vectors 

We assume that addition of vectors satisfies, for all u and v in V, 

1. u + v is in V,  and  O + u = u;  

2. u + v = v + u,  and  u + (v + w) = (u + v) + w;  and  

3. there is a vector −v in V such that v + (−v) = O. 

Geometrically, we choose a segment whose length we designate as the unit length 1. With 

this unit length we can determine the length of any vector v — we denote its length by |v|. 

For r a real number and v a vector, we define geometrically the multiplication by scalars 

rv as the vector with length r|v| and lying on the straight line determined by v. 

This multiplication by scalars satisfies, for all u and v in V and all real numbers r and s, 

4. ru is in V,  and  0u = O,  and  1u = u; 

5. (r + s)u = ru + su,  and  r(u + v) = ru + rv;  and  

6. (rs)u = r(su). 

We also assume that we can find the angle θ, 0 ≤ θ ≤ π, between any two vectors and we 

define the Euclidean inner product (sometimes called the standard inner product) of two 

vectors to be:  

v, w = |v| |w| cos θ, where θ is the angle between v and w. 

Note that v, w is negative when θ > π/2. We can check that this inner product satisfies the 

following properties, for all u, v, w in V and all real numbers r,  
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7. v, w = w, v  
8. rv, w = rv, w = v, rw for all reals r;  

9. v+ u, w = v, w + u, w and  

10. v, v ≥ 0. 

 In a more abstract setting, we could simply define a vector space with inner product 

to be a set with {an origin (O), addition of vectors (+), multiplication by scalars, and real-

valued function (,  )} that satisfies the 10 properties above. Then we define  

|v|= √𝐯, 𝐯  and  cos θ = 
𝐯,𝐰 

|𝐯||𝐰| 
 , 0 ≤ θ ≤ π. 

Note that v, w = 0 implies that v and w are perpendicular. 

  A subspace of a vector space V is a subset U ⊂ V if ru + sv is in U, for every pair 

of vectors u, v in U and all real numbers r, s. If {u1, u2, ..., un} is a finite collection of 

vectors from V, then we call the span of {u1, u2, ..., un}, denoted by sp{u1, u2, ..., un}, the 

smallest subspace of V containing each of u1, u2, ..., un. We say that {u1, u2, ..., un} are 

linearly independent if, for each i, ui is not in  

sp{u1, u2, ...ui-1, ui+1, ..., un}. 

If {u1, u2, ..., un} are linearly independent, then we say that 

U = sp{u1, u2, ..., un} is an n-dimensional subspace 

and that {u1, u2, ..., un} is a basis for U. In particular, we say V is m-dimensional if  

V = sp{u1, u2, ..., um} 

 for some collection {u1, u2, ..., um} of m linearly independent vectors in V. If, in addition, 

ui, uj = 0, i≠j, and ui, uj = 1 for all 0≤ i, j ≤m, then we say that {u1, u2, ..., um} is an 

orthonormal basis for V.  

We will need the following result which is usually proved in an abstract linear algebra 

course:  

 Theorem (Gramm-Schmidt Orthogonalization) If V is an m-dimensional vector 

 space with n- dimensional subspace U, then V has an orthonormal basis {u1, u2, ..., 

 um} such that {u1, u2, ...,  un} is an orthonormal basis for U. 

 

 

PROBLEM 22.2    A 3-SPHERE IN 4-SPACE 

We will now explore 3-dimensional spheres in 4-space. We shall consider 4-space as a 4-

dimensional vector space V 4.  

 Note that every plane in 3-space has exactly one line perpendicular to it at every 

point. A line is perpendicular to a plane if it intersects the plane and is perpendicular to 

every line in the plane that passes through the intersection point. In V 4 we can similarly 
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a. Show that every 2-dimensional subspace (a plane containing the origin O), Π, in  

V 4 has an orthogonal complement, Π⊥, which is a 2-dimensional subspace (plane) 

that intersects Π only at O such that every line through O in Π is perpendicular to 

every line through O in Π⊥.  

This was probably proved in your linear algebra course. The easiest proof (we think) is to 

pick an orthonormal basis for V 4 so that, in the new coordinates, Π is the span of the first 

two basis vectors. This is possible by the theorem above. 

 DEFINITIONS: Let a 3-sphere, S3, be the collection of points in V 4 that are at a fixed 

 distance r from O, the origin of V 4 and the center of the 3-sphere. The number 

 r is called the radius of the sphere.  

