
Chapter 14 

PROJECTIONS OF A SPHERE ONTO A PLANE 

 

Geography is a representation in picture of the whole known world together with the phenomena 

which are contained therein. 

... The task of Geography is to survey the whole in its proportions, as one would the entire head. 

For as in an entire painting we must first put in the larger features, and afterward those detailed 

features which portraits and pictures may require, giving them proportion in relation to one 

another so that their correct measure apart can be seen by examining them, to note whether they 

form the whole or a part of the picture. ... Geography looks at the position rather than the quality, 

noting the relation of distances everywhere, ... 

It is the great and the exquisite accomplishment of mathematics to show all these things to the 

human intelligence ... — Claudius Ptolemy, Geographia, Book One, Chapter I 

A major problem for map makers (cartographers) since Ptolemy (approx. 85–165 A.D., 

Alexandria, Egypt) and before is how to represent accurately a portion of the surface of a 

sphere on the plane. It is the same problem we have encountered when making drawings 

to accompany our discussions of the geometry of the sphere. We shall use the terminology 

used by cartographers and differential geometers to call any one-to-one function from a 

portion of a sphere onto a portion of a plane a chart. As Ptolemy states in the quote above, 

we would like to represent the sphere on the plane so that proportions (and thus angles) are 

preserved and the relative distances are accurate. For a history and mathematical 

descriptions of charts of the sphere, see [CE: Snyder]. For a history and discussion of the 

political, social, and ethnic controversies that have been and continue to be connected with 

maps and map making, see [CE: Monmonier]. For a discussion of how maps and the stars 

were used to determine the position of the earth, see the delightful book [CE: Sobel]. 

History of specific map projections is given in the last section of this chapter. 

 In this chapter we will study various charts for spheres. We will need properties of 

similar triangles that are investigated in Problem 13.4. 
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PROBLEM 14.1 CHARTS MUST DISTORT 

It is impossible to make a chart without some distortions. 

 Which results that you have studied so far show that there must be distortions when 

 attempting to represent a portion of a sphere on the plane? 

Nevertheless, there are projections (charts) from a part of a sphere to the plane that do take 

geodesic segments to straight lines, that is, that preserve the shape of straight lines. There 

are other projections that pre- serve all areas. There are still other projections that preserve 

the measure of all angles. In this chapter, we will study these three types of projections on 

a sphere, and in Chapter 17 we will look at projections of hyperbolic planes. 

 

PROBLEM 14.2 GNOMIC PROJECTION 

Imagine a sphere resting on a horizontal plane. See Figure 14.1. A gnomic projection is 

obtained by projecting from the center of a sphere onto the plane. Note that only the lower 

open hemisphere is projected onto the plane; that is, if X is a point in the lower open 

hemisphere, then its gnomic projection is the point, g(X), where the ray from the center 

through X intersects the plane. 

a. Show that a gnomic projection takes the portions of great circles in the lower 

hemisphere onto straight lines in the plane. (A mapping that takes geodesic 

segments to geodesic segments is called a geodesic mapping.)  

b. Gnomic projection is often used to make navigational charts for airplanes and ships. 

Why would this be appropriate? 

Hint: Start with our extrinsic definition of “great circle.  

 

” 
 

Figure 14.1 Ancient gnomon and gnomic projection 

 



Chapter 14 Projections of a Sphere onto a Plane    186 
 

PROBLEM 14.3 CYLINDRICAL PROJECTION 

 

Figure 14.2 Cylindrical projection 

Imagine a sphere of radius r, but this time center it in a vertical cylinder of radius r and 

height 2r. The cylindrical projection is obtained by projecting from the axis of the cylinder, 

which is also a diameter of the sphere; that is, if X is a point (not the north or south poles) 

on the sphere and O(X) is the point on the axis at the same height as X, then X is projected 

onto the intersection of the cylinder with the ray from O(X) to X. See Figure 14.2. 
 

a. Show that cylindrical projection preserves areas. (Mappings that preserve area are 

variously called area-preserving or equiareal.) 

