Chapter 6

Limits of Metrics Spaces

A key ingredient in the proof of the Orbifold Theorem is the analysis of
limits of metric spaces. In this chapter we give a short account of Gromov’s
theory of limits of metric spaces as re-interpreted using e-approximations
by Thurston. See Gromov’s book [32] for a detailed treatment with many

interesting applications.

Roughly, there is an “e-approximation” between two metric spaces if the
spaces look the same if we ignore details of size € or smaller. From this we
define the Gromov-Hausdorff distance between two compact metric spaces,
and convergence of sequences of metric spaces.

This generalizes the classical notion of Hausdorff distance between two

subsets A, B of a metric space X:
dy(A,B) =inf{e >0: A C N(B,¢;X) and B C N(A4,¢ X)},
where
NArX)={z€X : Ja€ A d(z,a) <71}

denotes the (open) neighbourhood of radius r around 4 in X. (See [5] for
a detailed discussion of the Hausdorff distance and many geometric appli-

cations). .

The Gromov-Hausdorff distance also generalizes the notion of Lipschitz
distance between homeomorphic metric spaces. A bijection f : X — Y is
K -bilipschitz if

Ve#z' € X, 1/K <dy(fz, fz')/dx(x,z) S K.

Two metric spaces are close in the Lipschitz sense if there is a (1 + €)-
bilipschitz map between them with € small.
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Let X be a metric space. Then A C X is an e-net or e-dense if for all
x € X there exists a € A such that d(z,a) < e.

The basic idea is to approximate a compact metric space X by a finite
e-net A; we want information about a metric space accurate to within e.
If X,Y are compact metric spaces, we regard them as “close” if there are
finite e-nets A C X and B C Y and a (1 + ¢€)-bilipschitz map f : A — B.

The (!O!’,S —_—
give finite
approximations

6.1 e-approximations

Definition: An e-approrimation between metric spaces X and Y is a rela-
tion R C X x Y such that

(1) the projections px : R — X and py : R — Y are both onto,

(2) if zRy and z'Ry’ then |dx (z,z') — dy (v,¥')] < e.

This defines a relation on metric spaces which is symmetric and almost
transitive: if X is an e-approximation to Y and Y is an €¢/-approximation to
Z, then X is an (e + €)-approximation to Z.

We begin with some examples.

Example 6.1. (a) Let A be an e-net for X. Then we can define a 2¢-
approximation R C A x X by: aRz < d(a,z) <e.
(b) A O-approximation is an isometry.

Example 6.2. Suppose that X,Y are subsets of a metric space Z. Define
arelation RC X xY byzRyifrxr € X,y €Y and dz(z,y) < e Thisis a
2e-approximation if Y C N(X,¢;Z) and X C N(Y,¢; Z). This leads to the
Hausdorff metric on closed subsets of Z.

We also say that a sequence {X,} of metric spaces converges to Y and
write X;, — Y if there are ¢,-approximations between X, and Y with
e, — 0 as n — oo.
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Example 6.3.
(a) Tp = S!x (1/n)S! converges to the circle S?.
> t
S'x (1m) S'= | Un
U

S

(b) X, = Euclidean solid torus obtained from a cylinder of height 1/n by
gluing ends with 180° twist converges to a 2-dimensional Euclidean cone

with angle 7.
T
IIn n-oe /‘
—_——

2-dimensional
Euclidean cone

rotation
by

Exercise 6.4. What happens if we modify example (b) by varying the twist
angles 67

Proposition 6.5. Let X,Y be compact metric spaces. Assume for alle > 0
there is an e-approzimation between X and Y. Then X is isometric to Y.

Proof. Let R, C X xY be an (1/n)-approximation. There exists a count-
able dense set A = {z¥} C X. Choose y* € Y with z*R,y*. Choose a
subsequence of y} converging to y!, then a sub-subsequence of y2 converg-
ing to y2, etc. After repeating this process, we define f : A — Y by
f(a*) =y~

We claim that f is an isometry onto f(A) and therefore 1-1. This is



110 CHAPTER 6. LIMITS OF METRICS SPACES

because z'Rny. & 27 Ryl implies
|dX(mi) SL‘]) - dY(yiza ygl)l < 1/n

Taking limits gives dx (z*,z7) = dy (v*, y%) which proves the claim. Since f
is uniformly continuous and A is dense in X and Y is complete, it follows
that there exists a unique continuous extension f : X — Y. Further, f(A)
is dense in Y because A is dense in X thus the image of A under R, is
1/n-dense in Y. Since X is compact it follows that f(X) is closed. Hence f
is onto. O

Corollary 6.6. One can define a metric on the family F of isometry classes
of compact metric spaces, by putting

d(X,Y) = inf{e | there is an e—approximation between X and Y}.