 We define a great circle on S3 to be the intersection of S3 with 2-dimensional 

 subspace (a plane through the center O) in V 4.  

 We define a great 2-sphere on S3 to be the intersection of S3 with any 3-dimensional 

 subspace of V 4 (that passes through O). 

 

b. Show that every great 2-sphere in the 3-sphere has reflection-in-itself symmetry.  

Choose an orthonormal basis for V 4 so that the great 2-sphere is in the 3-subspace spanned 

by the first three basis elements. 

c. Show that every great circle has the symmetries in S3 of rotation through any angle 

and reflection through any great 2-sphere perpendicular to the great circle. 

Because these are principle symmetries of a straight line in 3-space, it makes sense 

to call these great circles geodesics in S3.  

Choose an orthonormal basis for V 4 so that the great circle is in the plane spanned by the 

first two basis elements. 

d.  If two great circles in S3 intersect, then they lie in the same great 2-sphere. 

 

SUGGESTIONS FOR PROBLEM 22.2  

Thinking in four dimensions may be a foreign concept to you, but believe it or not, it is 

possible to visualize a 4-dimensional space. Remember, the fourth dimension here is not 

time, but a fourth spatial dimension. We know that any two intersecting lines that are 

linearly independent (that do not coincide) determine a 2-dimensional plane. If we then 

add another line that is not in this plane, the three lines span a 3-space. When lines such as 

these are used as coordinate axes for a coordinate system, then they are typically taken to 

be orthogonal — each line is perpendicular to the others. Now to get 4-space, imagine a 

fourth line that is perpendicular to each of these original three. This creates the fourth 

dimension that we are considering.  

 Although we cannot experience all four dimensions at once, we can easily imagine 

any three at a time, and we can easily draw a picture of any two. This is the secret to looking 

at four dimensions. These 3- or 2-dimensional subspaces look exactly the same as any other 
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3-space or plane that you have seen before. This holds true for any subspace of V 4 — 

because, in any orthonormal basis, the basis vectors are orthogonal, any set of three of these 

will look the same and will determine (span) a subspace geometrically identical to our 

familiar 3-space, and any set of two basis elements will look like any other and will 

determine (span) a 2-dimensional plane. (You may find helpful Jeff Week’s app 

http://geometrygames.org/Draw4D/index.html.) 

  For all of these problems, you should not be looking at projections of the 3-sphere 

into a plane or a 3-space, but rather looking at the part of the 3-sphere that lies in a subspace. 

For example, because the 3-sphere is defined as the set of points a distance r from the origin 

O in V 4, if you take any 3-dimensional subspace (through O) of V 4, then the part of the 3-

sphere that lies in this 3-dimensional subspace is the set of points a distance r from its 

center O in the 3-subspace. So, any 3-dimensional subspace of V 4 intersects the 3-sphere 

in a 2-sphere, which you know all about by now, and you can easily visualize. 

 It is generally best, for all of the problems here, to draw pictures of various planes 

(2-dimensional subspaces) through the 3-sphere because they are easy to draw on a piece 

of paper. Remember, only include in your picture those geometric objects that lie in the 

plane you are drawing: a great circle that lies in this plane would be drawn as a circle, while 

another great circle that passed through this plane would intersect this plane only in two 

points. See Figure 22.4. 

 
Figure 22.4    Intersecting great circles 

  For this particular problem, you are looking at the 3-sphere extrinsically. A good 

way to proceed is to draw several planes as outlined above and try to get an idea of how 

the planes relate to one another when combined into a 4-dimensional space. Once you have 

an understanding of how the different planes interact in four dimensions, it is fairly easy to 

show how the great circles of a 3-sphere behave. 

 

PROBLEM 22.3   HYPERBOLIC 3-SPACE, UPPER HALF-SPACE  

As mentioned previously, there is no smooth isometric embedding of a hyperbolic plane 

into 3-space and, thus, no analytic isometric description. In the same way there is no 

isometric analytic description of a hyperbolic 3-space in 4-space. Instead we will describe 

http://geometrygames.org/Draw4D/index.html
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hyperbolic 3-space in terms of the upper-half-space model that is analogous to the upper-

half-plane model for the hyperbolic plane, which was described in Chapter 17. 

  DEFINITION: Let R3+ = {(x, y, z) in R3 | z > 0} and call it the upper half-space.  

