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Some geometric-arithmetic aspects of separated 
variable curves 

Viet Khac Nguyen 

Abstract. 

The paper shows certain geometric-arithmetic aspects with some 
new observations in consideration of variables separated curves, e.g. 
relationships with generalized Chebyshev polynomials, Chebyshev pen­
cils, local variant at infinity of Stothers~Mason abc-theorem, Stothers~ 
Langevin pairs, Pell~Abel conics (or polynomial Fell equations), Belyi 
maps, etc. Several case studies and open problems are discussed. 

§1. Introduction 

The aim of this paper is to give an account of the generalized Cheby­
shev polynomial phenomenon somehow mysteriously appeared in several 
geometric-arithmetic aspects of separated variable curves, i.e. curves of 
the form 

r J,g := {f(x)- g(y) = 0}, 

where J, g are polynomials in one variable. In what follows we shall 
denote by CJ,g the projective closure of r f,g and by the genus of CJ,g 
we mean the genus of its normalization. Over a number field k the class 
of separated variable has attracted a great arithmetical interest since 
[5], in which a little surprising role of Chebyshev polynomials has been 
already emphasized, and subsequently ( cf. [7] and references therein). 
There is also a variety of applications to coding theory and cryptography. 

Another interesting topics is an old problem of Severi how to con­
struct explicitly curves with given number of nodes as their only singu­
larities. It turns out that Chebyshev polynomials actually give a very 
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nice manner for that purpose ([17], [18]). In fact Ritt's second theorem 
([19]) describes all rational curves CJ,g in the case (deg j, degg) = 1 
which says roughly that those are the only power functions, or Cheby­
shev polynomials. 

All these together lead to the study of generalized Chebyshev poly­
nomials which were conceived already in [23], Probleme (C). The gener­
alized Chebyshev curves, i.e. if j, g are generalized Chebyshev polynomi­
als, can be studied via data of their plane trees. It gives a combinatorial 
way in constructing curves with given singularities, say in the simplest 
case with nodes and cusps. 

It should be noted that the Cassels' "monster" ([4]), as mathemati­
cians named it for the time, indicated implicitly a link with Belyi's 
theorem. This observation was often exploited in the sequence by many 
authors to the reducibility problem modulo the F SGC (Finite Simple 
Groups Classification) ([7]). It was exploited also in the author's recent 
observation from a slightly different angle, namely the pencil point of 
view ([14]). 

The fact that Chebyshev polynomials give simple examples of 
Stothers-Langevin pairs (the extremal case in the local form of Stothers­
Mason abc-theorem) can be interpreted for a wider class of general­
ized Chebyshev polynomials, together with the Pell-Abel conics x 2 -

D(t) y 2 = 1 (or polynomial Pell equations) treated classically in the 
works of Abel, Chebyshev, Zolotarev, Halphen, Akhiezer et el. It should 
be remarked that the theory of Pell-Abel equations has recently at­
tracted a new interest. A particular important case of the Stothers­
Mason abc-theorem is Davenport's bound having a surprisingly natural 
connection with elliptic surfaces discovered recently by T. Shioda. In 
this aspect we realize that Stothers-Langevin pairs turn out to be also 
quite interesting. We shall discuss on all these in the forthcoming paper 
([15]). 

The first part of this paper is devoted to generalized Chebyshev 
curves in connection with irreducibility and genus estimation which in 
view of Siegel's theorem essentially affects on the arithmetic of r J,g· In 
the second part we show certain arithmetic-geometric aspects of gener­
alized Chebyshev polynomials related to Stothers-Langevin pairs, Fell­
Abel conics, etc. 

Throughout the paper, unless otherwise stated, we assume the 
ground field k is the field of complex numbers <C. 
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§2. Maximally singular curves 

Singularities of ft, 9 = {f(x)- g(y) = 0} are precisely 

{(a, b) E f f,g: j'(a) = g'(b) = 0}. 

In other words one has to verify the condition f(a) = g(b) among the 
net points {f'(a) = g'(b) = 0}. Hence in order to find curves with pos­
sibly maximal number of singularities it is desirable to use polynomials 
with few critical values. 

Example 1.1. The power function zn has only one critical value 
w = 0. If m, n are coprime and m < n, then the quasi-homogeneous 
curve 

C[{''n := { 2m-1Xm _ 2n-lyn = O} 

is an irreducible simply connected curve. 

The curve C[{''n has a nice symmetric property, as at infinity its 
projective closure has another quasi-homogeneous singularity at (1 : 0 : 
0) (so sometimes we say it is simply connected at infinity). 

The Zaidenberg-Lin theorem ( cf. [2]) asserts that it has a unique 
plane embedding. 

Example 1.2. The n-th Chebyshev polynomial of the first kind 
Tn(z) (of degree n) is defined by the following recurrence relation 

To(z) = 1, T1(z) = z, Tn(z) = 2z Tn-l(z)- Tn-2(z), for n 2 2. 

