
Chapter 6

Limits of Metrics Spaces

A key ingredient in the proof of the Orbifold Theorem is the analysis of
limits of metric spaces. In this chapter we give a short account of Gromov’s
theory of limits of metric spaces as re-interpreted using $\epsilon$-approximations
by Thurston. See Gromov’s book [32] for a detailed treatment with many
interesting applications.

Roughly, there is an $\epsilon$-approximation” between two metric spaces if the
spaces look the same if we ignore details of size $\epsilon$ or smaller. From this we
define the Gromov-Hausdorff distance between two compact metric spaces,
and convergence of sequences of metric spaces.

This generalizes the classical notion of Hausdorff distance between two
subsets $A,$ $B$ of a metric space $X$ :

$ d_{H}(A, B)=\inf${ $\epsilon>0:A\subset N(B,$ $\epsilon;X)$ and $B\subset N(A,$ $\epsilon;X)$ },

where
$N(A, r;X)=\{x\in X : \exists a\in Ad(x, a)<r\}$

denotes the (open) neighbourhood of radius $r$ around $A$ in X. (See [5] for
a detailed discussion of the Hausdorff distance and many geometric appli-
cations).

The Gromov-Hausdorff distance also generalizes the notion of Lipschitz
distance between homeomorphic metric spaces. A bijection $f$ : $X\rightarrow Y$ is
K-bilipschitz if

$\forall x\neq x^{\prime}\in X$ , $1/K\leq d_{Y}(fx, fx^{\prime})/d_{X}(x, x^{\prime})\leq K$ .

Two metric spaces are close in the Lipschitz sense if there is a $(1 +\epsilon)-$

bilipschitz map between them with $\epsilon$ small.

107



108 CHAPTER 6. LIMITS OF METRICS SPACES

Let $X$ be a metric space. Then $A\subset X$ is an $\epsilon$ -net or $\epsilon$ -dense if for all
$x\in X$ there exists $a\in A$ such that $ d(x, a)<\epsilon$ .

The basic idea is to approximate a compact metric space $X$ by a finite
$\epsilon$-net $A$ ; we want information about a metric space accurate to within $\epsilon$ .
If $X,$ $Y$ are compact metric spaces, we regard them as “close” if there are
finite $\epsilon$-nets $A\subset X$ and $B\subset Y$ and a $(1+\epsilon)$-bilipschitz map $f$ : $A\rightarrow B$ .

6.1 $\epsilon$-approximations

Definition: An $\epsilon$ -approximation between metric spaces $X$ and $Y$ is a rela-
tion $R\subset X\times Y$ such that

(1) the projections $p_{X}$ : $R\rightarrow X$ and $p_{Y}$ : $R\rightarrow Y$ are both onto,
(2) if $xRy$ and $x^{\prime}Ry^{\prime}$ then $|d_{X}(x, x^{\prime})-d_{Y}(y, y^{\prime})|\leq\epsilon$ .

This defines a relation on metric spaces which is symmetric and almost
transitive: if $X$ is an $\epsilon$-approximation to $Y$ and $Y$ is an $\epsilon^{\prime}$-approximation to
$Z$ , then $X$ is an $(\epsilon+\epsilon^{\prime})$-approximation to $Z$ .

We begin with some examples.

Example 6.1. (a) Let $A$ be an $\epsilon$-net for $X$ . Then we can define a $2\epsilon-$

approximation $R\subset A\times X$ by: $ aRx\Leftrightarrow d(a, x)<\epsilon$ .
(b) A O-approximation is an isometry.

Example 6.2. Suppose that $X,$ $Y$ are subsets of a metric space $Z$ . Define
a relation $R\subset X\times Y$ by $xRy$ if $x\in X,$ $y\in Y$ and $ d_{Z}(x, y)\leq\epsilon$ . This is a
$ 2\epsilon$-approximation if $Y\subset N(X, \epsilon;Z)$ and $X\subset N(Y, \epsilon;Z)$ . This leads to the
Hausdorff metric on closed subsets of $Z$ .

