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Period problems for mean curvature 
one surfaces in H 3 

(with applications to surfaces of low total curvature) 

Wayne Rossman, Masaaki Umehara and Kotara Yamada 

§1. Introduction 

There is a wide body of knowledge about minimal surfaces in Eu­
clidean 3-space R 3 , and there is a canonical local isometric correspon­
dence (sometimes called the Lawson correspondence) between minimal 
surfaces in R 3 and CMC-1 (constant mean curvature one) surfaces in 
hyperbolic 3-space H 3 (the complete simply-connected 3-manifold of 
constant sectional curvature -1). This has naturally led to the recent 
interest in and development of CMC-1 surfaces in H 3 in the last decade. 
There are now many known examples, and it is a natural next step to 
classify all such surfaces with low total absolute curvature. 

By this canonical local isometric correspondence, minimal immer­
sions in R 3 are locally equivalent to CMC-1 immersions in H 3 . But 
there are interesting differences between these two types of immersions 
on the global level. There are period problems on non-simply-connected 
domains of the immersions, which might be solved for one type of im­
mersion but not the other. Solvability of the period problems is usually 
more likely in the H 3 case, leading to a wider variety of surfaces there. 
For example, a genus 1 surface with finite total curvature and two em­
bedded ends cannot exist as a minimal surface in R 3 , but it does exist 
as a CMC-1 surface in H 3 [RS]. And a genus 0 surface with finite total 
curvature and two embedded ends exists as a minimal surface in R 3 only 
if it is a surface of revolution, but it may exist as a CMC-1 surface in 
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H 3 without being a surface of revolution (see Example 4.3). So there 
are many more possibilities for CMC-1 surfaces in H 3 than there are for 
minimal surfaces in R 3 . This means that it is more difficult to classify 
CMC-1 surfaces with low totalcurvature in H 3 . 

To find complete CMC-1 surfaces in H 3 with low total curvature, we 
must first determine the meromorphic data in the Bryant representation 
of the surfaces that can admit low total curvature, and then we must 
analyse when the parameters in the data can be adjusted to solve the 
period problems. Generally, finding the data is the easier step, and 
solving the period problems is the more difficult step. As the period 
problems are generally the crux of the problem, we have chosen the title 
of this paper to reflect this. 

The total absolute curvature of a minimal surface in R 3 is equal to 
the area of the image (counted with multiplicity) of the Gauss map of 
the surface, and complete minimal surfaces in R 3 with total curvature 
at most 81!' have been classified (see Lopez [Lop] and also Table 2). 
Furthermore, as the Gauss map of a complete conformally parametrized 
minimal surface is meromorphic, and has a well-defined limit at each 
end when the surface has finite total curvature, the area of the Gauss 
image must be an integer multiple of 411'. 

However, unlike the case of minimal surfaces in R 3 , when searching 
for CMC-1 surfaces in H 3 with low total absolute curvature, we have a 
choice of two different Gauss maps: the hyperbolic Gauss map G and 
the secondary Gauss map g. So there are two ways to pose the question 
in H 3 , with two very different answers. One way is to consider the 
true total absolute curvature, which is the area of the image of g, but 
since g might not be single-valued on the surface, the total curvature 
might not be an integer multiple of 411', and this allows for many more 
possibilities. Furthermore, the Osserman inequality does not hold for 
the true total absolute curvature. The weaker Cohn-Vossen inequality 
is the best general lower bound for true absolute total curvature (with 
equality never holding [UY1]). So the true total absolute curvature is 
difficult to analyse, but it is important because of its clear geometric 
meaning. 

The second way is to study the area of the image of G, which we 
call the dual total absolute curvature, as it is the true total curvature 
of the dual CMC-1 surface (which we define in Section 3) in H 3 . This 
way has the advantage that G is single-valued on the surface, and so the 
dual total absolute curvature is always an integer multiple of 411', like the 
case of minimal surfaces in R 3 . Furthermore, the dual total curvature 
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satisfies not only the Cohn-Vossen inequality, but also the Osserman 
inequality [UY5, Yu2] (see also (3.13) in Section 3). So the dual total 
curvature shares more properties with the total curvature of minimal 
surfaces in R 3 , motivating our interest in it. 

We shall refer to the true total absolute curvature of a CMC-1 im­
mersion f: M---> H 3 of a Riemann surface as TA(f), and the dual total 
absolute curvature as TA(j#). 

We review the classification results for surfaces with TA(f) :::; 47r 
or TA(j#) :::; 47r in Section 2, which are results from [RUY 4] and 
[RUY3]. An inequality for TA(f) stronger than the Cohn-Vossen in­
equality [RUY4] (for surfaces of genus zero with odd number of ends) is 
also introduced. In Section 3, we review basic notions and terminology. 
We introduce some important examples of CMC-1 surfaces in Section 4. 
Section 6 is devoted to describing the results in [RUY3], a partial clas­
sification of CMC-1 surfaces with TA(j#) :::; 81r. In the final section 
7, we introduce new results on partial classification of CMC-1 surfaces 
with TA(f) :::; 81r. Since the proofs of these results are more technical 
and delicate than those of the results on TA(j#), we include them in 
Appendix A. 

§2. The cases TA(f) or TA(j#) :::; 47r, and a natural extension 

In [RUY4] the following theorem was proven: 

Theorem 2.1. Let f: M ---> H 3 be a complete CMC-1 immersion 
of total absolute curvature TA(f) :::; 47r. Then f is either 

• a homsphere (Example 4.1), 
• an Enneper cousin (Example 4.2), 
• an embedded catenoid cousin (0 < l < 1, o = 1 and b = 0 in 

Example 4.3), 
• a finite o -fold covering of an embedded catenoid cousin ( o 2:: 2, 

0 < l :::; 1/ o and b = 0 in Example 4.3), or 
• a warped catenoid cousin with injective secondary Gauss map 

(l = 1, o E z+ and b > 0 in Example 4.3). 

The horosphere is the only flat (and consequently totally umbilic) 
CMC-1 surface in H 3 . The catenoid cousins are the only CMC-1 sur­
faces of revolution [Bry]. The Enneper cousins are isometric to minimal 
Enneper surfaces [Bry]. The warped catenoid cousins [UY1, RUY3] are 
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less well known and are described more precisely in Section 4, as well as 
the other above three examples. 

Although this theorem is simply stated, for the reasons given in the 
introduction the proof is more delicate than it would be if the condition 
TA(f) :::; 4n is replaced with TA(J#) :::; 4n, or if minimal surfaces in R 3 

with TA:::; 4n are considered. CMC-1 surfaces f with TA(J#) :::; 4n are 
classified in Theorem 2.3 below. It is well-known that the only complete 
minimal surfaces in R 3 with TA :::; 4n are the plane, the Enneper surface, 
and the catenoid (see Table 2). 

We extend the above result in Section 7 to find an inclusive list of 
possibilities for CMC-1 surfaces with TA(f) :::; 8n, and we consider which 
possibilities we can classify or find examples for, see Table 3. (Minimal 
surfaces in R 3 with TA:::; 8n are classified by Lopez [Lop]. See Table 2.) 

For a complete CMC-1 immersion fin H 3 , equality in the Cohn­
Vossen inequality never holds ([UY1, Theorem 4.3]). In particular, iff 
is of genus 0 with n ends, then 

(2.1) TA(f) > 2n(n- 2) . 

When n = 2, the catenoid cousins show that (2.1) is sharp. However, 
we see from the above theorem that 

TA(f) > 4n for n = 3 , 

which is stronger than the Cohn-Vossen inequality (2.1). The following 
theorem, which extends the above theorem and is proven in [RUY 4], 
gives a sharper inequality than the Cohn-Vossen inequality when n is 
any odd integer: 

Theorem 2.2. Let f: C U {oo} \{PI, ... ,P2m+I} --t H 3 be a com­
plete conformal genus 0 CMC-1 immersion with 2m+ 1 ends, mE z+. 
Then TA(f) ~ 4nm. 