 In Chapter 17 we started with the annular hyperbolic plane and then defined a 

coordinate map z: R2+ → H2. Now we do not have an isometric model H3 but, instead, we 

have to start with the upper half-space and use z to define H3. Recall that z: R2+ → H2 has 

distortion ρ /b at the point (a,b) in R2+, where ρ is the radius of the annuli. As we saw in 

Chapter 17, we can study the geometry of the hyperbolic plane H2 by considering it to be 

the upper half-plane with angles as they are in R2+ and distances distorted in R2+ by   ρ /b 

at the point (a, b). So now we use this idea to define hyperbolic 3-space H3.  

 DEFINITIONS: Define the upper-half-space model of hyperbolic space H3 to be the 

 upper half-space R3+ with angles as they are in R3+ and with distances distorted 

 by ρ /c at the point (a, b, c). We call ρ the radius of H3.  

 We define a great semicircle in H3 to be the intersection of H3 with any circle 

 that is in a plane perpendicular to the boundary of R3+ and whose center is in the 

 boundary of R3+ or the intersection of R3+ with any line perpendicular to the 

 boundary of R3+. The boundary of R3+ are those points in R3 with z = 0.  

 We define a great hemisphere in R3+ to be the intersection of R3+ with a sphere 

 whose center is on the boundary of R3+ in R3 or the intersection of R3+ with 

 any plane that is perpendicular to the boundary of R3+ in R3. See Figure 22.5. 

 
Figure 22.5  Upper-half-space model of H3 

 

a. Show that inversion through a great hemisphere in R3+ has distortion 1 in H3 and, 

thus, is an isometry in H3 and can be called a (hyperbolic) reflection through the 

great hemisphere.  

Look back at Problem 17.3. Note that any inversion in a sphere when restricted to a plane 

containing the center of the sphere is an inversion of the plane in the circle formed by the 

intersection of the plane and the sphere. 
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b. Show that, given a great semicircle [or great hemisphere], there is a hyperbolic 

reflection (inversion through a great hemisphere) that takes the great semicircle 

[hemisphere] to a vertical half-line [half-plane] in the upper half-space.  

Look back at Problems 16.2b and 17.3b. Note that any inversion in a sphere when restricted 

to a plane containing the center of the sphere is an inversion of the plane in the circle 

formed by the intersection of the plane and the sphere. 

 Any vertical half-plane is precisely an upper-half-plane model of H2. Thus, we 

conclude that each great hemisphere in H3 has the geometry of H2. 

c.  Show that every great semicircle Γ has the symmetries in H3 of reflection through 

     any great hemisphere perpendicular to Γ and rotation about Γ through any angle. 

     Because these are principal symmetries of a straight line in 3-space it makes  

     sense to call these great semicircles geodesics in H3.  

For the reflection, look in the half-plane containing Γ and in this plane use the arguments 

of Problem 16.2a. For the rotation, look at great hemispheres containing Γ and restrict your 

attention to their intersections with the vertical half-plane that passes through the center of 

Γ and is perpendicular to Γ; then refer to Problem 5.4a. 

 d. If two great semicircles in H3 intersect, then they lie in the same great   

     hemisphere.  

Use part b to assume that one of the great semicircles is a vertical half-line. 

 

PROBLEM 22.4  DISJOINT EQUIDISTANT GREAT CIRCLES  

 
a. Show that there are two great circles in S3 such that every point on one is a  

     distance of one-fourth of a great circle away from every point on the other and  

     vice versa.  

    Is there anything analogous to this in H3 or in ordinary 3-space? Why? 

SUGGESTIONS  

This problem is especially interesting because there is no equivalent theorem on the 2-

sphere; we know that on the 2-sphere, all great circles intersect, so they can’t be everywhere 

equidistant. The closest analogy on the 2-sphere is that a pole is everywhere equidistant 

from the equator. When we go up to the next dimension, this pole “expands” to a great 

circle such that every point on this great circle is everywhere equidistant from the equator. 

While this may seem mind-boggling, there are ways of seeing what is happening. 

 An important difference created by adding the fourth dimension lies in the 

orthogonal complement to a plane. In 3-space, the orthogonal complement of a plane is a 

line that passes through a given point. This means that for any given point on the plane (the 

origin is always a convenient point), there is exactly one line that is perpendicular to the 

plane at that point. Now what happens when you add the fourth dimension? In 4-space, the 

orthogonal complement to a plane is a plane. This means that every line in one plane is 
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perpendicular to every line in the other plane. To understand how this is possible, think 

about how it works in 3-space and refer to Figure 22.6, where we are depicting R4 the 4-

space with x, y, z, w coordinates. Now look at the xy-plane and the zw-plane. What do you 

notice? Why is every line through the center in one of these planes perpendicular to every 

line through the center in the other? 