We also say that a sequence $\{X_{n}\}$ of metric spaces converges to $Y$ and
write $X_{n}\rightarrow Y$ if there are $\epsilon_{n}$-approximations between $X_{n}$ and $Y$ with
$\epsilon_{n}\rightarrow 0$ as $ n\rightarrow\infty$ .
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Example 6.3.
(a) $T_{n}=S^{1}\times(1/n)S^{1}$ converges to the circle $S^{1}$ .

$S^{1}x(1/n)S^{1}=$

1

$S_{1}$ $S_{4}$ $S_{10}$

(b) $X_{n}=Euclidean$ solid torus obtained from a cylinder of height $1/n$ by
gluing ends with $180^{o}$ twist converges to a 2-dimensional Euclidean cone
with angle $\pi$ .

2-dimensional
Euclidean cone

Exercise 6.4. What happens if we modify example (b) by varying the twist
angles $\theta$ ?

Proposition 6.5. Let $X,$ $Y$ be compact metric spaces. Assume for all $\epsilon>0$

there is an $\epsilon$ -approximation between $X$ and Y. Then $X$ is isometric to Y.

Proof. Let $R_{\eta}\subset X\times Y$ be an $(1/n)$-approximation. There exists a count-
able dense set $A=\{x^{k}\}\subset X$ . Choose $y_{n}^{k}\in Y$ with $x^{k}R_{m}y_{n}^{k}$ . Choose a
subsequence of $y_{n}^{1}$ converging to $y^{1}$ , then a sub-subsequence of $y_{n}^{2}$ converg-
ing to $y^{2}$ , etc. After repeating this process, we define $f$ : $A\rightarrow Y$ by
$f(x^{k})=y^{k}$ .

We claim that $f$ is an isometw onto $f(A)$ and therefore 1-1. This is
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because $x^{i}R_{m}y_{n}^{i}\& x^{j}R_{m}\dot{\oint}_{n}$ implies

$|d_{X}(x^{i}, x^{j})-d_{Y}(y_{n}^{i}, y_{n}^{j})|<1/n$ .

Taking limits gives $d_{X}(x^{i}, x^{j})=d_{Y}(y^{i}, \oint_{n})$ which proves the claim. Since $f$

is uniformly continuous and $A$ is dense in $X$ and $Y$ is complete, it follows
that there exists a unique continuous extension $f$ : $X\rightarrow Y$. Further, $f(A)$

is dense in $Y$ because $A$ is dense in $X$ thus the image of $A$ under $R_{\eta}$ is
$1/n$-dense in Y. Since $X$ is compact it follows that $f(X)$ is closed. Hence $f$

is onto. $\square $

Corollary 6.6. One can define a metric on the family $\mathcal{F}$ of isometry classes
of compact metric spaces, by putting

$ d(X, Y)=\inf$ { $\epsilon|$ there is an $\epsilon$ -approximation between $X$ and $Y$ }.

Further, metric spaces with finitely many points are dense.

(Note that diam $<\infty$ for compact spaces implies $d$ is always finite.)
Remarks on related definitions:

For subsets of a fixed metric space, our definition of distance is closely
related to the Hausdorff distance on closed subsets. Gromov uses this in [32]
to define “Hausdorff convergence” of metric spaces. Gromov’s definition of
convergence of metric spaces is somewhat stronger than ours. Gromov’s dis-
tance $d_{G}(X, Y)$ between metric spaces $X$ and $Y$ is the infimum of Hausdorff
distance between $f(X)$ and $g(Y)$ over all isometric embeddings $f$ : $X\rightarrow Z$ ,
$g$ : $Y\rightarrow Z$ in metric spaces $Z$ . It’s clear that $2d_{G}(X, Y)\geq d(X, Y)$ by
example 6.2 above.