Further, metric spaces with finitely many points are dense.

(Note that diam < oo for compact spaces implies d is always finite.)

Remarks on related definitions:

For subsets of a fixed metric space, our definition of distance is closely
related to the Hausdorff distance on closed subsets. Gromov uses this in [32]
to define “Hausdorff convergence” of metric spaces. Gromov’s definition of
convergence of metric spaces is somewhat stronger than ours. Gromov’s dis-
tance dg(X,Y) between metric spaces X and Y is the infimum of Hausdorff
distance between f(X) and g(Y) over all isometric embeddings f : X — Z,
g 'Y — Z in metric spaces Z. It’s clear that 2dg(X,Y) > d(X,Y) by
example 6.2 above.

Exercise 6.7. Show that 2dg(X,Y) = d(X,Y), as remarked by Bridson
and Swarup in [13]. [Hint: Given an e-approximation R C X x Y, construct
a suitable metric d on the disjoint union Z = X UY which agrees with the
given metrics dx on X, dy on Y]

6.2 Limits with basepoints

For non-compact space we introduce basepoints.

Definition: (X,,z,) — (Y,y) converges in the Gromov-Hausdorff topology
if for all r, e > 0 and for all n sufficiently large, there is an e-approximation
R, between N(z,,7;X,) and N(y,r;Y) such that =, R,y.

The idea is that “big neighbourhoods of the basepoint are almost iso-
metric”.
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Example 6.8. C,, = hyperbolic torus with cone point 7/n converges to a
complete hyperbolic punctured torus.

—_—
o C,

: complete hyperbolic
once punctured torus

Limits will generally depend on choice of basepoint.

Example 6.9. A sequence of hyperbolic genus 3 surfaces with a long thin
neck developing can converge to the three limits shown below for different
choices of basepoints.

l

«.4

Rl

Given an e-approximation R C X x Y if xgRyy we often wish to re-
strict R to an approximation between the r-neighbourhoods N(zg,r; X)
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and N (yo,7;Y). But there is a potential problem here: the projection onto
the factors may not be onto.

The smear of R is the 3e-approximation R’ C X x Y given by:
zRy < 32’ € X 3y € Y such that

d(z,z') < e and d(y,y’) <e and z'Ry'.

If zoRyo and r > 0 then R’ restricts to a 3e-approximation between N (zg,7; X)
and N(yo,7;Y).

With this definition of Gromov-Hausdorff convergence we have: n=1Z —
Q and n~1Z — R. To get unique limits, we need to restrict the metric spaces
involved. A metric space is called proper if every closed ball is compact. Note
that every proper metric space is complete.

Corollary 6.10. Let X,Y be proper metric spaces. If for all r,e > 0
there is an e-approzimation between N(x,7;X) and N(y,r;Y) then (X, x)
is isometric to (Y, y).

Corollary 6.11. Let X;,Y,Y’ be proper metric spaces. If (X;,z;) — (Y,y)
and (X;,z;) — (Y',y') then (Y,y) is isometric to (Y',y').

Remark 6.12.

(a) One can always assume that limits are complete, since the distance
between a metric space and its completion is zero.

(b) If closed balls in X; are compact for all 7, and X; — Y, with Y complete,
then all closed balls in Y are also compact. This follows from the fact that
a metric space is compact if and only it is complete and totally bounded
(i.e. for all € > 0, there is a finite covering by e-balls).

(c) The condition that closed balls are compact fails for infinite dimensional
spaces. For example, consider R* with the supremum metric. Then the
ball of radius 1 is non-compact; e.g. the sequence (1,0,0,...),(0,1,0,...),...
doesn’t converge.

Example 6.13.

(a) n1Z — E!

(b) nS! — E!

(c) S x (n7181) — SL.

(d) Let H*(K) be “hyperbolic space” of constant curvature K < 0, obtained
by rescaling the metric on H". Then H*(K) — E” as K — 0.

(e) Let C,, be the cone on n points with a path metric such that each edge
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has length 1. Then the sequence {C),,} does not converge. (There is no finite
approximation to the ball of radius 1 in the “limit”.)

AW\ W\

Exercise 6.14. Describe the possible geometric limits of sequences of 2-
dimensional Euclidean tori. (Recall: these correspond to isometry classes
of lattices in R?.)

6.3 Gromov’s compactness theorem

We now examine the question: When does a sequence of metric spaces have
a convergent subsequence?

Definitions: The e-count, #(e, X), of a metric space X is the minimum
number of balls of radius € needed to cover X.

A collection of based metric spaces (X, T) is uniformly totally bounded
if for all €,7 > 0 there exists K > 0 such that #(e, N(zn,7; X,)) < K.