Quite often in the computation it is more convenient to use the following 
property 

Tn(coscp) = cosncp 

which might be taken also for a definition ofTn(z). It is clear that Tn(z) 
has only two critical values w = ±1. 

The Chebyshev curve 

C~,n := {Tm(x)- Tn(Y) = 0} 

with ( m, n) = 1 has a plenty, namely ~ ( m -1) ( n -1), of ordinary double 

points, all of them are real. Hence c~-l,n is a maximal nodal curve ([9], 
[18]). 

It should be noted that the paper [16] uses a slightly different tech­
nique-the existence of perturbed Chebyshev polynomials with three 
critical values ([23], [3]) to produce maximal nodal curves. 
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It is known that the family 

gives a real morsification for C;;''n ([10], [3]). 

Problem 1.3. One may ask whether C~,n has a unique plane 
embedding. 

Remarks 1.4. (i) It is true when m, n are distinct primes ([2]). 
During the conference at Fukuoka Prof. A'Campo pointed out that the 
question is closely related to the existence of special divisors on c~,n. 
For instance, if m = n = d, then C;;''n is of type (IVd) (the completely 
decomposable case)' and similarly c~,d being highly reducible ( cf. be­
low) has many crossings (special position of ordinary double points), 
hence must be rigid. Presumably one can exploit the technique of [8] in 
realizing the above idea. 

(ii) Ritt's second theorem ([19]) essentially asserts that in the no­
tation above if g(C1,9 ) = 0, then it can be parametrized as either (I): 
(tm,trP(t)m),r EN; or (II): (Tn(t),Tm(t)). The recent paper [17] ex­
hibits an explicit construction of maximal nodal curves of type (I) using 
Fermat curves. 

(iii) There is another way to derive maximal nodal curves with all 
real nodes from the classically known theory of algebraic trochoids due to 
T. Cotterill, S. Roberts, M.A. Wolstenholme, F. Morley et al. since the 
second half of 19-th century (cf. [21] and references therein). Precisely 
it can be described as follows. By assuming the radii of the fixed and 
rolling circles to be 1, m respectively (m is a rational number < 1) the 
parametric equations of a hypotrochoid Tm,s with parameters m, c are 

{ x =(1-m) cosmyJ + (m +c) cos(l- m)'P 
y = (1-m) sin myJ- (m +c) sin(l- m)'P 

In some cases it is more convenient to consider in the Morley form 

where 
"£ 

w:=x+iy, z:=ev, p:=p,, q:=v-p, 

and m = ~ in the simplest form. 

The hypocycloid fm,o is of class v and degree 2 max{p, q}. Clearly 
Tm,o has v cusps situated on the fixed circle and a number of nodes. In a 
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sense hypotrochoids are "pertubated" curves giving a (real) morsification 
for 'Tm,o, as their class now is 2v. We get therefore maximal nodal curves 
with all real nodes from (projective closures of) 'Tm,E: with m = 2:+1 , E > 
0 (resp. m = 2;_1 , E < 0). 

The exceptional value of E is 2 f.L~ 1 (resp. - 2f.L~ 1 ) where the cor­
responding curve has a point of multiplicity 2J-L + 1 (resp. 2J-L- 1). It 
should be noted that the same construction goes through for (affine) 
epitrochoids, although one can not get maximal nodal curves, because 
of singularities at infinity. 

( iv) We make a remark concerning Chebyshev pencils studied in 
[14]. Assume given a pencil of plane curves of degree d that contains 
two degenerate members of type IVd, i.e. consisting of d concurrent 
lines. Then up to coordinate changes it can be given by 

f(x)-tg(y), tEIP'1 . 

A typical example of this sort is the pencil (xd- 1)- t(yd- 1) = 0 
with (3IVd) configuration. It is known that up to projective isomorphism 
pencils with (3IVd) configuration are unique with the above equation. 
The other interesting examples of pencils with degenerations at t = ±1 
together with given (2IVd) come from the so-called Chebyshev pencils 
Tm(x)- tTn(Y) = 0 (see [14] for details). 

We proceed now to the notion of generalized Chebyshev polynomials. 
Let P E k[z] be a polynomial in one variable. Recall that a point z0 E k 
called a critical point of P, if P' (zo) = 0. The value w0 = P(z0 ) of P 
at z0 is then called the critical value of P. A generalized Chebyshev 
polynomial is a polynomial P with at most two critical values, i.e. there 
exist two distinct numbers c0 , c1 such that if P'(z) = 0, then P(z) is 
either co, or c1. 