Exercise 6.7. Show that $2d_{G}(X, Y)=d(X, Y)$ , as remarked by Bridson
and Swarup in $[13]_{-}$. [Hint: Given an $\epsilon$-approximation $R\subset X\times Y$ , construct
a suitable metric $d$ on the disjoint union $Z=X\cup Y$ which agrees with the
given metrics $d_{X}$ on $X,$ $d_{Y}$ on Y.]

6.2 Limits with basepoints

For non-compact space we introduce basepoints.

Definition: $(X_{n}, x_{n})\rightarrow(Y, y)$ converges in the Gromov-Hausdorfftopology
if for all $r,$

$\epsilon>0$ and for all $n$ sufficiently large, there is an $\epsilon$-approximation
$R$ between $N(x_{n}, r;X_{n})$ and $N(y, r;Y)$ such that $x_{n}R_{m}y$ .

The idea is that “big neighbourhoods of the basepoint are almost iso-
metric”
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Example 6.8. $C_{n}=hyperbolic$ torus with cone point $\pi/n$ converges to a
complete hyperbolic punctured torus.

$C_{1}$ $C_{4}$ complete hyperbolic
once punctured toIus

Limits will generally depend on choice of basepoint.

Example 6.9. A sequence of hyperbolic genus 3 surfaces with a long thin
neck developing can converge to the three limits shown below for different
choices of basepoints.

Given an $\epsilon$-approximation $R\subset X\times Y$ if $x_{0}Ry_{0}$ we often wish to re-
strict $R$ to an approximation between the r-neighbourhoods $N(x_{0}, r;X)$
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and $N(y_{0}, r;Y)$ . But there is a potential problem here: the projection onto
the factors may not be onto.

The smear of $R$ is the $ 3\epsilon$-approximation $R^{\prime}\subset X\times Y$ given by:
$xR^{\prime}y\Leftrightarrow\exists x^{\prime}\in Xy^{\prime}\in Y$ such that

$ d(x, x^{\prime})<\epsilon$ and $ d(y, y)<\epsilon$ and $x^{\prime}Ry$ .

If $x_{0}Ry_{0}$ and $r>0$ then $R^{\prime}$ restricts to a $ 3\epsilon$-approximation between $N(x_{0}, r;X)$

and $N(y_{0}, r;Y)$ .

With this definition of Gromov-Hausdorff convergence we have: $ n^{-1}\mathbb{Z}\rightarrow$

$\mathbb{Q}$ and $n^{-1}\mathbb{Z}\rightarrow \mathbb{R}$ . To get unique limits, we need to restrict the metric spaces
involved. A metric space is called proper if every closed ball is compact. Note
that every proper metric space is complete.

Corollary 6.10. Let $X,$ $Y$ be proper metric spaces. If for all $r,$
$\epsilon>0$

there is an $\epsilon$ -approximation between $N(x, r;X)$ and $N(y, r;Y)$ then (X, $x$ )
is isometric to (Y) $y$).

Corollary 6.11. Let $X_{i},$ $Y,$ $Y^{\prime}$ be proper metric spaces. If $(X_{i}, x_{i})\rightarrow(Y, y)$

and $(X_{i}, x_{i})\rightarrow(Y^{\prime}, y^{\prime})$ then $(Y, y)$ is isometric to $(Y^{\prime}, y^{\prime})$ .

Remark 6.12.
(a) One can always assume that limits are complete, since the distance
between a metric space and its completion is zero.
(b) If closed balls in $X_{i}$ are compact for all $i$ , and $X_{i}\rightarrow Y$ , with $Y$ complete,
then all closed balls in $Y$ are also compact. This follows from the fact that
a metric space is compact if and only it is complete and totally bounded
(i.e. for all $\epsilon>0$ , there is a finite covering by $\epsilon$-balls).
(c) The condition that closed balls are compact fails for infinite dimensional
spaces. For example, consider $\mathbb{R}^{\infty}$ with the supremum metric. Then the
ball of radius 1 is non-compact; e.g. the sequence $(1, 0,0, \ldots),$ $(0,1,0, \ldots),$ $\ldots$

doesn’t converge.

