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Monodromy of triple point line arrangements 

Alexandru Dimca 

Abstract. 

We show that the monodromy operator action on the first coho
mology group of the Milnor fiber is combinatorially determined for line 
arrangements with at most triple points and containing at most 18 
lines, with one possible exception. This last case depends on the exis
tence of a line arrangement involving 18 lines and 48 triple points with 
a special distribution with respect to smooth conics. 

§1. Introduction 

Let A be an arrangement of d lines in IP'2 , with d ;::: 2, given by a 
reduced equation Q(x) = 0. Consider the corresponding complement 
M defined by Q(x) =/=- 0 in !P'2 , and the global Milnor fiber F defined 
by Q(x) - 1 = 0 in <C3 with monodromy action h : F ---7 F, h(x) = 
exp(2ni/d) · x. 

It is an interesting open question whether the monodromy operator 
h 1 : H 1 (F) ---7 H 1 (F) is combinatorially determined, i.e. determined 
by the intersection lattice L(A). The !-eigenspace H 1(Fh coincide 
with H 1 (M), and hence it is known to be determined by the lattice 
L(A), see [11]. The answer is not known even for the first Betti number 
b1 (F). Several interesting examples have been computed by D. Cohen 
and A. Suciu, [3], [12]. 

We assume in the sequel that the line arrangement A has only double 
and triple points. Then it is known that h1 : H 1 (F) ---7 H 1(F) is trivial 
unless d = 3m for some integer m ;::: 1, and then only the eigenvalues 
1, E = exp(2ni/3) and E2 are possible, see for instance [6], Cor. 6.14.15. 
This result gives also an upper bound on the multiplicity of E as an 
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eigenvalue of h\ namely (3m-1)/2, which is very poor, as the examples 
below show. For other related upper bounds see [4]. 

Moreover, in a recent paper [9], A. Libgober has followed the ap
proach started in [4] and has shown that if h1 -=1- Id, then necessarily A is 
composed of a reduced pencil, i.e. there is a pencil aQ1 +bQ2 of curves of 
degree min IP'2 such that if we set Q3 = Q1 + Q2, then Q = Q1 · Q2 · Q3. 
The converse implication, that a line arrangement composed of a re
duced pencil has a non-trivial h1 is easy, see for instance Theorem 3.1 
in [7]. 

Set Ai : Qi = 0 fori = 1, 2, 3 and note that A= A1 U A2 U A3. Let 
To be the base point set of the pencil, i.e. the m 2 points of intersection 
of the curves C1 and C2, given by the union of all lines in A1 (resp. 
in A2 ). Let Ti be the set of triple points of the arrangement Ai, for 
i = 1, 2, 3. Then T = T0 U T1 U T2 U T3 is the set of triple points of the 
arrangement A. 

Our result is the following. 

Theorem 1. Let A be an arrangement of d lines in IP'2 , with d = 3m, 
such that A has only double and triple points and A is composed of a 
reduced pencil. Then, the following hold. 
(i) If m < 6 or if m = 6 and ITI < 48, then the monodromy operator 
h1 : H 1 (F)-+ H 1 (F) is combinatorially determined. Moreover, one has 

(1) 

except for the case of a Ceva type arrangement ( m = 3, IT1I = IT2I = 
IT3I = 1), when 

(2) 

(ii) If m = 6 and ITI = 48, which is the maximal possible value for 
ITI, then each of the subarrangements Ai has a set of 4 triple points Ti. 
When each set of the three sets of 8 points given by T1 U T2, T2 U T3 and 
T1 U T3 is situated on a conic (necessarily smooth), then 

(3) 

Otherwise, one has 

(4) 

It is known that H1 (F)o~1 is a pure Hodge structure of weight 1, see 
[2] and [7] for two distinct proofs, and hence the notation H 1•0 (F)< is 
unambiguous. 
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Remark 1. An exceptional arrangements A with 18 lines as de
scribed in the second part of the above Theorem and satisfying (3) does 
exist, see Example 1 below. On the other hand, we do not know whether 
exceptional arrangements A with 18 lines satisfying (4) really exist. In 
the affirmative case they would provide a counter example to the deter
minancy of b1 (F) or h1 by the lattice L(A). 

In fact, the only arrangements having at most triple points and com
posed of a reduced pencil that were commonly known, before Example 
1 was kindly provided by Masahiko Yoshinaga, are the following. 

(i) (m = 1) three concurrent lines, where we may take Q1 = x- y, 
Q2 = y- z. 

(ii) (m = 2) the A3-arrangement, where we may take Q1 = x2 - y2 , 

Q2 = y2 - z2. Note that each of the subarrangements A,; in Theorem 1, 
(ii) is linearly equivalent to this A3-arrangement. 