Remark. When m = 1, we know that the lower bound 4n in the 
theorem is sharp (see Example 4.4). However, we do not know if it is 
sharp for general m. For genus 0 CMC-1 surfaces with an even number 
n ~ 4 of ends, it is still an open question whether there exists any 
stronger lower bounds than that of the Cohn-Vossen inequality. It should 
be remarked that in Section 4 we have numerical examples with n = 4 
whose total absolute curvature tends to 4n. 

For the case ofTA(J#), the following theorem was proven in [RUY3]: 
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Theorem 2.3. A complete CMC-1 immersion f with TA(J#) :::; 47T 
is congruent to one of the following: 

(1) a horosphere (Example 4.1), 

(2) an Enneper cousin dual (Example 4.2), 

(3) a catenoid cousin (o = 1, l f= 1 and b = 0 in Example 4.3), or 

(4) a warped catenoid cousin with embedded ends and injective hyperbolic 
Gauss map (8 = 1, l E Z, l;:::: 2 and b > 0 in Example 4.3). 

§3. Preliminaries 

Before we can state any results for the cases of higher TA(f) and 
higher TA(J#), we must give some preliminaries here. 

Let f: M --+ H 3 be a conformal CMC-1 immersion of a Riemann 
surface M into H 3 . Let ds2, dA and K denote the induced met­
ric, induced area element and Gaussian curvature, respectively. Then 
K :::; 0 and d(]'2 := (-K) ds2 is a conformal pseudometric of con­
stant curvature 1 on M. We call this pseudometric's developing map 

- I g: M (: = the universal cover of M) --+ CP = C U { oo} the secondary 
Gauss map of f. Namely, g is a conformal map so that its pull-back of 
the Fubini-Study metric of CPI equals d(]'2 : 

(3.1) d(]'2 = (-K) ds2 = 4dgdg . 
(1 + gg)2 

Such a map g is determined by d(]' 2 uniquely up to the change 

(3.2) a= (an 
a2l 

ai2 ) E SU(2) . 
a22 

Since d(]'2 is invariant under the deck transformation group 7TI ( M), there 
is a representation 
(3.3) 
p9 :7TI(M)---7PSU(2) suchthat goT-I=p9(T)*g (TE7TI(M)), 

where PSU(2) = SU(2)/{±id}. The metric d(]' 2 is called reducible if the 
image of p9 can be diagonalized simultaneously, and is called irreducible 
otherwise. In the case d(]' 2 is reducible, we call it is H 3 -reducible if the 
image of p9 is the identity, and is called HI-reducible otherwise. We 
call a CMC-1 immersion f: M --+ H 3 HI-reducible (respectively, H 3-

reducible) if the corresponding pseudometric d(]' 2 is HI-reducible (re­
spectively, H 3-reducible). For details on reducibility, see Section 5. 
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In addition to g, two other holomorphic invariants G and Q are 
closely related to geometric properties of CMC-1 surfaces. The hyper­
bolic Gauss map G: M ----+ CP1 is holomorphic and is defined geomet­
rically by identifying the ideal boundary of H 3 with CP1 : G(p) is the 
asymptotic class of the normal geodesic of f ( M) starting at f (p) and 
oriented in the mean curvature vector's direction. The Hopf differen­
tial Q is a holomorphic symmetric 2-differential on M such that -Q is 
the (2, 0)-part of the complexified second fundamental form. The Gauss 
equation implies 

(3.4) 

where · means the symmetric product. Moreover, these invariants are 
related by 

(3.5) S(g)- S(G) = 2Q, 

where S ( ·) denotes the Schwarzian derivative: 

[ ( h") I 1 ( h") 2] S(h) := h' - 2 h' dz 2 ('=d~) 
with respect to a local complex coordinate z on M. 

In terms of g and Q, the induced metric ds 2 and complexification of 
the second fundamental form II are 

- 2 II = -Q - Q + ds . 

Since K ~ 0, we can define the total absolute curvature as 

TA(f) := { ( -K) dA E [0, +oo] . 
jM 

Then TA(f) is the area of the image of M in CP1 of the secondary 
Gauss map g. TA(f) is generally not an integer multiple of 471'; for 
catenoid cousins [Bry, Example 2] and their 6-fold covers, TA(f) can be 
any positive real number. 

For each conformal CM C-1 immersion f: M ----+ H 3 , there is a holo­
morphic null immersion F : M ----+ SL ( 2, C), the lift of f, satisfying the 
differential equation 

(3.6) -g2) 
-g 

w, W= g_ 
dg 
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so that f = F F*, where F* = £F [Bry, UY1]. Here we consider 

H 3 = S1(2, C)/ SU(2) = { aa* I a E S1(2, C)} . 

We call a pair (g,w) the Weierstrass data of f. The lift F is said to be 
null because det p- 1dF, the pull-back of the Killing form of S1(2, C) 
by F, vanishes identically on M. Conversely, for a holomorphic null im­
mersion F: M-+ S1(2, C), f := FF* is a conformal CMC-1 immersion 
of Minto H 3 . IfF= (Fi1), equation (3.6) implies 

dF12 dF22 
g = - dFu = - dF21 ' (3.7) 

and it is shown in [Bry] that 

(3.8) G = dFu = dF12 . 
dF21 dF22 

The inverse matrix F-1 is also a holomorphic null immersion, and pro­
duces a new CMC-1 immersion J# = F- 1(F- 1)*: JV[-+ H 3 , called the 
dual of f [UY5]. The induced metric ds2 # and the Hopf differential Q# 
of J# are 

(3.9) Q# = -Q. 

So ds 2 # and Q# are well-defined on M itself, even though J# might 
be defined only on M. This duality between f and j# interchanges the 
roles of the hyperbolic Gauss map G and secondary Gauss map g. In 
particular, one has 

(3.10) 

Hence dFF- 1 is single-valued on M, whereas F- 1dF generally is not. 

Since ds 2 # is single-valued on M, we can define the dual total abso­
lute curvature 

TA(J#):= JM(-K#)dA#, 

where K# (:::; 0) and dA# are the Gaussian curvature and area element 
of ds2 #, respectively. As 

(3.11) d 2# ·= (-K#)d 2# = 4dGdG 
a . s (1 + IGI2)2 
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is a pseudo-metric of constant curvature 1 with developing map G, 
TA(j#) is the area of the image of G on CPI = S2 • The following 
assertion is important for us: 

Lemma 3.1 ([UY5, Yu2]). The metric ds 2 # is complete (respectively, 
nondegenerate) if and only if ds 2 is complete (respectively, nondegenerate). 

We now assume that the induced metric ds 2 (and consequently 
ds2#) on M is complete and that either TA(f) < oo or TA(!#) < oo, 
hence there exists a compact Riemann surface M, of genus 1 and a finite 
set of points {PI, ... , Pn} c M, ( n 2': 1) so that M is biholomorphic to 
M, \{PI, ... ,pn} (see Theorem 9.1 of [Oss]). We call the points Pj the 
ends of f. 

Unlike the Gauss map for minimal surface with TA < oo in R 3 , 

the hyperbolic Gauss map G of the surface might not extend to a mero­
morphic function on M,, as the Enneper cousin (Example 4.2) shows. 
However, the Hopf differential Q does extend to a meromorphic differen­
tial on M, [Bry]. We say an end Pj (j = 1, ... , n) of a CMC-1 immersion 
is regular if G is meromorphic at Pj. When TA(f) < oo, an end PJ is 
regular precisely when the order of Qat PJ is at least -2, and otherwise 
G has an essential singularity at PJ [UY1]. Moreover, the pseudometric 
da 2 as in (3.1) has a conical singularity at each end PJ [Bry]. For a 
definition of conical singularity, see Section 5 (see also [UY3, UY7]). 