Geometric Approach: Look at an infinitesimal piece of area on the sphere 

bounded by longitudes and latitudes. Check that when it is projected onto the cylinder the 

horizontal dimension becomes longer but the vertical dimension becomes shorter. Do 

these compensate for each other? 

 Analytic Approach: Find a function f from a rectangle in the (z,)-plane onto the 

sphere and a function h from the same rectangle onto the cylinder such that c(f(z,)) = 

h(z,). Then use the techniques of finding surface area from vector analysis. (For two 

vectors A, B, the magnitude of the cross product |A × B| is the area of the parallelogram 

spanned by A and B. An element of surface area on the sphere can be represented by | fz × 

f | dz d, the cross product of the partial derivatives.) 

 We can easily flatten the cylinder onto a plane and find its area to be 4r2. We thus 

conclude the following: 

b. The (surface) area of a sphere of radius r is 4 r2. 

 

Anamorphosis – distorted watercolor that can be seen in the cylindrical mirror  
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PROBLEM 14.4 STEREOGRAPHIC PROJECTION 

Imagine the same sphere and plane, only this time project from the uppermost point (north 

pole) of the sphere onto the plane. This is called stereographic projection. 

 

a. Show that stereographic projection preserves the sizes of angles.  

(Mappings that preserve angles are variously called angle- preserving, isogonal, 

or  conformal.) 
 
SUGGESTIONS 

There are several approaches for exploring this problem. Using a purely geometric 

approach requires visualization but only very basic geometry. An analytic approach 

requires knowledge of the differential of a function from R2 into R3. See Figure 14.3. 

 

Figure 14.3 Stereographic projection is angle-preserving 

Geometric Approach: An angle at a point X on the sphere is determined by two 

great circles intersecting at X. Look at the two planes that are determined by the north 

pole N and vectors tangent to the great circles at X. Notice that the intersection of these 

two planes with the horizontal image plane determines the image of the angle. Because 

the 3-dimensional figure is difficult for many of us to imagine in full detail, you may find 

it helpful to consider what is contained in various 2-dimensional planes. In particular, 

consider the plane determined by X and the north and south poles, the plane tangent to the 

sphere at X, and the planes tangent to the sphere at the north and south poles. Determine 

the relationships among these planes. 

 Analytic Approach: Introduce a coordinate system and find a formula for the 

function s−1 from the plane to the sphere, which is the inverse of the stereographic projection 

s. Use the differential of s−1 to examine the effect of s−1 on angles. You will need to use the 

dot (inner) product and the fact that the differential of s−1 is a linear transformation from the 

(tangent) vectors at s(X) to the tangent vectors at X. 

 
 

s(X
) 
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 b.  Show that stereographic projection takes circles through N to straight lines and 

      circles not through N to circles. (Such mappings are called circle-preserving.) 

  

Figure 14.4 Stereographic projection is circle-preserving 

SUGGESTIONS 

Let  be a circle on the sphere with points A and B and let  , A, B be their images under 

stereographic projection. Form the cone that is tangent to the sphere along the circle  and 

let P be its cone point (note that P is not on the sphere). See Figure 14.4. Thus, the segments 

BP and AP are tangent to the sphere and have the same length r. Look in the plane 

determined by N, A, and P and show that PAA is congruent to AAP. You probably 

have already proved this in part a; if not, look at the plane determined by N, A, and P and 

its intersections with the plane tangent to the north pole N and the image plane . In this 

plane draw line PA parallel to PA. Then use similar triangles and Problem 6.2c to show 

|𝐴′𝑃′| = 𝑟 (
|𝑁𝑃′|

|𝑁𝑃|
), 

and thus   is a circle with center at P’. 

 

HISTORY OF STEREOGRAPHIC PROJECTION AND ASTROLABE 

The earliest known uses of projections of a sphere onto the plane were in Greece and were 

for purposes of map making (as described in the quote at the beginning of this chapter from 

Ptolemy’s Geographia). As we discussed in Chapter 2, the Greeks (following the 

Babylonians) in 4th century B.C. considered the visible cosmos to be a sphere with three 

different coordinate systems: celestial, ecliptic, and horizon. At least as early as 2nd century 

B.C., the Greek and later the Arab mathematicians used the sphere projections that we have 

studied to represent these three spheres on the plane. The Greeks called it “unfolding the 

sphere”. 