Example 6.13.
(a) $n^{-1}\mathbb{Z}\rightarrow E^{1}$

(b) $nS^{1}\rightarrow E^{1}$

(c) $S^{1}\times(n^{-1}S^{1})\rightarrow S^{1}$ .
(d) Let $\mathbb{H}^{n}(K)$ be “hyperbolic space” of constant curvature $K<0$ , obtained
by rescaling the metric on $\mathbb{H}^{n}$ . Then $\mathbb{H}^{n}(K)\rightarrow E^{n}$ as $K\rightarrow 0$ .
(e) Let $C_{n}$ be the cone on $n$ points with a path metric such that each edge
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has length 1. Then the sequence $\{C_{n}\}$ does not converge. (There is no finite
approximation to the ball of radius 1 in the “limit”.)

$C_{5}$

Exercise 6.14. Describe the possible geometric limits of sequences of 2-
dimensional Euclidean tori. (Recall: these correspond to isometry classes
of lattices in $\mathbb{R}^{2}.$ )

6.3 Gromov’s compactness theorem

We now examine the question: When does a sequence of metric spaces have
a convergent subsequence?
Definitions: The $\epsilon$ -count, $\#(\epsilon, X)$ , of a metric space $X$ is the minimum
number of balls of radius $\epsilon$ needed to cover $X$ .

A collection of based metric spaces $(X_{n}, x_{n})$ is uniformly totally bounded
if for all $\epsilon,$ $r>0$ there exists $K>0$ such that $\#(\epsilon, N(x_{n}, r;X_{n}))<K$.

Theorem 6.15 (Gromov’s Compactness Theorem). ([32]) If $(X_{i}, x_{i})$

is a sequence of proper metric spaces then the following are equivalent:
(1) there is a subsequence $(X_{n_{i}}, x_{n_{i}})\rightarrow(Y, y)$ with $Y$ complete.
(2) there is a subsequence $(X_{n_{j}}, x_{n_{j}})$ which is uniformly totally bounded.

Proof. We show that (2) implies (1): Assume the sequence satisfies (2).
For each $\epsilon$ and each $i$ , we can choose $ K_{\epsilon}\epsilon$-balls covering $B_{1/\epsilon}(x_{i})\subset X_{i}$ .
Let $P_{\epsilon,i}$ be the set of centres of these balls together with the base point
$x_{i}$ . Then each $P_{\epsilon,i}$ is a finite set (containing $\leq K_{\epsilon}+1$ points), and is an
$ 3\epsilon$-approximation to $B_{1/\epsilon}(x_{i})$ . The metric on $P_{\epsilon,i}$ is described by a distance
function

$d_{i}$ : $\{1, 2, \ldots, K_{\epsilon}+1\}^{2}\rightarrow[0,2/\epsilon]$ .

By compactness there is a convergent subsequence of $d_{i}$ ; hence there is a
subsequence $P_{\epsilon,i_{j}}$ converging to a limiting (finite) metric space $L_{\epsilon}$ (contain-
ing $\leq K_{\epsilon}+1$ points). (Possibly some points coalesce in the limit, but this
won’t matter.) Let $l_{\epsilon}$ be the limit of the base points $x_{i_{j}}$ .
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Now choose a collection of $K_{\epsilon/2}\epsilon/2$-balls covering $B_{2/\epsilon}(x_{i})$ , and let

$P_{\epsilon/2,i}=$ {centres of these $\epsilon/2$ balls} $\cup P_{\epsilon,i}$ .

We can choose a further subsequence such that $P_{\epsilon/2,i}\rightarrow L_{\epsilon/2}$ ; then $L_{\epsilon}$

embeds isometrically in $L_{\epsilon/2}$ .
Continuing in this way, we obtain

$ L_{\epsilon}\subset L_{\epsilon/2}\subset L_{\epsilon/4}\subset\ldots$

Let $L$ be the metric completion of $\bigcup_{n}^{\infty}L_{\epsilon/2^{n}}$ and $l\in L$ the limit of the base
points. We claim that this is the limit of a (diagonal) subsequence of the
$X_{i}$ .