Thus the orders of Q at the ends PJ are important for understanding 
the geometry of the surface, so we now introduce a notation that reflects 
this. We say a CMC-1 surface is of type r(di, ... , dn) if it is given as a 
conformal immersion f: JVI, \ {PI, ... , Pn} -+ H 3 , where ordp1 Q = dj 
for j = 1, ... , n (for example, if Q = z-2 dz 2 at PI = 0, then di = -2). 
We use r because it is the capitalized form of 1, the genus of M,. For 
instance, the class I( -4) means the class of surfaces of genus 1 with 1 
end so that Q has a pole of order 4 at the end, and the class 0( -2, -3) 
is the class of surfaces of genus 0 with two ends so that Q has a pole of 
order 2 at one end and a pole of order 3 at the other. 

Analogue of the Osserman inequality. For a CMC-1 surface of 
genus 1 with n ends, the second and third authors showed that the 
equality of the Cohn-Vossen inequality for the total absolute curvature 
never holds [UY1]: 

(3.12) 
1 

- TA(f) > -x(M) = 21- 2 + n . 
27f 
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The catenoid cousins (Example 4.3) show that this inequality is the best 
possible. 

On the other hand, the dual total absolute curvature satisfies an 
Osserman-type inequality [UY5]: 

(3.13) 
1 

271" TA(J#);:::: -x(M) + n = 2(1 + n- 1). 

Moreover, equality holds exactly when all the ends are embedded: This 
follows by noting that equality is equivalent to all ends being regular 
and embedded ([UY5]), and that any embedded end must be regular 
(proved recently by Collin, Hauswirth and Rosenberg [CHR1] and Yu 
[Yu3]). 

Effects of transforming the lift F. Here we consider the change F = 

aFb- 1 of the lift F, where a, bE SL(2, C). Then F is also a holomorphic 
null immersion, and the hyperbolic Gauss map G, the secondary Gauss 
map g and the Hopf differential Q off = F F* are given by (see [UY3]) 
(3.14) 

G = a* G = an G + a12 
a21G+a22' 

and Q = Q, 

where a= (aij) and b = (bij)· In particular, the change F = aF moves 
the surface by a rigid motion of H 3 , and does not change g and Q. 

SU(2)-rnonodrorny conditions. Here we recall from [RUY1] the 
construction of CMC-1 surfaces with given hyperbolic Gauss map G 
and Hopf differential Q. Let M, be a compact Riemann surface and 
M := M, \{PI, ... ,pn}· Let G and Q be a meromorphic function and 
meromorphic 2-differential on M,. We assume the pair ( G, Q) satisfies 
the following two compatibility conditions: 

(3.15) 
For all q E M, ordq Q is equal to the branching order of G, and 

(3.16) 
for each end pj, (branching order of G)-dj ;:::: 2. 

The first condition implies that the metric ds 2 # as in (3.9) is non­
degenerate at q E M. The second condition implies that the metric 
ds2 # is complete at Pj E M, (j = 1, ... , n). Our goal is to get a CMC-1 
immersion f: 1\1 --> H 3 with hyperbolic Gauss map G and Hopf differ­
ential Q. If such an immersion exists, the induced metric ds 2 of f is 
non-degenerate and complete, by Lemma 3.1. 
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Fig. 1. A horosphere, and fundamental pieces (one-fourth of 
the surfaces with the ends cut away) of an Enneper 
cousin and the dual of an Enneper cousin. Figures 
are shown in the Poincare model of H 3 . 

Since a pair (G, Q) satisfies (3.15) and (3.16), the differential equa­
tion (3.10) may have singularities at {p1 , ... ,Pn}, but is regular on 
M. Then there exists a solution F: M --+ SL(2, C), where M is the 
universal cover of M. Since the solution F of (3.10) is unique up 
to the change F f--+ Fa (a E SL(2, C)), there exists a representation 
PF: 1r1 (M) --+ SL(2, C) such that 

(3.17) FoT=Fpp(T) (T E 1r1(M)). 

Here we consider an ele~ent T of the fundamental group 1r1 (M) as a 
deck transformation on M. Thus: 

Proposition 3.2. If there exists a solution F: M --+ SL(2, C) of 
(3.10) for (G,Q) satisfying (3.15) and (3.16), then f := FF* is a com­
plete conformal CMC-1 immersion into H 3 which is well-defined on M 
if PF( T) E SU(2) for all T E 1r1 (M). Moreover, the hyperbolic Gauss 
map and the Hopf differential off are G and Q, respectively. 

§4. Important Examples with TA(f) or TA(J#) :::; 81r 

In this section, we shall introduce several important CMC-1 surfaces 
with TA(f) :::; 81r or TA(J#) :::; 81r. 

Example 4.1 (Horosphere). A horosphere (Figure 1) is the only 
surface of type 0(0), with Weierstrass data given by 

g = 0, w =adz (aEC\{0}). 
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The holomorphic lift F: C -+ 81(2, C) of the surface with initial con­
dition F(O) = id is given by 

F = ( 1 0) . 
az 1 

In particular the hyperbolic Gauss map is a constant function, as well 
as the secondary Gauss map· g = 0. This surface is flat and totally 
umbilic. In particular, the total curvature and the dual total curvature 
of the surface are both equal to zero. Any flat or totally umbilic CMC-1 
surfaces are parts of this surface. Planes in R 3 are the corresponding 
minimal surfaces with the same Weierstrass data (g,w) = (O,adz). 

Example 4.2 (Enneper cousin and dual of Enneper cousin). The 
Enneper cousin is given in [Bry] (Figure 1), with the same Weierstrass 
data as the Enneper surface in R 3 : 

g = z, w =adz (aEC\{0}). 

The holomorphic lift F: C -+ 81(2, C) of the surface with initial con­
dition F(O) = id is given by 

F = ( cosh(az) a-1 sinh(az)- zcosh(az)) 
a sinh( az) cosh( az) - az sinh( az) 

In particular the hyperbolic Gauss map G is given by 

G = a- 1 tanh(az) . 

The Enneper cousin is in the class 0( -4) and has a complete induced 
metric of total absolute curvature 47r. If one takes the inverse ofF, one 
gets the dual of the Enneper cousin (Figure 1). Since 

Fd(F-1) = -dFF-1 = (-acosh(az)sinh(az) sinh2 (az) ) 
-a2 cosh2 (az) acosh(az) sinh(az) ' 

the Weierstrass data (g#, w#) of the dual of the Enneper cousin given 
by 

This surface is also in the class 0( -4) and has a complete induced metric 
of infinite total absolute curvature (see Lemma 3.1). 

Example 4.3 (Catenoid cousins and warped catenoid cousins). 
CMC-1 surfaces of type 0( -2, -2) are classified in Theorem 6.2 in 
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Fig. 2. A catenoid cousin with l = 0.8, and warped catenoid 
cousins with (l, <5, b) = (4, 1, 1/2) and (1, 2, 1/2). The 
third surface has TA(f) = 471" because l = 1 even 
though its ends are not embedded. 

Fig. 3. Cut-away views of the third warped catenoid cousin 
in Figure 2. 