(iii) (m = 3) the Ceva arrangement, where we may take Q1 = x3 - y3, 
Q2 = y3- z3. 

(iv) (m = 3) the Hesse arrangement, where we take A to be the union 
of three singular fibers out of the four singular fibers of the Hesse pencil 
a(x3 + y3 + z3 ) + bxyz. 

( v) ( m = 4) the generic hyperplane section of the D 4- plane arrangement 
in IP'3 given by the equation 

(x2 _ y2)(x2 _ z2)(x2 _ t2)(y2 _ z2)(y2 _ t2)(z2 _ t2) = O. 

The pencil structure in this case comes from the identity 

(a- b)(c- d)+ (a- c)(d- b)+ (a- d)(b- c)= 0, 

where we set a = x2, b = y2, c = z2 and d = t2. The values given above 
in (1) were obtained in the case D4 in a different way by A. Macinic and 
S. Papadima in [10]. 

Remark 2. Note that for arrangements having points of multiplic
ity 4, Libgober's result is no longer true: for instance the arrangement 

xyz(x4- y4)(y4- z4)(x4- z4) = 0 

satisfies h1 =f. I d (coming from the existence of the non-reduced pencil 
Q1 = x4(y4 - z4) and Q2 = y4(z4 - x4) see Remark 3.4. (iii) in [7] for 
r = 4), but it is not composed of a reduced pencil. 

We would like to thank Masahiko Yoshinaga for providing the key 
Example 1. 
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§2. Proof of Theorem 1 

Proof. The case m = 1 is obvious, so we assume m ~ 2 in the 
sequel. 

Let 8 = C[x, y, z] be the graded ring of polynomials in x, y, z. Con
sider now the evaluation map 

(5) 

obtained by picking up a representative St in C3 for each point t E T and 
sending a homogeneous polynomial hE 82m-3 to the family (h(st))tET· 

For any line arrangement A with at most triple points, it follows 
from Theorem 2 in [2] (and the discussion folowing it) that 

(6) dimH1,0 (F)e = dimH0 '1 (F)e2 = dim(Cokerp), 

while 

(7) 

Alternatively, one may use the approach described in [5], Chap.6., Thm. 
4.15. 

Note that 

dim(Cokerp) = ITI- codim(kerp) 

which by definition is the superabundance s2m_3 (T) of the finite set of 
points T with respect to the polynomials in 82m-3. 

Hence, to determine the monodromy operator h1 : H 1 (F)-+ H 1 (F) 
(and the corresponding mixed Hodge structure) boils down to computing 
the dimension of the kernel of p. 

Let h E 82m-3 satisfy p(h) = 0. In particular, it follows that h 
vanishes at the points in T0 and a direct application of Noether's AF + 
BG Theorem, implies that 

(8) 

for some polynomials h1, h2 E 8m-3· Moreover, such a pair (h1, h2) 
is unique: an equality h1Q1 + h2Q2 = k1Q1 + k2Q2 yields Q2 divides 
h1 - k1, and hence looking at the degrees we see that h1 = k1. 

If m = 2, this means the kernel of p is trivial, so the claim follows, 
in particular in this case (which corresponds to the A3-arrangement in 
Remark 1), we get 

(9) dimH1'0(F)e = dimH0'1 (F)e2 = dim(Cokerp) = 1. 
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Assume from now on that m ~ 3. For t1 E T1 , we get using (8) 

and hence h2(tl) = 0. Indeed, Q2(tl) -=f. 0, since there is no line in a 
subarrangement Ai passing through a triple point in a set Tk for k -=f. i. 
Similarly, for t2 E T2 we get h1(t2) = 0. 

For t3 E T3 we get two relations: 0 = Q3(t3) = Q1(t3) + Q2(t3) 
and 0 = h(t3) = h1(t3)Q1(t3) + h2(t3)Q2(t3). Since Q1(t3) -=f. 0 and 
Q2(t3) -=f. 0, it follows that h1(t3) = h2(t3). 

Hence dimKer(p) = dimH, where 

Now we have to see when the vanishing conditions in the definition of 
H are linearly independent conditions. If this is so, then the dimension of 
H is determined by the number of these conditions, which is IT I- m2, so 
a combinatorially determined number. And then we have to show that 
the special cases when these conditions are not linearly independent 
(and in fact the ranks of the corresponding linear systems) are also 
combinatorially determined. 