By our construction, we have a subsequence $X_{j}$ such that for all $\epsilon>$

$0$ , there is an $\epsilon$-approximation between $B_{1/\epsilon}(x_{j})$ and a subset $L_{\epsilon/3}$ of $L$ .
Further, each $L_{\epsilon/2^{n}}$ is an $\epsilon/2^{n}$-approximation to $L_{\epsilon/2^{n+1}}$ , so is an $\epsilon/2^{n-1_{-}}$

approximation to $L$ . Hence, $X_{j}\rightarrow L$ . $\square $

Exercise 6.16. Complete the above proof by showing that (1) implies (2).

6.4 Limits of hyperbolic cone-manifolds

We want to know :
(1) when a sequence of 3-dimensional hyperbolic cone-manifolds has a sub-
sequence which converges to a complete metric space Y.
(2) when $Y$ is a 3-dimensional hyperbolic cone-manifold.

Let $M$ be a 3-dimensional hyperbolic cone-manifold; then in particular
$M$ is complete. Let $D$ be a Dirichlet domain for $M$ , and $x_{0}\in D\subset \mathbb{H}^{3}$ . If
$M$ has cone angles $<2\pi$ , then the natural quotient map $q$ : $D\rightarrow M$ is
onto. But

$\#(\epsilon, N(q(x_{0}), r;M))\leq\#(\epsilon, N(x_{0}, r;D))\leq\#(\epsilon/2, N(x_{0}, r;\mathbb{H}^{3}))$ .

Therefore, 3-dimensional hyperbolic cone-manifolds with cone angles in
$(0,2\pi]$ are uniformly totally bounded. Then Gromov compactness implies
that (1) always holds.
Note: This is false if cone angles $>2\pi$ are allowed. One may construct a
hyperbolic surface with more and more cone points with cone angles larger
than $ 2\pi$ in a small region. This can be done so that the area of this region
increases without bound.
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We have seen that a sequence of n-manifolds can converge to a space of
dimension $<n$ . We need a way to rule out this kind of behaviour.

If $M$ is a Riemannian n-manifold and $x\in M$ , the injectivity mdius at $x$

is the radius of the “largest embedded ball” in $M$ with centre $x$ .

Proposition 6.17. Suppose $(M_{k}, x_{k})$ is a sequence of n-manifolds with
constant curvature K. Suppose for all points $x\in M_{k}$ that $inj(x)>inj_{0}$ . If
$(M_{n}, x_{n})\rightarrow(Y, y_{0})$ then $Y$ is an $n$ -manifold of curvature $K$ .

Proof. Given $y\in Y$ choose $x_{n}\in M_{n}$ with $x_{n}R_{\eta}y$ . After smearing we can as-
sume that $N(x_{n}, inj_{0};M_{n})\rightarrow N(y, inj_{0};Y)$ . But $N(x_{n}, inj_{0}; M_{n})$ is isomet-
ric to $N(p, r;\mathbb{H}^{n}(K))$ , therefore $N(y, inj_{0};Y)$ is isometric to $N(p, r;\mathbb{H}^{n}(K))$ .

$\square $

We want to adapt this proof to cone-manifolds. This raises the question
of what is an appropriate notion of injectivity radius in a cone-manifold?
(With the usual definition $inj(x)\rightarrow 0$ as $x\rightarrow\Sigma.$ ) The role of injectivity
radius in the above proof is to provide a standanl neighbourhood of a certain
size. The proof uses that the limit of such neighbourhoods is again such
a neighbourhood. In a cone-manifold the local geometry is that of a cone.
We will see that there is a compact family of such neighbourhoods, and this
is what is used to extend the proof above.