[UY1]. Here we give a slightly refined version from [RUY4]: A com­
plete conformal CMC-1 immersion f: M = C \ {0} --+ H 3 with regular 
ends have the following Weierstrass data 

( 4.1) 
o-z _zz l 

g = -4-l -z + b , w = Q = z-1- 1dz 
dg , 

with l > 0, o E z+, and l =1- 8, and b ;:::: 0, where the case b > 0 
occurs only when l E z+. When b = 0 and 8 = 1, the surface is called 
a catenoid cousin, which is rotationally symmetric. (The Weierstrass 
data of the catenoid cousin is often written as g = z~" and w = (1 -
p2 )z_~"_ 1 dz/(4p). This is equivalent to (4.1) for b = 0 and 8 = 1 
and l = JL by a coordinate change z f-+ ((1- p 2 )/4p)<11Mlz.) Catenoid 
cousins are embedded when 0 < l < 1 and have one curve of self­
intersection when l > 1. When b = 0, f is a 8-fold cover of a catenoid 
cousin. When b > 0 (then automatically l is a positive integer), we 
call f a warped catenoid cousin, and its discrete symmetry group is the 
natural Z 2 extension of the dihedral group D 1• Furthermore, the warped 
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Fig. 4. Two different CMC-1 trinoids (proven to exist in 
[UY3]). Although these surfaces are proven to exist, 
and numerical experiments show that some of them 
are embedded (as one of the pictures here is), none 
have yet been proven to be embedded. 
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catenoid cousins can be written explicitly as f = F F*, F = F0 B, where 

0- l (l+J)/2 ) 
4l z 1 

-(l + o) <z-8)/2 ' B = (o 
4l z 

-b) 1 . 

In particular, the hyperbolic Gauss map and Hopf differential are given 
by 

o2- z2 2 
Q=~dz, 

which are equal to the Gauss map and Hopf differential of the catenoids 
in R 3 . The dual total curvature of a catenoid cousin is 47!', but its total 
curvature is 47rl (l > 0), which can take any value in (0, 47r)U(47r, oo). On 
the other hand, the total absolute curvature and the dual total absolute 
curvature of warped catenoid cousins are always integer multiples of 471'. 
(See Figures 2 and 3). 

Example 4.4 (Irreducible trinoids). We take three real numbers 
J.tl, J.t2, J.t3 > -1 such that 

( 4.2) cos2 B 1 + cos2 B2 + cos2 B3 + 2 cos B 1 cos B2 cos B3 < 1, 

where B1 = 7r(J.tj + 1) (j = 1, 2, 3). We also assume 

(4.3) 

where c1 = -J.Lj(J.Lj + 2)/2 E R (j = 1, 2, 3). Then it is shown in [UY7] 
that there exists a unique CMC-1 surface !'"''''"'2 ,'"' 3 : C \ {0, 1}--+ H 3 of 
type 0( -2, -2, -2) such that the pseudometric du2 = ( -K)ds2 defined 
by (3.1) is irreducible and has conical singularities of orders j.t 1 , j.t2 , ~t3 



360 W. Rossman, M. Umehara and K. Yamada 

Type P Type N 

Fig. 5. Minimal trinoids of types P and N. The graphics were 
made by S. Tanaka of Hiroshima University. 

at z = 0, 1, oo, respectively. Moreover, any irreducible CMC-1 surface of 
type 0( -2, -2, -2) whose ends are all embedded is congruent to some 
fJ-' 1 ,J-'2 ,J-'3 • All ends of these surfaces are asymptotic to catenoid cousin 
ends. The inequality (4.2) implies J-L1 , f-L2 and /-L3 are all non-integers. 

If we allow equality in ( 4.2), one of the /-Ll, f-L2, f-L3 must be an integer. 
The corresponding CMC-1 surface might not exist for such f-Ll, f-L2, f-L3 
in general [UY7]. If it exists, its induced pseudometric da2 must be 
reducible (see Lemmas A.1 and A.2). 

The Hopf differential Q of f 1-'l ,/-'2 ,/-'3 is given by 

(4.4) Q = ~ (c3z2 + (c2- c1- c3)z+c1) dz2 . 

2 z2(z- 1)2 

Let q1 and q2 be zeros of Q, that is 

(4.5) (l = 1, 2) . 

By (4.3), q1 =f. q2 holds. The hyperbolic Gauss map is then given by 

(4.6) G-z+ (ql-Q2)2 
- 2{2z- (q1 + q2)} · 

In particular, all of these surfaces have dual total absolute curvature 81r. 
On the other hand, the total curvature is equal to 27r(4+J-Ll +J-L2+J-L3). If 
we set J-L = /-Ll = J-L2 = f-L3, the condition (4.2) implies that J-L > -2/3, and 
then there exist JJ-',J-',J-' for any J-L arbitrarily close to -2/3, whose total 
curvatures tend to 47r. This implies Theorem 2.2 is sharp form= 1. 

It is interesting to compare these surfaces with minimal trinoids 
in R 3 . Minimal trinoids with three catenoid ends are classified in Bar­
bane! [Bar], Lopez [Lop] and Kato [Kat]. Here, we adopt Kato's notation 
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Type(+,+,+) Type (-, -,-) Type(+,-,-) Type(+,+,-) 

Fig. 6. Profile curves of trinoids f p, 1 ,p,2 ,p,3 . 

[Kat]: The Weierstrass data of these trinoids x0 : CU { oo} \ {0, PI> P2} --+ 

R 3 are given by 

b( 2 2 2 2 ) PIP2 +PI + P2 - PIP2 
g = z ~ f(z) ' (bE R) 

where PI and P2 are real numbers such that (PI- P2)(1 + PIP2) "I- 0 and 

f(z) := b (PI(PI- P2) + P2(P2- pi)+ PIP2(PIP2 + 1)) . 
z- PI z- P2 z 

If the coefficients of 1/ z2, 1/(z- p 1?, 1/(z- p2)2 in the Laurent expan­
sion of the Hopf differential Q = w dg at z = 0, PI, P2 are all the same 
signature, the surface is called of type P and otherwise it is called of type 
N. Type P surface are all Alexandrov-embedded. On the other hand, 
type N surfaces are not. (For a definition of Alexandrov embedded, see 
Cosin and Ros [CR].) These two classes consist of the two connected 
components of the set of minimal trinoids (Tanaka [Tan]; see Figure 5). 
In the case of CM C-1 trinoids in H 3 , we would like to group the sur­
faces according to the signatures of CI, c2, c3 . For example, f 1'1 ,1'2 ,1'3 is 
called of type ( +, +, +) if CI, c2 , c3 are all positive, and it is called of 
type ( -, +, +) if one of ci, c2, c3 is negative and the other two are pos­
itive. By numerical experiment, we see that these four types ( +, +, + ), 
( -, +, + ), ( -, -, +) and ( -, -,-) are topologically distinct (see Fig­
ure 6). Surfaces of type ( +, +, +) have total curvature less than 87!", and 
it seems that only surfaces in this class can be embedded. 

Example 4.5 (4-noids with TA(f) < 87!"). A CMC-1 surface of 
genus 0 with 4 ends satisfies the Cohn-Vossen inequality TA(f) > 47!" 
(see (3.12)). Though genus 0 surfaces with an odd number of ends sat­
isfy a sharper inequality (Theorem 2.2), it seems that the Cohn-Vossen 
inequality is sharp for 4-noids, by numerical experiment: Let a E (0, 1) 
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Im 

Re 

Fundamental region of a 4-noid A 4-noid with TA(f) = 57r 

Fig. 7. 4-noid 

be a real number and M = C U { oo} \ {a, -a, a-I, -a-1 }. We set 

pz3 - z 
G:= 2 ' z -p 

!-"(!-" + 2)a2(a2- a-2)2 (pz4- (3p2- 1)z2 + p) d 2 
Q :=- (pa4- (3p2- 1)a2 + p) (z2- a2)2(z2- a-2)2 z ' 

where 1-" > -1 and pER\ {0, 1} with pa4 - (3p2 -1)a2 + p =f. 0. If there 
exists a CMC-1 immersion f: M --+ H 3 with hyperbolic Gauss map G 
and Hopf differential Q, then TA(f) = 47r(2J-t + 3). We shall solve the 
period problems using the method in [RUY1]: Let D := {z = rei0 E 