 
Figure 22.6    Orthogonal planes 

 Knowing this, look at the two great circles in terms of the planes in which they lie, 

and look at the relationships between these two planes, that is, where and how they 

intersect. Also, try to understand how great circles can be everywhere equidistant.  

 If we rotate along a great circle on a 2-sphere, all points of the sphere will move 

except for the two opposite poles of the great circle. If you rotate along a great circle on a 

3-sphere, then the whole 3-sphere will move except for those points that are a quarter great 

circle away from the rotating great circle. Therefore, if you rotate along one of the two 

great circles you found above, the other great circle will be left fixed. But now rotate the 

3-sphere simultaneously along both great circles at the same speed. Now every point is 

moved and is moved along a great circle! 

b.  Write an equation for this rotation (in x, y, z, w coordinates) and check that each point 

      of the 3-sphere is moved at the same speed along some great circle. Show that all of  

      the great circles obtained by this rotation are equidistant from each other (in the sense 

      that the perpendicular distance from every point on one great circle to another of 

      the great circles is a constant).  

 These great circles are traditionally called Clifford parallels, named after William 

Clifford (1845–1879, English). See [DG: Thurston], pp 103–04, and [DG: Penrose] for 

readable discussions of Clifford parallels.  

 
A computer generated view of the Clifford parallels in S 3 [Orbifold construction of the modes of the Poincaré 
dodecahedral space - Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/A-
computer-generated-view-of-the-Clifford-parallels-in-S-3_fig1_231086397 [accessed 6 Feb, 2020]] 
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Figure 22.7 Symmetries in Euclidean, spherical, and hyperbolic spaces 

 

PROBLEM 22.5   HYPERBOLIC AND SPHERICAL SYMMETRIES  

We are now ready to see that the symmetries of great circles and great 2-spheres in a 3-

sphere [and great semicircles and great hemispheres in a hyperbolic 3-space] are the same 

as the symmetries of straight lines and (flat) planes in 3-space. If g is a great circle in the 

3-sphere, then let g⊥ denote the great circle (from Problem 22.4) every point of which is 

π/2 from every point of g. 

a.  Check the entries in the table (Figure 22.7), which gives a summary of various  

      symmetries of lines, great circles, and great semicircles and of (flat) planes,      

      great 2-spheres, and great hemispheres. 

 DEFINITION:  A surface in a 3-sphere or in a hyperbolic 3-space is called totally 

 geodesic if, for any pair of points on the surface, there is a geodesic (with respect to 

 S3 or H3) that joins the two points and lies entirely in the surface. 

 

b.  Show that a great 2-sphere in S3 (with radius r) is a totally geodesic surface and 

      is itself a 2- sphere of the same radius r. 
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c. Show that a great hemisphere is a totally geodesic surface in H3 (with radius r)        

and is isometric to a hyperbolic plane with the same radius r.  

 

In the upper-half-space model there is a hyperbolic reflection that takes every great 

hemisphere to a plane perpendicular to the boundary. (See Problem 22.3.)  

 

PROBLEM 22.6   TRIANGLES IN 3-DIMENSIONAL SPACES 

 
Show that if A, B, C are three points in S3 [or in H3] that do not all lie on the same 

geodesic, then there is a unique great 2-sphere [hemisphere], G2, containing A, B, 

C. Thus, we can define ΔABC as the (small) triangle in G2 with vertices A, B, C. 

With this definition, triangles in S3 [or in H3] have all the properties that we have 

been studying of small triangles on a sphere [or triangles in a hyperbolic plane]. 

SUGGESTIONS  

Think back to the suggestions in Problems 22.2 and 22.3 — they will help you here, as 

well. Take two of the points, A and B, and show that they lie on a unique plane through the 

center, O, of the 3-sphere [or a unique plane perpendicular to the boundary of R3+]. Then 

show that there is a unique (shortest) geodesic in this plane. See Figure 22.8. 

 
Figure 22.8    Great circle through A and B 

 Think of A, B, and C as defining three intersecting great circles [or semicircles]. On 

a 3-sphere, look at the planes in which these great circles lie and where the two planes lie 

in relation to one another. In hyperbolic 3-space, use a hyperbolic reflection to send one of 

the great semicircles to a vertical line.  

 Be sure that you show that the great 2-sphere (hemisphere) containing A, B, C 

is unique. 

 