Following [20], [11] we fix the following data for a generalized Cheby­
shev polynomial P of degree m: 

< 0:1, ... , ap; O:p+1, ... , O:m+1 >~the valency set (each of the two 
groups is in decreasing order) respectively at 

{ a1, ... , ap; ap+ 1, ... , am+ 1 }~the set of points (or vertices); 

p m+1 

2.: O:i = 2.: O:j =m. 
i=1 j=p+1 
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So 
p m+l 

(1.1) P(z)- co= II (z- ai)a; 
i=l 

P(z)- c1 = II (z- aj)ai. 
i=p 

For example in the case of Chebyshev polynomials one has co 
-1, c1 = 1 and: 

< 2, ... '2, 1; 2, ... '2, 1 >, 
7r (2m-1 )1r 1. 2m1f 21f 1 < COS 2m+l' ... 'COS 2m+l ' - 'COS 2m+l' ... 'COS 2m+l' > 

(for T2m+l(z)); 

< 2, ... ,2;2, ... ,2,1,1 >, 
< 1f (2m-l)7r. 1r (m-l)1r 1 1 > 

cos 2m' ... ' cos 2m ' cos m' ... ' cos -m--' - ' 

(for T2m (z) ). 

Let Q be another generalized Chebyshev polynomial of degree n 
with same critical values co, c1 and let < /31, ... , /3q; /3q+l, ... , f3n+l >, 

q n+l 

{b1, ... , bq; bq+l, ... , bn+l} be as above with 2:.:: f3i = 2:.:: /3j = n, 

q 

(1.2) Q(z)- co= II (z- bi)f3' 

i=l 

i=l j=q+l 

n+l 

Q(z)- c1 = II (z- bj)f3J. 
j=q+l 

Let us consider the generalized Chebyshev curve 

rP,Q = {P(x)- Q(y) = O} 

under the assumption ( m, n) = 1 as above. An estimation for the genus 
formula of C J,g was given in [5] for an arithmetical application. Later 
along this line of ideas a general formula was obtained by [6]. In the 
case of r P,Q it can be read from the combinatorial data of P and Q as 
shown in the following theorem. 

Theorem 1.5. With notation we have the following formula for 
the genus of CP,Q 

2g(CP,Q) = (m- 1)(n- 1)- L [(ai- 1)(/3j- 1)- dij] 
l:Si:Sp 
l:Sj:Sq 

L [(ai- 1)(/3j- 1)- dij] 
p+l:Si:Sm+l 
q+l:Sj:Sn+l 
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where dij = gcd( ai, (Jj). 

For a sketch of a possibly simple proof one may argue as follows. 
We consider CP,Q as a fiber product of two coverings defined by P and 
Q. From (1.1) and (1, 2) one sees that at (ai, bj) of rP,Q we have a 
singularity of type x"'; = y~j . With singularities at infinity it is desirable 
to deal a little more technically. It remains to use Plucker's formula for 
plane curves. 

Thus in this approach we get a nice combinatorial way of construct­
ing certain classes of curves with singularities. 

§3. On Pell-Abel conics and related questions 

First we formulate the local form at infinity of Stothers-Mason (abc­
)theorem. For a polynomial P E k[z] we denote by d(P):= deg(P), 
r(P) := the number of distinct roots of P. 

Theorem 2.1. ( cf. [22], [12]). For two distinct polynomials R, S E 

k[z] not all constant we have 

(2.1) r(RS) + d(R- S) ~ max{d(R), d(S)} + 1. 

If the equality holds in (2.1), we call (R, S) a Stothers-Langevin 
pair. 

Recall the well-known identity that could be derived immediately 
from the defining T n ( z) = cos ( n arccos z) 

(2.2) T~(z)- (z2 - 1) U~(z) = 1, 

where Un(z):= ~ T~(z) thus giving an example of a Stothers-Langevin 
pair (T~, (z2 - 1) u;). 

On the other hand (2.2) is one of the simplest cases of the Pell-A bel 
equation x 2 - Dy2 = 1 with D(z) = z2 - 1. In general every monic 
polynomial P E k[z] of degree d(P) = n gives rise to a solution of a 
Pell-Abel equation as follows. Let 

r r 

P(z) 2 - 1 =II (z- ai)''\ L ai = 2n 
i=l i=l 

be the complete factorization. Then by putting 

Dp(z) := II (z- ai) 
a; is odd 
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we get 

(2.3) 

with 
r 

Q(z):= IT (z-ai)[-'ifl, 
i=l 

where [ · ] denotes the integer part. 

We shall need two technical lemmas ( cf. [20], [12]). 

Lemma 2.2. In the notation above r ~ n + 1 with equality if and 
only if P is a generalized Chebyshev polynomial with critical values ±1. 

Lemma 2.3. If P is a non-constant polynomial, then r(P) = 
d(P)- d(P, P'), where (P, Q) := gcd(P, Q). 