C I 0 < r < 1, 0 < () < 7r /2}. Then the Riemann surface M is obtained 
by reflection of D about 8D. Let 71. 72, 73 and 74 be the reflections 
on the universal cover M of M, which are the lifts of the reflections on 
M about the segment (0, a) on the real axis, the segment (0, i) on the 
imaginary axis, the unit circle lzl = 1, and the segment (a, 1) on the 
real axis, respectively (see Figure 7, left). Let F: M--+ SL(2, C) be a 
solution of (3.10). Since Go 7j = Oj*G, Q o 7j = Q, j = 1, 2, 3, 4, where 

01 = 0"4 = id, ( 

0 0) (0 i) 
(]"2 = ~ -i , (]"3 = i 0 , 

there exist matrices pp(7j) E SL(2, C), j = 1, 2, 3, 4 such that F o 7j = 
ajFpp(7j), j = 1,2,3,4. Moreover, by a similar argument to that in 
[RUY1, pp. 462-464], one can choose F such that 

(j = 3, 4), 
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where "!j E Rand qiiJ.i +"!}"!] = 1. Assume 'Yh§ > 0. Then there exists 
a unique solution F of (3.10) such that 

For given J-t and a, if one can choose p so that 'Yl = "(~, that is p F ( Ti) E 
SU(2), then there exists a CMC-1 immersion f of Minto H 3 with hy­
perbolic Gauss map G and Hopf differential Q, by Proposition 4.7 in 
[RUY1]. 

By numerical calculation, for J-t = -0.5 and a = 0.8, there exists 
p ~ 1.4 such that the period problem is solved. This surface thus has 
TA(f) = 81r, and by continuity of the solvability of the period problems, 
clearly there exist surfaces with TA(f) < 81r. Moreover, there exist such 
parameters a and p for J-t ~ -1. So it seems that the Cohn-Vossen 
inequality for genus-zero 4-ended CMC-1 surfaces is sharp. Figure 7 
shows the half cut of the surface with TA(f) = 5n. 

§5. Reducibility 

To state the results for higher TA(f) or TA(J#), we review the 
notion of reducibility. For details, see [UY3, UY7, RUY1]. 

Metrics with conical singularities. Let M be a compact Riemann 
surface. A pseudometric da2 on M is said to be an element of Met1 (M) 
if there exists a finite set of points {p1, ... , Pn} C M such that 

(1) da2 is a conformal metric of constant curvature 1 on M\ {p1, ... , Pn}, 
and 

( 2) {p1, ... , Pn} is the set of conical singularities of da2 , that is, for 
each j = 1, ... , n, there exists a real number {3i > -1 so that da2 is 
asymptotic to clz- Pil 2,6j dzdz, where z is a complex coordinate of M 
around Pi and c is a positive constant. 

We call the real number {3i the order of the conical singularity Pi, and 
write {3i = ordpj da2 . The formal sum 

(5.1) fJ1P1 + · · · + f3nPn 

is called the divisor corresponding to da2 . 

Let da2 E Met1(M) with divisor as in (5.1) and set M := M \ 
{Pl, ... , Pn}. Then there exists a holomorphic map g: M ---+ CU { oo} = 
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CP1 defined on the universal cover M of M such that 

(5.2) 
2 4dgdg * 2 

da = (1 + lgl2)2 = g dso ' 

where ds~ is the Fubini-Study .metric of CP1 . We call g the developing 
map of da2 . The developing map is unique up the change 

(5.3) (a E PSU(2)) , 

where a* g denotes. the Mobius transformation of g with respect to a 
as in (3.2). Here we write a E PSU(2) as a 2 x 2 matrix in SU(2) and 
identify a with -a. 

For each deck transformation T E 7!'1 ( M) on M, da2 = da2 o T holds. 
So there exists a representation 
(5.4) 
p9 : 7ri(M) ____. PSU(2) such that por- 1 = p9 (r)*g forTE 7l'I(M). 

By a change of g as in (5.3), the corresponding representation changes 
by conjugation: 

(5.5) 

Let Tj be a deck transformation induced from a small loop on M sur­
rounding a singularity Pi· Then by (5.5), one can choose the developing 
map g such that p9 ( Tj) is diagonal: 

(viER), 

namely, go Tj = e21rivj g. This implies that (z- Pi)-vi g is single-valued 
on a neighborhood of Pi, where z is a complex coordinate around Pi. 
Then, replacing Vj with Vj + m (mE Z) if necessary, we can normalize 

(5.6) g = (z- Pjti (go+ g1(z- Pj) + g2(z- Pj)2 + · · ·) 
By definition of the order and by equation (5.2), we have 

Vj = /3j + 1 or - /3j- 1. 

(go f 0) . 

Definition 5.1. A pseudometric da2 E Met1 ( M) is called reducible 
if the representation p9 can be diagonalized simultaneously, where g 
is the developing map of da2 . More precisely, a reducible metric da2 

is called 1i3 -reducible if the representation is trivial, and called 1i1 -

reducible otherwise. A pseudometric da2 is called irreducible if it is not 
reducible. 
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By definition, a developing map g of an 1i3-reducible metric is a 
meromorphic function on M itself. Moreover, by (5.6), all conical sin­
gularities have integral orders, which coincide with the branching orders 
of the meromorphic function g. In this case, for any a E PSL(2, C), 
ga := a* g induces a new metric da~ := g~ds6 E Met1 (M) with the 
same divisor as da2 . Since da~ = da2 if a E PSU(2), we have a non­
trivial deformation of da2 preserving the divisor parametrized by a real 
3-dimensional space 1i3 = PSL(2, C)/ PSU(2), which is the hyperbolic 
3-space. 

On the other hand, assume da 2 E Met1 (M) is 1i1-reducible. Then 
there exists a developing map g such that the image of p9 consists of 
diagonal matrices. Let t be a positive real number and set 

(
tl/2 

gt := tg = 0 

Then by (5.5), p9 , = p9 holds. Thus, gt induces a new metric da; E 

Meh ( M). So we have one parameter family of pseudometrics { da;} 
preserving the corresponding divisor. This family is considered as a 
deformation of pseudometric parameterized by a geodesic line in H3 . 

For details, see the Appendix in [RUY1]. 

We introduce a criterion for reducibility: 

Lemma 5.2. A metric da2 E Met 1 (M) is reducible if and only if 
there exists a developing map such that d log g is a meromorphic 1-form 
onM. 

Proof. Assume da2 is reducible. Then one can choose the develop­
ing map g such that p9 is diagonal. Then for each deck transformation 
T E 1r1(M), 

holds. Hence we have log goT = g + 21rivr- Differentiating this, d log go 
T = d log g holds. Hence d log g is single-valued on M. 

Conversely, we assume d log g is well-defined on M for a developing 
map g. Then logg o T -logg is a constant. Hence we have goT= Arg 
for some constant Ar- Then p9 is diagonal. Q.E.D. 

Relationship with CMC-1 surfaces. Let f: M'~ \ {p1 , ... ,Pn} ___, H 3 

be a complete conformal CMC-1 immersion, where M '~ is a compact 
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Riemann surface. If TA(f) < oo, then the pseudometric da2 as in (3.1) 
is considered as an element ofMet1 (M'"Y) (see [Bry]), and the secondary 
Gauss map g is the developing map of da 2 • Let { q1 , ... , qm} be the 
set of umbilic points off, that is the zeros of Q and set ~k := ordqk Q 
(k = 1, ... , m). Then by (3.4), da2 has a conical singularity of order ~k 
for each k = 1, ... , m. Hence the divisor of da2 is in the form 

(5.7) 

where the J.LJ (j = 1, ... , n) are the branch orders of g at each PJ. 