This is done by a case-by-case analysis, based on the following ap
proach. Consider the evaluation mapping 

given by sending a pair (h1, h2) E 8!_3 to the families of complex 
numbers 

((hl(t2))t2 ET2 , (h2(h))hETp (h1(t3)- h2(t3))t3 ET3 ). 

Proposition 1. (i) dim(Cokerp) = dim(Cokerp') + 1. 

(ii) dim(Cokerp') = IT1I + IT2I + IT31- codimH and 

dim(Cokerp') ~ min{sm-3(Tl U T2), Bm-3(Tl U T3), Bm-3(T2 U T3)}. 

Proof The first claim is a direct computation based on the equality 

dim 82m-3 + 1 = 2 dim Bm-3· 

The first equality in the claim (ii) is just the definition of dim(Cokerp'), 
where the codimension of H is computed with respect to the ambient 
space s;;_3• 

Now we prove the inequality dim(Cokerp') ~ Bm-3(Tl U T2), and 
note that the other two cases are completely symmetrical. 
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Set V1 ={hE Bm-3 : hiT1 = 0} and V2 ={hE Bm-3 : hiT2 = 
0}. Note that sm_ 3 (Tj) = 0 for any j = 1, 2, 3, see [2], the discussion 
following Theorem 2. These vanishings are related to the computation 
of the spectrum of a hyperplane arrangement in [1]. 

In fact, Sm-3 (Tj) = 0 is equivalent to the surjectivity of the corre
sponding evalation mapping, and the vanishing sa_3 (Tj) = 0 is claimed 
in [2] for 2m/3 < a < m. However, it is clear that the surjectivity 
claim for a implies the surjectivity claim for a+ 1, e.g. by choosing the 
coordinates such that all the points in Ti are in the affine chart z = 1 
and using C[x,yl::;a C C[x,y]::;a+l· The special case m = 3 follows by a 
direct inspection. 

It follows that codim Vj = ITi I for j = 1, 2 and hence 

Consider now the restriction of the evaluation mapping p' to the sub
space V2 X V1 C S!-3, namely(): V2 X V1---+ (CT3 , (h1, h2) f-+ (h1(t3)
h2(t3))t3 ET3 • 

Using kerp' = kerO, one has 

dim(Cokerp') IT1I + IT2I + IT31- codim(kerp') 

IT31- 2dimBm-3 + IT1I + IT2I + dim(kerO) 

IT31- dim(V2 x V1) + dim(kerO) 

dim( C okerO). 

On the other hand, the map () factors through V1 + V2. Since 
Sm-3(T3) = 0, it follows that 

Q.E.D. 

Now we discuss the various possible cases. 

Case m = 3. 
In this case, the subarrangements Ai are either given by a triangle 

(in which case Ti = 0) or by 3 concurrent lines (when ITil = 1). 
If there is at least one subarrangement of the first type, then we have 

at most two equations involving the two constants h1 and h2, hence the 
conditions are independent. In particular in this case (which covers the 
Hesse arrangement in Remark 1, (iv)), we get 

(10) dimH1'0(F). = dimH0,1(F).2 = dim(Cokerp) = 1. 
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On the other hand, if all subarrangements are of the second type 
(this corresponds exactly to the condition ITI = 9 + 3 = 12), then 
we have three equations involving the two constants h1 and h2 , hence 
the conditions are not independent, one equation being superfluous. In 
particular in this case (which covers the Ceva arrangement in Remark 
1, (iii)) we get 

(11) dimH1'0(F)E = dimH0'1(F)E2 = dim(Cokerp) = 2. 

Case m = 4. 
In this case, the subarrangements Ai can be either generic, i.e. 

Ti = 0, or special, when ITi I = 1. As two points impose independent 
conditions on linear forms, it follows that s1 (Ti U Tj) = 0 for all i, j. 
Hence in any case we get 

(12) dimH1'0(F)E = dimH0'1(F)E2 = dim(Cokerp) = 1. 

Case m = 5. 
In this case, the subarrangements Ai can be either generic, i.e. Ti = 

0, special, when ITi I = 1 or even 2-special, when ITi I = 2. Note that 
in the last case, the line determined by the two triple points is in the 
arrangement Ai. It follows that if two of the subarrangements are 2-
special, then the corresponding family of 4 triple points are not collinear. 

Now, at most 3 points or 4 non-collinear points impose independent 
conditions on conics. It follows that s2(TiUTj) = 0 for all i,j, and hence 
again 

(13) dimH1'0(F)E = dimH0'1(F)E2 = dim(Cokerp) = 1. 

Case m = 6. 
In this case, the subarrangements Ai can be either generic (Ti = 0), 

special (!Til = 1), 2-special (!Til = 2), 3-special (!Til = 3) or even 
4-special (!Til = 4). Assume that the subarrangements A have been 
numbered such that the sum a = JT1 l + JT2 l is minimal among all the 
sums !Til+ lT1l fori "1- j. 