A cone in a n-dimensional cone-manifold $M$ is a subset isometric to a
cone on a spherical $(n-1)$-dimensional cone-manifold, i.e. a “standard cone
neighbourhood” as defined in section 3.2.
Definition: $inj(x)$ is the largest $r$ for which $N(x, r;M)$ is contained in a
cone:

$inj(x)=\sup\{r>0$ : $\exists x^{\prime}\in M\exists r^{\prime}>0s.t$ . $N(x, r;M)\subset N(x, r^{\prime};M)$

$N(x^{\prime}, r^{\prime};M)=a$ cone}.
Note that we do not assume that the standard neighbourhood is centred

at the point $x$ . This is to avoid difficulties near cone points: a point $x$ near
the cone locus has only a small standard ball centred at $x$ ; however there
may be much larger standard cones centred at cone points which contain $x$ .
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In general, the injectivity radius at a point $x$ will be small if there is
a short geodesic loop based at $x$ , or if two different pieces of the singular
locus are close to $x$ .

Example 6.18. The injectivity radius at some points on an infinite Eu-
clidean pillowcase are shown below. Maximal open balls about the points
contained in standard cones are also indicated.

Infinite Euclidean pillowcase:

With this definition we obtain:

Proposition 6.19. Let $(M_{n}, x_{n})$ be a sequence of cone-manifolds, with
$M_{n}$ of constant curvature $\kappa_{n}\in[-1,0]$ and $\kappa_{n}\rightarrow\kappa_{\infty}$ . Suppose that there
are $\theta_{0},$ $inj_{0}>0$ such that all cone angles are in the mnge $[\theta_{0}, \pi]$ and
$inj(x, M_{n})>inj_{0}$ for all $x\in M_{n}$ and all $n$ . Then there is a subsequence
converging to a cone-manifold $(M_{\infty}, x_{\infty})$ of curvature $\kappa_{\infty}$ .

The essential reason is that the cones of fixed radius $r$ form a compact
set of metric spaces, namely the cones on: $S^{2}(\alpha, \beta, \gamma),$ $S^{2}(\alpha, \alpha)$ or $S^{2}$ with
$\alpha,$

$\beta,$ $\gamma\in[\theta_{0}, \pi]$ .
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6.5 Bilipschitz convergence

Theorem 6.20. Suppose compact hyperbolic 3-manifolds $M_{n}$ converge in
the Gromov-Hausdorff topology to $a$ compact hyperbolic 3-manifold $M_{\infty}$ .
Then for all $\epsilon>0$ and for all sufficiently large $n$ there is $a$ $(1+\epsilon)$ -bilipschitz
map $f$ : $M_{\infty}\rightarrow M_{n}$ .

Proof. (Sketch) There exists $inj_{0}>0$ such that the injectivity radius of
every point in every $M_{n}$ and in $M_{\infty}$ is bigger than $inj_{0}$ . (There is a lower
bound on injectivity radius in $M_{\infty}$ because it is compact. Since $M_{n}\rightarrow M_{\infty}$ ,
for large $n$ the injectivity radius in $M_{n}$ is nearly equal to that in the limit.)
Let $K$ be a geodesic triangulation of $M_{\infty}$ , such that every simplex $\sigma\in K$

is small compared to $inj_{0}$ . Let $V=\{v_{1}, \cdots, v_{k}\}$ be the vertices of $K$ . Let
$R_{m}$ be a $1/n$-approximation between $M_{n}$ and $M_{\infty}$ . Choose $v_{i}^{n}\in M_{n}$ with
$v_{i}^{n}R_{\eta}v_{i}$ . If $v_{a},$ $v_{b},$ $v_{c},$ $v_{d}\in V$ span a 3-simplex $\sigma\in K$ then $v_{a}^{\prime n},$ $v_{b}^{n},$ $v_{c}^{n},$ $v_{d}^{n}\in M_{n}$

span a small geodesic simplex in a standard metric ball. Thus we get a
geodesic triangulation $K_{n}$ of $M_{n}$ combinatorially the same as $K$. Also, the
corresponding edge lengths are nearly equal. Use $\epsilon_{n}$-approximations with
$\epsilon_{n}<<\epsilon$ . (edge lengths of $K$ ) to map the vertices into $M_{n}$ . This extends
to a simplicial map $f$ : $K\rightarrow K_{n}\subset M_{n}$ which is $(1+\epsilon)$-bilipschitz where
$\epsilon\rightarrow 0$ as $ n\rightarrow\infty$ . $\square $

Extensions:
(1) The previous result extends easily to cone-manifolds: this just requires
some extra care constructing a thin geodesic triangulation near $\Sigma$ . Note that
bilipschitz convergence also implies convergence of cone angles, volume, etc.