Let F be a holomorphic lift of f as in (3.6). Then there exists 
a representation PF: 1r1 (M) --+ SU(2) as in (3.17). By (3.7), the sec­
ondary Gauss map gofF changes as go T-1 = PF(T) * g for each deck 
transformation T E 1r1 (M). Hence the representation p9 defined in (5.4) 
satisfies 

(5.8) 

The immersion f is called 7-{3-reducible (respectively, 7-{ 1-reducible) 
if the corresponding pseudometric da 2 is 7-{3-reducible (respectively, 7-{ 1-

reducible). 

Lemma 5.3. A CMC-1 immersion f: M--+ H 3 is 7-{3 -reducible if 
and only if the dual immersion f# is well-defined on M. 

Proof. Let F be a lift of f. Then f# = p- 1 (F- 1 )* is well-defined 
on M if and only if PF = ± id. This is equivalent to p9 being the trivial 
representation, by (5.8). Q.E.D. 

§6. The case TA(J#) :::; 81r 

We now have enough notation and facts to describe results on the 
case TA(J#) :::; 81r [RUY3]. 

- 3 Let f: M'"Y \ {p1 , ... ,pn} --+ H be a complete, conformal CMC-
1 immersion, where M '"Y is a Riemann surface of genus r. Now we 
assume TA(J#) :::; 81r. If the hyperbolic Gauss map G has an essential 
singularity at any end PJ, then TA(J#) = +oo, since TA(J#) is the area 
of the image of G. So G is meromorphic on all of M T In particular, 
TA(J#) = 47r deg G = 0, 47r, or 81r. 

Since f# has finite total curvature, the Hopf differential Q# = -Q 
can be extended toM '"Y as a meromorphic 2-differential [Bry, Proposition 
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I Type II TA(J#) I Reducibility I Status c.f. 

1 o(oJ II 0 I H 3-red I classified0 I Horosphere 

0(-4) 47f 7-CS-red. classified Duals of Enneper cousins 
rRUY1, Example 5.4] 

0(-2, -2) 47f reducible classified Catenoid cousins 
and warped catenoid cousins 
with embedded ends 
(i.e. o = 1) 
[Bry, Example 2], 
ruYl, RUY3, RUY4] 

0(-5) 87r 1-e-red. classified [RUY3] 
0(-6) 87f J{>-red. classified [RUY3] 
0(-2, -2) 87r red. classified Double covers 

of catenoid cousins 
and warped catenoid cousins 
with o = 2 
[UY1, Theorem 6.2], 
rRUY3, RUY 4] 

0(-1,-4) 87r 7-(1-red. classified0 [RUY3] 
0(-2, -3) 87f "H 1 -red. classified [RUY3] 
0(-2, -4) 87r "H 1 -red. classified [RUY3] 

"H 3-red. classified [RUY3] 
0(-3, -3) 87f red. existence [RUY3] 
0(-1,-1,-2) 87f "HJ-red. classifiedu [RUY3] 
0(-1, -2, -2) 87f "H 1 -red. classified [RUY3] 

"H3 -red. classified [RUY3] 
0( -2, -2, -2) 87f irred. classified [UY6, Theorem 2.6] 

"H 1-red. existence+ [RUY3] 
"H3 -red. existence+ [RUY3] 

1(-3) 87r unknown 
1(-4) 87f existence Chen-Gackstatter cousins 

rRUY3] 
1(-1, -1) 87f unknown+ [RUY3] 
I( -2, -2) 87f existence Genus 1 catenoid cousins [RS] 

Table 1. CMC-1 surfaces in H 3 with TA(J#) ::; 81r [RUY3]. 

5]. Hence dj = ordp1 Q is finite for each j = 1, ... , n. Our results from 
[RUY3] are shown in Table 1. In the table, 

• classified means the complete list of the surfaces in such a class 
is known (and this means not only that we know all the possi­
bilities for the form of the data ( G, Q), but that we also know 
exactly for which ( G, Q) the period problems of the immersions 
are solved). 
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I Type II TA I The surface c.f. 

0(0) 0 Plane 
0(-4) 471" Enneper's surface 
0(-5) 871" [Lop, Theorem 6] 
0(-6) 871" [Lop, Theorem 6] 
0(-2,-2) 471" Catenoid 

871" Double cover of the catenoid 
0(-1,-3) 871" [Lop, Theorem 5] 
0(-2, -3) 871" [Lop, Theorem 4, 5] 
0(-2,-4) 871" [Lop, Theorem 5] 
0(-3,-3) 871" [Lop, Theorem 4] 
0(-1,-2,-2) 871" [Lop, Theorem 5] 
0( -2, -2, -2) 871" [Lop, Theorem 5] 
1(-4) 871" Chen-Gackstatter surface [Lop, Theorem 5], [CG] 

Table 2. The classification of complete minimal surfaces in 
R 3 with TA :S 81r ([Lop]), for comparison with Ta­
ble 1. 

• classijied0 means there exists a unique surface (up to isometries 
of H 3 and deformations that come from its reducibility). 

• existence means that examples exist, but they are not yet clas­
sified. 

• existence+ means that all possibilities for the data (G, Q) are 
determined, but the period problems are solved only for special 
cases. 

• unknown means that neither existence nor non-existence is 
known yet. 

• unknown+ means that all possibilities for the data (G, Q) are 
determined, but the period problems are still unsolved. 

Any class and type of reducibility not listed in Table 1 cannot con­
tain surfaces with TA(J#) ~ 81r. For example, any irreducible or 7-{3-

reducible surface of type 0( -2, -3) must have dual total absolute cur­
vature at least 12n. 

Table 2 shows the corresponding results for minimal surfaces in R 3 , 

the classification of complete minimal surfaces with TA ~ 81r [Lop]. 
Comparing these two tables, one sees differences between the classes of 
minimal surfaces with TA ~ 81r and the classes of CMC-1 surfaces with 
TA(J#) ~ 8n. For example, there exist no mimimal surfaces of classes 
0(-1,-4) and 0(-1,-1,-2) with TA ~ 8n, but CMC-1 surfaces of 
such types do exist. 
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§7. The case of TA(f) ~ 81r 

In the remainder of this paper, we shall give new results on the case 
of higher TA(f). 

Preliminaries. First, we give further notation and facts that will be 
needed in our discussion. 

Orders of the Gauss maps. Let M 'Y be a compact Riemann surface of 
genus 'Y· For a complete conformal CMC-1 immersion f: M = M'Y \ 
{p1 , ... ,pn} --t H 3 with TA(f) < oo, we define /-lj and J-Lf to be the 
branching orders of the Gauss maps g and G, respectively, at an end Pi· 
Then the pseudometric da2 as in (3.1) has a conical singularity of order 
/-lj > -1 at each end Pi (j = 1, .. . ,n). Let dj = ordpj Q (j = 1, .. . ,n). 
Then an endpj is regular if and only if dj 2: -2 (see Section 3, or [UY1]). 

If an end Pi is irregular, then J-Lf = oo. At a regular end Pi, the relation 
(3.5) implies that the Hopf differential Q expands as 

(7.1) ( # ) 1 Cj- cj 2 
Q = - ( )2 + . . . dz , 

2 z- Pi 

where 

(7.2) 

and z is a local complex coordinate around Pi. 

Let { q1 , ... , qm} C M be the m umbilic points of the surface, and 
let ~k = ordqk Q. Since the total order of a holomorphic 2-differential is 
-2x(M'Y), we have 

n m 

(7.3) L:dj + L:~k = 4"(- 4, 
j=l k=l 

By (3.4) and (3.5), one has 

(7.4) 

n 

in particular, 2::>j ~ 4"( - 4 . 
j=l 

~k = [the branching order of G at qk] = [the branching order of g at qk] 

= ordqk da2 = ordqk Q . 

