Introduction

The theory of manifolds of dimension three is very different from that of
other dimensions. On the one hand we do not even have a conjectural
list of all 3-manifolds. On the other hand, if Thurston’s Geometrization
Conjecture is true, then we have a very good structure theory.

The topology of compact surfaces is well understood. There is a well
known topological classification theorem, based on a short list of easily
computable topological invariants: orientability, number of boundary com-
ponents and Euler characteristic. For closed surfaces (compact with no
boundary) the fundamental group is a complete invariant. The geometry
of surfaces is also well understood. Every closed surface admits a metric of
constant curvature. Those with curvature +1 are called spherical, or elliptic,
and comprise the sphere and projective plane. Those with curvature 0 are
Euclidean and comprise the torus and Klein bottle. The remainder all ad-
mit a metric of curvature —1 and are called hyperbolic. The Gauss-Bonnet
theorem relates the topology and geometry

/ K dA = 2nx(F)
F

where K is the curvature of a metric on the closed surface F' of Euler charac-
teristic x(F). In particular this implies that the sign of a constant curvature
metric is determined by the sign of the Euler characteristic. However in the
Euclidean and hyperbolic cases, there are many constant curvature met-
rics on a given surface. These metrics are parametrized by a point in a
Teichmiiller space.

The topology of 3-dimensional manifolds is far more complex. At the
time of writing there is no complete list of closed 3-manifolds and no proven
complete set of topological invariants. However if Thurston’s Geometriza-
tion Conjecture were true, then we would know a complete set of topo-
logical invariants. In particular for irreducible atoroidal 3-manifolds, with
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the exception of lens spaces, the fundamental group is a complete invariant.
However this group, on its own, does not provide a practical method of iden-
tifying a 3-manifold. On the other hand, once the geometric structure has
been found then there are geometrical invariants which can be practically
calculated and completely determine the manifold.

A geometric structure on a manifold is a complete, locally homogeneous
Riemannian metric: every two points have isometric neighbourhoods. The
universal cover of such a manifold is a homogeneous space and is thus the
quotient of a Lie group by a compact subgroup. In dimension two it is
a classical result that every surface admits a geometric structure. There
are eight geometries needed for compact 3-manifolds. The connected sum
of two geometric three manifolds is usually not geometric. However the
Geometrization Conjecture states that every closed 3-manifold can be de-
composed (in a way to be described) into geometric pieces.

The first step in the decomposition of orientable 3-manifolds is into ir-
reducible pieces by cutting along essential 2-spheres and capping off the
resulting boundaries by attaching 3-balls. This theory was worked out by -
Kneser and refined by Milnor. For 3-dimensional manifolds the irreducible
pieces obtained are unique. The corresponding statement in higher dimen-
sions is false. Some important classes of 3-manifolds which were studied
early on include the following: _

e The quotient of the 3-sphere by a finite group of isometries acting
freely (a spherical space form). These include the lens spaces (quotients
of the round 3-sphere by a cyclic group of isometries) which provide the
only known examples of distinct irreducible, atoroidal 3-manifolds with the
same fundamental group. The famous Poincaré homology 3-sphere is the
quotient of the 3-sphere by the binary icosahedral group (the double cover
in SU(2) of the icosahedral subgroup of SO(3).)

e The Seifert fibre spaces. These are compact 3-manifolds which can be
foliated by circles and were classified by Seifert. A special case is a circle
bundle over a closed surface F. If F and the total space M are both ori-
entable this bundle is determined by its Euler class e € Z. In general, the
quotient space obtained by collapsing each circle to a point is a two dimen-
sional orbifold. All Seifert fibre spaces have a geometric structure.

e The 10 Euclidean 3-manifolds fit into the general theory of flat manifolds
developed by Bieberbach. Bieberbach showed that a compact Euclidean
manifold of dimension n is finitely covered by an n-torus. Bieberbach’s
results also apply to Euclidean orbifolds, producing the 219 types of 3-
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dimensional crystallographic groups known to chemists.

e The mapping cylinder construction produces an n-manifold M from
any automorphism 6 of an (n — 1)-manifold F' as the quotient M = F' x
[0,1]/(x,1) = (8(=x),0). In the case that F is a 2-torus, the automorphism is
determined up to isotopy by an element of the group GL(2,Z). These give
3-manifolds with the Solv, Nil and Euclidean geometries. When the genus
of F is more than 1 there is a (possibly trivial) torus decomposition into
geometric pieces.

e A Haken manifold, M, is a compact, irreducible 3-manifold which con-
tains a closed embedded surface with infinite fundamental group that injects
under the map induced by inclusion into the fundamental group of M. Haken
manifolds include many important classes of 3-manifolds, and a great deal is
now known about these manifolds through the work of Haken, Waldhausen,
Thurston and many others. In particular they have geometric decompo-
sitions. However, Hatcher [38] showed that all but finitely many Dehn
surgeries on a knot give a non-Haken manifold. More recently, Cooper and
Long [20] showed that all but finitely many such fillings give a 3-manifold
containing an essential immersed surface.

The next step in the classification program is to decompose along essen-
tial embedded tori. The JSJ decomposition (of Jaco-Shalen and Johannson)
gives a canonical splitting of a compact 3-manifold by cutting out a maximal
Seifert fibred piece.

Thurston [80] introduced the idea of “hyperbolic Dehn surgery” which
is a method of continuously changing one 3-manifold into another with a
different topology. The intermediate spaces are cone-manifolds with a
hyperbolic metric everywhere except along a knot or link called the singular
locus. The set of manifolds form a discrete subset, contained in the larger
subset of orbifolds. This method of continuously changing topology and
geometry only works in dimension three. The computer program SnapPea
developed by Jeff Weeks [88] allows one to put this philosophy into practice.
Many insights and theorems have developed from this point of view.

Roughly speaking an orbifold is the quotient of a manifold by a finite
group of diffeomorphisms. Actually an orbifold has the local structure of
such a space. It is the natural object to consider when one is studying dis-
crete symmetry groups. Compact two dimensional orbifolds are classified in
a similar way to surfaces, using an orbifold version of Euler characteristic.
This classification encompasses the classification of the regular solids (finite
subgroups of the orthogonal group O(3)), the classification of the 17 wallpa-
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per groups, and of periodic tessellations of the hyperbolic plane. There are,
however, four families of bad or non-geometric two-dimensional orbifolds
that do not arise globally as the quotient of a manifold by a finite group.
However they do arise quite naturally as the base-orbifolds of certain Seifert
fibrations. In fact the base orbifold of a Seifert fibration is bad if and only
if the fibration is not isotopic to one with the fibres geodesic in a geometric
structure on the Seifert fibre space.

The Orbifold Theorem characterizes when a 3-dimensional orbifold with
1-dimensional singular locus has a geometric structure, in other words, when
it is the quotient of a homogeneous space by a discrete group of isometries.
This theorem has many consequences, for example an irreducible, atoroidal,
closed orientable 3-manifold which admits a symmetry with 1-dimensional
fixed set is geometric. It follows that all 3-manifolds of Heegaard genus two
have a geometric decomposition.