Clearly if P is a generalized Chebyshev polynomial with critical val­
ues ±1, then (2.3) gives us a Stothers-Langevin pair, or more generally 

Proposition 2.4. Let P be a generalized Chebyshev polynomial 
with two distinct critical values c0 , c1 • Then ( P[, P[ - 1) is a Stothers­
Langevin pair, where P1 (z):= c1 _:co (P(z)- c1 2co). 

The proof follows from (1.1) and by the above remark. 

For the converse we have 

Theorem 2.5. For a monic polynomial P the pair (P2 , P 2 - 1) is 
a Stothers-Langevin pair if and only if P is a polynomial with at most 
three critical values at ±1, 0. In particular if P is square-free (i.e. with 
simple roots), then it is a generalized Chebyshev polynomial with critical 
values ±1. 

Proof. In the notation of (2.3) from the condition of Theorem and 
(2.1) 

(2.4) r(P) + r = 2n + 1, 

or by using Lemma 2.2 

n- d(P, P') + 2n- d(P.P', P 2 - 1) = 2n + 1 

which is equivalent to 

(2.5) n- 1 = d(P', P(P2 - 1)). 
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Clearly (2.5) means that P'(z)JP(P2 - 1) which implies the first 
statement of the theorem. 

A more direct argument could be proceeded as follows. Writing 

r(P) r(P) 

P(z) = II (z- bj)f3j, L f3J = n 
j=l j=l 

one has 

r(P) r 

(2.6) II (z- bj)f3j-l II (z- ai)ai- 1 JP'(z). 
j=l i=l 

Hence 
n- r(P) + 2n- r :::; deg(P') = n- 1, 

which is nothing but (2.1) for this case. In view of (2.4) we have an 
identity in (2.6), and thus the first statement of the theorem follows. 

A particular case of the theorem can be seen easily from Lemma 2.3. 
The proof is completed. 

It should be noted that either (2.5), or (2.6) is equivalent to the 
assertion-"P2 is a generalized Chebyshev polynomial with critical val­
ues 0, 1" -the fact that is true generally would be deduced by using a 
Belyi-type argument. 

Remarks 2.6. (i) The converse problem to (2.3) turned out to be 
rather subtle. The reason should be clear by looking at the Dirichlet's 
principle applied at a crucial step to the equation x 2 - Dy2 = 1. Here 
we are asked to find polynomial solutions of the equation 

(2.7) 

for a given square-free polynomial D of even degree d(D) =2m. 

The theory of polynomial Pell equations was begun in the work of 
Abel ( [1]). Abel's investigation emphasized on the study of hyperelliptic 
integrals of the form 

(2.8) 

for some polynomial p( t) of degree d(p) :::; m- 1, m 2 2. Abel's theorem 
states: 
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(t) for d(p) :::; m-2 (2.8) is not integrable in elementary functions; 

(tt) if d(p) = m- 1, then the existence of a p such that (2.8) 
is integrable in elementary functions is equivalent to the existence of a 
solution (x, y) = (P(t), Q(t)) to (2.7), more precisely p = ~ for such a 
solution, and clearly then 

J ~ dt = log(P(t) + Q(t)JD(i)) 
yD(t) 

Abel has also proved that this is equivalent to the fact that VJ5 can 
be represented as a periodic continued fraction. 

( ii) The most interesting condition equivalent to the above in Abel's 
theorem is 

(Tors) P~ - P~ is a torsion point on J ac( CD) 

where CD denotes the hyperelliptic curve given in the affine form 

u2 = D(t). 

We briefly summarize several appoaches leading to this condition. 
The curve CD has two points at infinity, say P;:};,, P:;;,. By using a direct 
substitution method and Laurent expansion of square root VJ5 at P:;;, 
one finds a condition for solubility of (2. 7) in terms of certain Hankel 
determinants which implies the condition (Tors). This can be seen also 
working directly with units in the function field k(CD)· 

In fact the Pell-Abel equation could be considered from the pencil 
viewpoint, i.e. as a pencil of conics 

given in the equation by (2.7) (a similar idea was exploited in [13]). 
According to the general theory it is the same as considering e'l (the 
generic fibre) over the function field K := k(IP'1 ). 

The pencil becomes constant after the base change 

(i.e. working over the field extension k(CD) = K(VD)) whose fibres are 

(Co) 



Some geometric-arithmetic aspects of separated variable curves 171 

Therefore we get the isomorphism 

for the set of K-rational points on e17 • 

Putting m := P~ + P;;, one sees that solutions of (2. 7) are in 1-1 cor­
respondence with m-integral points of e17 • The latter set is nothing but 
Homk(Jm,Gm), where Jm denotes the generalized Jacobian w.r.t. the 
module m. It is not difficult to see the non-emptiness of Homk(Jm,Gm) 
means again the condition (Tors). 

There is also a nice relation to Jacobi operators, nonlinear equations, 
etc. ( cf. [15] for details and references). 
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