If a ::; 4, then the above argument works again, since 4 points impose 
independent conditions on cubics. 

When a = 5, there are two possibilities (up-to a symmetry in A 1 , 

A2), namely (IT11,1T2l) = (1,4) and (IT1l,IT2l) = (2,3). In both cases, 
note that among these 5 points, there are at most 3 collinear ones (use 
the fact that for any 3-special or 4-special subarrangement of 6 lines, 
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any line determined by 2 triple points belong to the subarrangement). 
Then we may add two generic points to our 5 points in T1 U T2 and use 
the fact that 7 points impose independent conditions on cubics unless 5 
are collinear, see [8], p. 714. 

When a = 6, there are two possibilities (up-to a symmetry in A 1 , 

A2), namely (IT1j, IT2I) = (2,4) and (!Til, IT21) = (3,3). In both cases, 
note that among these 6 points, there are at most 3 collinear ones, so 
the same result applies. 

When a= 7, there is just one possibility (up-to a symmetry in A 1 , 

A2), namely (IT1I, IT2I) = (3,4). Note that among these 7 points, there 
are at most 2 collinear ones, so the same result applies. 

When a= 8, there is just one possibility, namely (IT1I, IT2I) = (4,4). 
Note that among these 8 points, there are at most 2 collinear ones. 
However, 8 points impose independent conditions on cubics unless 5 of 
them are collinear or all 8 points are situated on a conic, see [8], p. 715. 

So, if at least one of the sets of 8 points given by T1 U T2, T2 U T3 
and T1 U T3 is not situated on a conic, then we conclude as before, since 
Vi+ v2 = 83. 

In the opposite case, H 0 = V1 + V2 is a hyperplane in 83 , hence 
dim H 0 = 9, and the evaluation map ()' : H 0 -7 era is not surjective. 
Indeed, its kernel contains the cubic forms of the type L1q13 + L2q23 
where Ll> L2 E 81, and q13 (resp. q23) is a fixed quadratic form vanishing 
on T1 U T3 (resp. T2 U T3). This gives a 6-dimensional subspace in H 0, 
since the conics q13 and q23 are not degenerated (by the above discussion 
on collinear points). Hence in this case dim( Coker())= dim( Coker()')= 
1, which yields the result. 

Q.E.D. 

Example 1. (Yoshinaga's 18 line arrangement) Let c E lR be a 
large real number, and set a = exp(27ri/6), a primitive 6-th root of 
unity. Define the polynomial 

A direct computation shows that 

Consider now the cyclic permutation T(x, y, z) = (y, z, x ), acting in the 
obvious way on polynomials in 8 and on the projective plane IP'2 . De
fine new polynomials Q2(x,y,z) = TQ1 = Q 1(y,z,x) and Q3(x,y,z) = 
T2Q1 = Q1(z,x,y). 

Then we have the following. 
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(i) Each of the three arrangements ~ : Qi = 0 is equivalent to the 
A3-arrangement. The corresponding sets of triple points are described 
as follows. 

(15) T1 = {(0: 0: 1), ( -c: -c: 1), (a5c: ac: 1), (ac: a 5c: 1)}, 

and T2 =TTl, T3 = TT2. 

(ii) Using the formula (14) we see that Q1 + Q2 + Q3 = 0, i.e. we have 
a pencil of degree 6. It is easy to check, using the asumption c > > 0, 
that the base locus T0 of this pencil is formed indeed by 36 points. 

(iii) The 8 points in T1 U T2 are situated on the smooth conic 

c3: q3(x,y,z) = y2 + cxz = 0. 

Similarly, the 8 points in T2 UT3 = T(T1 UT2) are situated on the smooth 
conic 

C1: ql(x,y,z) = Tq3 = z2 + cxy = 0, 

and the 8 points in T1 U T3 = T(T2 U T3) are situated on the smooth 
conic 

C2 : q2(x, y, z) = Tql = X 2 + cyz = 0. 

It follows that for the line arrangement A: Q1Q2Q3 = 0 all the condi
tions implying the equalities in (3) hold. 

Note added in proof. The recent paper "The Milnor fibration of 
a hyperplane arrangement: from modular resonance to algebraic mon
odromy", arXiv:l401.0868, by S. Papadima and A. I. Suciu shows that 
for line arrangements with only double and triple points the monodromy 
operator is always combinatorially determined. In particular there is no 
arrangement of 18 lines satisfying the property (4) in our Theorem 1. 
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