Theorem 6.15 (Gromov’s Compactness Theorem). ([32]) If (X;, z;)
s a sequence of proper metric spaces then the following are equivalent:

(1) there is a subsequence (Xp,,zn,) — (Y,y) with Y complete.

(2) there is a subsequence (Xn;, Tn;) which is uniformly totally bounded.

Proof. We show that (2) implies (1): Assume the sequence satisfies (2).
For each € and each ¢, we can choose K, e-balls covering B/ (x;) C Xi.
Let P.; be the set of centres of these balls together with the base point
z;. Then each P, ; is a finite set (containing < K, + 1 points), and is an
3e-approximation to B /c(x;). The metric on P ; is described by a distance

function
d; - {1,2,..., K.+ 1} — [0,2/¢].

By compactness there is a convergent subsequence of d;; hence there is a
subsequence P ;; converging to a limiting (finite) metric space L. (contain-
ing < K, + 1 points). (Possibly some points coalesce in the limit, but this
won’t matter.) Let [, be the limit of the base points Ty,
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Now choose a collection of Ko €/2-balls covering By/.(;), and let
P,/5; = {centres of these €¢/2 balls} U P ;.

We can choose a further subsequence such that P.5; — L./p; then L.
embeds isometrically in L /.
Continuing in this way, we obtain

LeCLyyCLygC...

Let L be the metric completion of | J;  L/on and | € L the limit of the base
points. We claim that this is the limit of a (diagonal) subsequence of the
X;.

By our construction, we have a subsequence X; such that for all € >
0, there is an e-approximation between B;/(r;) and a subset L./3 of L.
Further, each L./on is an €/2™-approximation to L./on+1, so is an e/2" 1.
approximation to L. Hence, X; — L. O

Exercise 6.16. Complete the above proof by showing that (1) implies (2).

6.4 Limits of hyperbolic cone-manifolds

We want to know :

(1) when a sequence of 3-dimensional hyperbolic cone-manifolds has a sub-
sequence which converges to a complete metric space Y.

(2) when Y is a 3-dimensional hyperbolic cone-manifold.

Let M be a 3-dimensional hyperbolic cone-manifold; then in particular
M is complete. Let D be a Dirichlet domain for M, and zo € D c H3. If
M has cone angles < 27, then the natural quotient map q : D — M is
onto. But

#(67 N(q(xo), L M)) < #(6’ N(II?(), L D)) < #(6/2’ N(.’L‘o, T Hs))

Therefore, 3-dimensional hyperbolic cone-manifolds with cone angles in
(0,27] are uniformly totally bounded. Then Gromov compactness implies
that (1) always holds.

Note: This is false if cone angles > 27 are allowed. One may construct a
hyperbolic surface with more and more cone points with cone angles larger
than 27 in a small region. This can be done so that the area of this region
increases without bound.



6.4. LIMITS OF HYPERBOLIC CONE-MANIFOLDS 115

We have seen that a sequence of n-manifolds can converge to a space of
dimension < n. We need a way to rule out this kind of behaviour.

If M is a Riemannian n-manifold and z € M, the injectivity radius at x
is the radius of the “largest embedded ball” in M with centre z.

Proposition 6.17. Suppose (Mg, zy) is a sequence of n-manifolds with
constant curvature K. Suppose for all points x € My, that inj(x) > injo. If
(Mp,xn) — (Y,y0) then Y is an n-manifold of curvature K.

Proof. Giveny € Y choose z,, € M,, with z, R,y. After smearing we can as-
sume that N(zn,injo; Myp) — N(y,injo; Y). But N(z,, injo; My,) is isomet-
ric to N (p, r; H"(K)), therefore N (y, injo; Y') is isometric to N(p, r; H*(K)).

O

We want to adapt this proof to cone-manifolds. This raises the question
of what is an appropriate notion of injectivity radius in a cone-manifold?
(With the usual definition inj(z) — 0 as z — X.) The role of injectivity
radius in the above proof is to provide a standard neighbourhood of a certain
size. The proof uses that the limit of such neighbourhoods is again such
a neighbourhood. In a cone-manifold the local geometry is that of a cone.
We will see that there is a compact family of such neighbourhoods, and this
is what is used to extend the proof above.

A cone in a n-dimensional cone-manifold M is a subset isometric to a
cone on a spherical (n —1)-dimensional cone-manifold, i.e. a “standard cone
neighbourhood” as defined in section 3.2.

Definition: inj(z) is the largest r for which N(x,r; M) is contained in a
cone:

inj(z) =sup{ r >0 : 32 € M I’ >0 s.t. N(x,r; M) C N(«',r'; M)
N(',r'; M) = a cone }.