As in (2.4) of [RUY3], the Gauss-Bonnet theorem for (M'Y, da2 ) implies 

TA(f) _ n m n m 

(7.5) - 2- = x(M"~) +LJ-Li + L~k = (2"!- 2) + Ll-li + L~k 
7r j=l k=l j=l k=l 
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as well as 

(7.6) 

which is obtained from the Gauss-Bonnet theorem for du2 # = ( -K#)ds2# 
[RUY3]. Combining this with (7.3), we have 

(7.7) 
TA(f) n 
-- = 2')' - 2 + """'(JL . - d . ) . 27r L..- J J 

j=l 

Proposition 4.1 in [UY1] implies that 

(7.8) in particular, 

An end PJ is regular if and only if dJ ~ -2, and then G is meromorphic 
at PJ· Thus 

(7.9) JLj is a non-negative integer if dj ~ -2 . 

In this case, one has (Lemma 3 of [UY5]) 
(7.10) 

JLj - dJ ~ 2 and the equality holds if and only if PJ is embedded. 

By Proposition 4 of [Bry], 

(7.11) 

hence equation (7.1) implies 

(7.12) 

Finally, we note that 
(7.13) 

ftj > -1 ' 

if dj ~ -1. 

any meromorphic function on a Riemann surface M, of genus 
')' ~ 1 has at least three distinct branch points. 

To prove this, let rp be a meromorphic function on M, with branch points 
{q1, ... , qN} with branching order vk at qk. Then the Riemann-Hurwitz 
relation implies 

N 

2 deg rp = 2 - 2')' + L vk . 

k=l 

On the other hand, since the multiplicity of rp at qk is vk + 1, deg rp ~ 
vk+1 (k = 1, ... ,m). Thus (N -2)degrp ~ 2('/-1)+N. If')'~ 1, then 
deg rp ~ 2, and so N ~ 3. 
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Remark. Facts (7.7) and (7.8) imply that, for CMC-1 surfaces, equal­
ity never holds in the Cohn-Vossen inequality (see (3.12) and [UY1]). 

Flux for CMC-1 surfaces. Let f: M 1 \ {p1, ... ,pn} --+ H 3 be a complete 
CMC-1 immersion. For each endpj, the flux at pj is defined as ([RUY2]) 

(j = 1, ... ,n), 

where G and Q are the hyperbolic Gauss map and the Hopf differential 
of f respectively, and Tj is a loop surrounding the end Pj. Then the 
following balancing formula holds (Theorem 1 in [RUY2]): 

(7.15) 

Moreover, one has (Proposition 2 and Corollary 5 in [RUY2]): 

Proposition 7 .1. Let f : M 1 \ {Ph ... , Pn} --+ H 3 be a complete 
CMC-1 immersion. 

(1} If an end Pj is regular and ordPi Q = -2, then :Flj 1=- 0. 

(2} If an end Pj is regular and embedded, :Flj = 0 if and only if ordPi Q ~ 
0. 

Then by the balancing formula (7.15), we have 

Corollary 7.2. There exists no complete CMC-1 surface of finite 
total curvature with only one end p that is regular, such that either one 
of the following holds: 

(1} ordp Q = -2. 

(2} ordp Q < 0 and the end is embedded. 

Results for TA(f) :::; 81r. First, we prepare the following lemma. 

Lemma 7.3. Let f: M --+ H 3 be a complete CMC-1 immersion of 
genus 'Y and n ends with TA(f) ~ 27rp. Iff is not totally umbilic (not 
a horosphere), then the following hold: 

( 1) 2"( < p + 1 and 1 ~ n < p - 2"( + 2. 

(2} Ifn = 1, then 2"(- p- 3 < d1 ~ 4"(- 4 and d1 1=- -2. 

(3} If'Y = n = 1, then -p-1 < d1 ~ -3. 
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(4) If 2::::; n = p + 1- 2')', then d1 = -2 at all ends. 

(5) If 1 = n = p + 1- 2')', then d1 2 0 and J.Ll = 2 + d1. 

Proof. The first item of the lemma is obtained from the Cohn­
Vossen inequality (3.12). In particular, if n = 1, (7.7), (7.11) and (7.3) 
imply p 2 2')' - 2 + J.LI - d1 > 2')' - 3 - d1 and d1 ::::; 4')' - 4. In this 
case, by the balancing formula (7.15), the flux :Fl1 must vanish. Hence 
by Corollary 7.2, d1 =F -2 holds, and the second item of the theorem 
follows. Even more particularly, if')' = n = 1, then -p- 1 < d1 ::::; 0 
and d1 =F -2. Assume d1 2 -1. In this case, the end is regular, and 
then G is a meromorphic function on M'Y. On the other hand, (7.3) 
implies that there is at most one umbilic point. Since a branch point of 
G is an umbilic point or an erid, this implies that the number of branch 
points of G is at most 2, which contradicts (7.13). Hence the third item 
is proven. 

Suppose n = p- 2')'. Then (7.3) implies 

(7.16) 
n 

n + 1 2 L)J.Li - di) , 
j=l 

and we consider two cases: 

Case 1 If n 2 2, then (7.8) implies that 1 < J.Li - d1 < 2 for all j, so 
J.Li ~ Z for all j, and hence (7.12) implies that d1 ::::; -2 for all j. But 
by (7.16) and (7.11), we have -2n::::; 2:.j=1 d1, and so d1 = -2 for all j. 

Case 2 If n = 1, then 1 < J.LI - d1 ::::; 2 holds because of (7.16) and 
(7.8). Hence by (7.11), d1 2 -2. But Corollary 7.2 implies d1 2 -1. 
Then by (7.12), J.LI E Z and J.LI- d1 = 2 holds. Suppose d1 = -1. Then 
J.Lt = J.LI = d1 + 2 = 1, and then by (7.10), the only end p1 is regular 
and embedded. This contradicts (2) and (7.15). Hence d1 2 0. Q.E.D. 
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I Type TA(f) I Reducibility Status cf. 

0(0) 0 'H3-red. classified Horosphere 
0(-4) 471" 'H3-red. classified Enneper cousins 

[Bry] 
0(-5) 871" 'H3-red. classified Same as 

"rhud" r"se 
0( -6) 871" 'H3-red. classified Same as 

"rhml" r"sP 

0(-2, -2) (0, 8rr] 'H 1-red. classified Catenoid cousins 
and their J-fold 
covers 
[Bry, Ex. 2],[UY1] 

0(-2, -2) 471" 'H3 -red. classified Warped 
8rr cat. COliS. l = 1 

Warped 
cat. cous. 1=2 

[UYl, Thm 6.2], 
ExR 4 ~ 

0(-1,-4) 87r 'H3 -red. classified Same as 
"dual" case 

0( -2, -4) 8rr 'H3-red. classified Same as 
·'dual" case 

(4rr, 8rr) 'H1-red. existence Remark A.9 
0( -2, -5) 871" 'H 1-red. existence Remarks A.lO, 

A 1? 
0(-3, -3) reducible unknown Remark A.ll 
0(-3, -4) 871" reducible unknown Remark A.12 

0(0, -2, -2) ( 4rr, 8rr) 'H 1-red. classified Proposition A.15 
0(-1, -2, -3) 8rr 'H 1-red. unknown 
0( -1, -1, -2) 871" 7-l3-red. classified Same as 

"rl11al" r·asP 
0( -1, -2, -2) 871" 'H3-red. classified Same as 

"dual" case 
(4rr, 8rr) 'H 1-red. classified Proposition A.16 

871" 7-l 1-red. classified Proposition A.17 
0( -2, -2, -2) (4rr,8rr] existence Classified for irrerl. 

embedded end case 
[UY6] 

0( -2, -2, -3) irred./'H 1-red. unknown 
0( -2, -2, -4) 87r irred./'H1-red. unknown 
0( -2, -3, -3) 8rr irred./'H 1-red. unknown 