(2) To extend the result to the case of a non-compact limit $M_{\infty}$ requires
estimates on the decay of injectivity mdius described in theorem 7.8. In this
case we get bilipschitz maps from any compact subset of $M_{\infty}$ into the $M_{n}$ .
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(3) The result also extends easily to a sequence of cone manifolds $M_{n}$ , where
each has constant curvature $K_{n}$ lying in the interval $[$-1, $0]$ .

Theorem 6.21. Suppose that $M_{n}$ is a sequence of complete hyperbolic cone
3-manifolds. Suppose that $(M_{n}, x_{n})$ converges in the Gmmov-Hausdorff
topology to a complete hyperbolic cone 3-manifold $(M_{\infty}, x_{\infty})$ . Then given
$\epsilon>0$ and $R>0$ , for all sufficiently $la7gen$ there is $a$ $(1+\epsilon)$ -bilipschitz
map $f$ : $N(x_{\infty}, R, M_{\infty})\rightarrow M_{n}$ with $ d(f(x_{\infty}), x_{n})<\epsilon$ . Furthermore $f$

maps singular set to singular set.

6.6 Convergence of holonomy
If a sequence $(M_{n}, x_{n})$ of 3-dimensional hyperbolic cone-manifolds converges
to a hyperbolic cone-manifold $(M_{\infty}, x_{\infty})$ , we want convergence of the holon-
omy representations

$h_{n}$ : $\pi_{1}(M_{n}-\Sigma(M_{n}))\rightarrow PSL(2, \mathbb{C})$ .

Theorem 6.22. Assume that for all larg $en$ there are $(1+\epsilon_{n})$ -bilipschitz
homeomorphisms

$\phi_{n}$ : $(M_{\infty}, \Sigma(M_{\infty}))\rightarrow(M_{n}, \Sigma(M_{n}))$

with $\epsilon_{n}\rightarrow 0$ as $ n\rightarrow\infty$ . Let

$\phi_{n}*:\pi_{1}(M_{\infty}-\Sigma(M_{\infty}))\rightarrow\pi_{1}(M_{n}-\Sigma(M_{n}))$

be the induced homomorphism of fundamental groups, and assume that
$\pi_{1}(M_{\infty}-\Sigma(M_{\infty}))$ is finitely genemted. Then $h_{n}\circ\phi_{n*}\rightarrow h_{\infty}$ in the al-
gebraic topology. This means there are $A_{n}\in PSL(2, \mathbb{C})$ such that
$A_{n}h_{n}(\phi_{n*}\alpha)A_{n}^{-1}\rightarrow h_{\infty}(\alpha)$ for all $\alpha\in\pi_{1}(M_{\infty}-\Sigma(M_{\infty}))$ .

Idea of Proof: Write $X_{n}=M_{n}-\Sigma_{n}$ . Then the bilipschitz convergence
implies that the developing maps $dev_{n}$ : $\tilde{X}_{n}\rightarrow \mathbb{H}^{3}$ can be adjusted by
isometries $g_{n}$ so that

$g_{n}odev_{n}o\overline{\phi_{n}}\rightarrow dev_{\infty}$ : $\tilde{x}_{\infty}\rightarrow \mathbb{H}^{3}$

$u_{-}niformly$ on compact subsets. Applying this to a large compact subset of
$x_{\infty}$ containing lifts of loops generating $\pi_{1}(X_{\infty})$ gives the result. a