 The earliest references to stereographic projection in literature are given by 

Vitruvius (Roman, ~100 B.C.), Ten Books on Architecture, and in Ptolemy’s Representation 
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of the Sphere in the Plane. The ancients knew how to prove (using propositions from 

Apollonius’ Conics [AT: Appollonius]) some properties of stereographic projection, such 

as the following: Circles through the pole are mapped onto straight lines and all other 

circles are mapped onto circles. (See Problem 14.4b.) 

 In Ptolemy’s work the description of stereographic projection was used for a 

horoscopic instrument for determining time. Later the word horoscope denoted the point 

of intersection of the ecliptic and the eastern part of the horizon determined by means of 

this instrument. Probably Theon of Alexandria (Greek, ?335–?405) was the first to 

combine stereo- graphic projections of the three-sphere model onto a single compact planar 

instrument called an astrolabe, as pictured in Figure 13.15. Theon’s work has not survived, 

but we know of it because of two surviving works on the astrolabe: On the Construction 

and Use of the Astrolabe by Philoponus (6th century Alexandria) and the Treatise on the 

Astrolabe by Severus Sebokt (7th century Syria). 

 The astrolabe was widely known in the medieval East and Europe from the 9th 

century until the 19th century and used to solve problems concerning the apparent positions 

of the stars, sun, moon, and planets for use in navigation, time-telling, and astrology. In the 

Middle Ages stereo- graphic projection was often called “astrolabe projection.” The 

astrolabe allowed for determining relative positions to about 1º accuracy. 

 The term “stereographic projection” was apparently first introduced by Francois 

D’Aguillon (1566–1617) in his Six Books of Optics. The earliest exposition of the theory 

of stereographic projection with proofs was the Book on the Construction of the Astrolabe 

by the 9th-century Baghdad scholar al-Farghani. Mathematicians in the medieval East also 

tried to use other geometric transformations for constructing astrolabes. The 10th-century 

scholar al-Saghani suggested a projection from an arbitrary point on the axis — if that point 

is the center of the sphere, then this projection is the gnomic projection of Problem 14.2. 

In such a projection circles on the sphere are mapped onto conics. Al-Biruni (973–1048, 

now Uzbekistan) described several ways of constructing an astrolabe; including the use of 

a cylindrical projection (Problem 14.3).  

 

 
Figure 14.5 Astrolabe 
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In the Figure 14.5 the concentric circles on the background plate about the center represent 

stereographic projection of the celestial sphere from its south pole — the center of the 

astrolabe represents the north star, the outer rim represents the southern tropic (the furthest 

the sun goes south, about –24º), and the concentric circle about two-thirds of the way out 

is the celestial equator. The metal annulus that is off-center is the stereographic projection 

of the ecliptic (the path of the sun and planets) — this projection is a circle but the equal 

divisions of the ecliptic (the 360 degrees of the ecliptic) are not projected to equal arcs. The 

tight system of circles on the background plate of the astrolabe (and mostly above the 

center) is the projection of the coordinates of the visible hemisphere with the horizon (not 

complete) on the outside and the image of the zenith (the point in the sky directly overhead) 

where the coordinate circles converge. Since the relationship between the North Star and 

the zenith changes with latitude, a given astrolabe is only accurate at one latitude (about 

46º north for the one in the photo). 

 For more about astrolabes and map making, see [HI: Rosenfeld], pp. 121–130, [HI: 

Evans], pp. 141–162, and [HI: Berggren], pp. 165–186. See also Divided Spheres: 

Geodesics and the Orderly Subdivision of the Sphere, Edward S. Popko, CRC Press, 2012. 

 

 
Planispheric Astrolabe by Muhammad Zaman al-Munajim al 

Asturlabi, Iran, 1654-55 (the Metropolitan Museum of Art) 

This astrolabe is composed of five stacked circular plates 

engraved with terrestrial latitudes, rotating around the axis of a 

central pin. The uppermost pierced brass plate points toward 

several fixed stars to indicate their celestial positions. 