Note that we do not assume that the standard neighbourhood is centred
at the point z. This is to avoid difficulties near cone points: a point z near
the cone locus has only a small standard ball centred at z; however there
may be much larger standard cones centred at cone points which contain z.
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Cone:

large neighbourhood
of x lies in the
cone based at x'

only small
embedded balls
centred at x

In general, the injectivity radius at a point z will be small if there is
a short geodesic loop based at xz, or if two different pieces of the singular
locus are close to x.

Example 6.18. The injectivity radius at some points on an infinite Eu-
clidean pillowcase are shown below. Maximal open balls about the points
contained in standard cones are also indicated.

Infinite Euclidean pillowcase:

inj=1

With this definition we obtain:

Proposition 6.19. Let (M,,z,) be a sequence of cone-manifolds, with
M, of constant curvature k, € [—1,0] and K, — Koo. Suppose that there
are Og,injo > 0 such that all cone angles are in the range [fy, 7] and
inj(x, Mp) > injg for all x € M, and all n. Then there is a subsequence
converging to a cone-manifold (M, Zso) Of curvature Koo.

The essential reason is that the cones of fixed radius r form a compact
set of metric spaces, namely the cones on: S%(a, 3,7), S%(a,a) or S? with
«, :87 Y € [o(la ﬂ'].
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6.5 Bilipschitz convergence

Theorem 6.20. Suppose compact hyperbolic 3-manifolds M, converge in
the Gromov-Hausdorff topology to a compact hyperbolic 3-manifold M.
Then for all € > 0 and for all sufficiently large n there is a (14 €)-bilipschitz
map f: My — M,.

Proof. (Sketch) There exists injo > 0 such that the injectivity radius of
every point in every M, and in M, is bigger than injo. (There is a lower
bound on injectivity radius in M, because it is compact. Since M,, — M,
for large n the injectivity radius in M, is nearly equal to that in the limit.)
Let K be a geodesic triangulation of My, such that every simplex o € K
is small compared to injo. Let V = {v1,---,vr} be the vertices of K. Let
R, be a 1/n-approximation between M, and M. Choose v} € M, with
VPR v;. If vg, vp, ve, vg € V span a 3-simplex o € K then v, vp,vg, vy € My
span a small geodesic simpler in a standard metric ball. Thus we get a
geodesic triangulation K, of M,, combinatorially the same as K. Also, the
corresponding edge lengths are nearly equal. Use e,-approximations with
€n << € - (edge lengths of K) to map the vertices into M,. This extends
to a simplicial map f : K — K, C M, which is (1 + €)-bilipschitz where
e — 0 asn— oo. O

Extensions:

(1) The previous result extends easily to cone-manifolds: this just requires
some extra care constructing a thin geodesic triangulation near . Note that
bilipschitz convergence also implies convergence of cone angles, volume, etc.
(2) To extend the result to the case of a non-compact limit My, requires
estimates on the decay of injectivity radius described in theorem 7.8. In this
case we get bilipschitz maps from any compact subset of M, into the M,.
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(3) The result also extends easily to a sequence of cone manifolds M,,, where
each has constant curvature K, lying in the interval [-1,0].

Theorem 6.21. Suppose that My, is a sequence of complete hyperbolic cone
3-manifolds. Suppose that (M,,x,) converges in the Gromov-Hausdorff
topology to a complete hyperbolic cone 3-manifold (My, To,). Then given
€ > 0 and R > 0, for all sufficiently large n there is a (1 + €)-bilipschitz
map f : N(ZToo, R, Mx) — My, with d(f(2x),zn) < €. Furthermore f
maps singular set to singular set.

6.6 Convergence of holonomy

If a sequence (M, x,) of 3-dimensional hyperbolic cone-manifolds converges
to a hyperbolic cone-manifold (M, ), Wwe want convergence of the holon-
omy representations

hyn : m (M, — £(M,)) — PSL(2,C).

Theorem 6.22. Assume that for all large n there are (1 + €,)-bilipschitz
homeomorphisms

Pn : (Moo, £(Mso)) — (My, B(My))
with €, — 0 as n — oco. Let
n* 1 T (Moo — E(Moo)) — m1(My — 2(My))

be the induced homomorphism of fundamental groups, and assume that
T (Mo — X£(My)) is finitely generated. Then h, o ¢ne — hoy in the al-
gebraic topology. This means there are A, € PSL(2,C) such that
Anhn($nea) ALY — hoo(a@) for all a € T (Moo — 2(My)).

Idea of Proof: Write X,, = M,, — X,,. Th~en the bilipschitz convergence
implies that the developing maps dev, : X, — H? can be adjusted by
isometries g, so that

gnodevno%—-»devoo:.i'oo—»]}ﬂ:)'

uniformly on compact subsets. Applying this to a large compact subset of
Xoo containing lifts of loops generating 7, (X ) gives the result. O