0( -2, -2, -2, -2) existence Example 4.5 
0( -2, -2, -2, 0) 87r existence Remark A.19 
0( -2, -2, -2, d) 8rr when unknown 
d= -3,-2,-1,1 d?:. -1 
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1 o( -2 -2 -2 -2 -2lll ' ' ' ' 
871" I unknown I Corollary 7.4 

I( -3) unknown 
I( -4) unknown 
I(-1,-1) 81r unknown 
I( -2, -2) unknown Remark A.20 
I( -2, -3) unknown 
I( -2, -2, -2) unknown Remark A.21 

Table 3. Classification of CMC-1 surfaces in H 3 with 
TA(f)::; 8n 

Lemma 7.3 gives the following corollary: 

Corollary 7.4. Iff: M --" H 3 is a complete CMC-1 immersion 
with TA(f) :::; 87T, then it is either 

( 1) a surface of genus 0 with at most 5 ends. (if it has 5 ends, then all 
5 ends are regular with d1 = d2 = d3 = d4 = d5 = -2), or 

(2) a surface of genus 1 with at most 3 ends (if it has 3 ends, then all 3 
ends are regular with d1 = d2 = d3 = -2; if it has 1 end, then the end 
is irregular with d1 = -3 or d1 = -4). 

Proof. We only have to show that a CMC-1 surface with TA(f) :::; 
87T of genus 2 and with 1 regular end satisfying 0 :::; d1 :::; 4 cannot 
exist. By (7.7), (7.12) and (7.6), such a surface would satisfy TA(J#) = 
TA(f) :::; 87T and hence the hyperbolic Gauss map G is a meromorphic 
function on a compact Riemann surface M 2 of genus 2 with deg G :::; 2. 
Therefore f.Lr can be only 0 or 1, and so d1 :::; f.Lr -2 < 0, a contradiction. 

Q.E.D. 

Now we compile an unfinished classification of CMC-1 surfaces with 
TA(f) :::; 87T (see Table 3). In the "status" column of the table, clas­
sified means that the surfaces of such a class are completely classified 
(i.e. not only is the holomorphic data known, but the period problems 
are also completely solved), existence means that there exists such a 
surface, and unknown means that it is unknown if such a surface ex­
ists. Surfaces of any type not appearing in the table cannot exist with 
TA(f) :::; 87T. The proofs of the existence and non-existence results are 
given in Appendix A. 
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§Appendix A. Detailed discussion of the case TA(f) ~ 81r 

In this appendix, we give a precise discussion of complete CMC-1 
surfaces with TA(f) ~ 87T. 

Detailed Preliminaries. Here, we review facts which will be used to 
prove existence and non-existence for special cases. 

Metrics in Met 1 ( C U { oo}). In this subsection, we introduce special 
properties of pseudometrics in Met 1 ( C U { oo}) (see Section 5). 

Lemma A.l. A pseudometric da2 E Met 1 ( C U { oo}) with divisor 
as in (5.1) is 1{3 -reducible if and only if all orders of conical singularities 
are integers. 

Proof. If da2 is 1{3-reducible, then the developing map g is a mero­
morphic function on C U { oo}. So the branch orders must all be integers. 
Conversely, assume all conical singularities have integral orders. Then 
by (5.6), p9(TJ) = ±id for each j, where TJ is the deck transformation 
on M : = C U { oo} \ {P1, ... , Pn} corresponding to the loop surrounding 
PJ. Since 1T1 ( M) is generated by T1, ... , T n, p9 is the trivial representa­
tion. Q.E.D. 

Lemma A.2. Let da 2 E Metl(C U {oo}) with divisor as in (5.1). 
Assume the orders (31 and (32 are not integers, and f3J (j :2: 3) are inte­
gers. Then da2 is 1{1 -reducible. 

Proof. Let g be a developing map such that p9(Tl) is diagonal. 
Here, as in the proof of the previous lemma, we have p9 ( Tj) = ± id 
(j :2: 3). Then we have p9( Tl)p9( T2 ) = ± id because T1 o · · · o Tn = id. 
Hence p9 (T2 ) is also a diagonal matrix. Q.E.D. 

Lemma A.3 ([RUY4, Proposition A.1]). There exists no metric 
da2 E Met1 ( C U { oo}) with divisor as in (5.1) such that only one (3j is 
a non-integer and all others are integers. 

A developing map of a reducible metric in Met 1 ( CU { oo}) can be written 
explicitly as follows: 

Lemma A.4 ([RUY4, Proposition B.1]). Let da 2 E Met1 (CU{ oo}) 
be reducible with divisor as in (5.1). Assume 

Pn = 00' f31, · · · , f3m !f. Z , f3m+l, · · ·, f3n-1 E Z. 
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Then there exists a developing map g of da 2 such that 

(vl, ... ,vmER\Z), 

where r ( z) is a rational function on C U { oo}. 

Corollary A.5. Let da2 E Met 1 ( C U { oo}) be reducible with divisor 
as in (5.1) and Pn = oo. Then there exists a developing map g such that 
(A.l) 

d (z- pl)"'' ... (z- Pn~l)"'n-l d 
g = t z 

11~=1 (z- ak)2 
or - {Jj - 2) ' 

where a 1 , ... , aN E C \ {p1 , ... , Pn~ d are mutually distinct, t is a posi­
tive real number. Moreover, one has 

(A.2) -(al + · · · + O:n~l) + 2N- 2 = f3n or - f3n- 2 . 

Proof. If da2 is 7{3-reducible, g is a meromorphic function on C U 

{ oo} which branches at P1, ... , Pn with branch orders {Jj E z+. Hence 
Pj is a zero of order {Jj or a pole of order {Jj + 2 of dg for each j = 1, ... , n. 
Let { a1, ... , aN} be the simple poles of g on C \ {Pl, ... , Pn~l }, then 
each ak is a pole of order 2 of dg. (The aj are not branch points of 
g.) The zeros and poles of dg are the branch points and the simple 
poles of g. Hence we have (A.1) for t E C \ {0}. By a suitable change 
g >---+ eieg (which is a special form of the change (5.3)), we can choose 
g such that t E R+. Since oo = Pn is a zero of order f3n or a pole 
of order f3n + 2 of dg, we have (A.2). Next we assume da2 is 7-l 1-

reducible. Without loss of generality, we may assume fJ1, ... , f3m tf. Z 
and f3m+l, ... , f3n~l E Z. Then by Lemma A.4, we can choose the 
developing map g as g = (z- pl)v' ... (z- Pm)vm r(z), where r(z) is 
a rational function. By (5.6), we have Vj = {Jj + 1 or Vj = -{Jj - 1 
(j = 1, ... , m). Differentiating this, we have 

dg = (z- pl)"'' ... (z- Pm)"'mrl(z) dz 

where r 1 ( z) is a rational function. Since each Pj (j = m + 1, ... , n - 1) 
is a branch point of g of order {Jj E Z, we have (A.1) by an argument 
similar to the 7{3 -reducible case. Moreover, since ord00 da2 = f3n, we 
have (A.2). Q.E.D. 

Remark A.6. Let M = Cu { oo} \ {p1, ... ,pn}, and M the universal 

cover. Then there exists a meromorphic function g : J\,1 ---+ C U { oo} 
satisfying (A.1) if and only if all of the residues of dg at the following 
points vanish: 
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(1) ak (k = 1, ... , n), and 

(2) Pi such that aj is a negative integer. 

Construction of CMC-1 surface from two Gauss maps. In addition to 
the SU(2)-conditions for the period problem (Proposition 3.2), we intro­
duce another method to construct CMC-1 surfaces [UY3]: Let M be a 

Riemann surface and M the universal cover of Jl.1. 

Proposition A. 7. Let G and g be meromorphic functions defined 
on Jl.1 and M, respectively. Assume 

(1) da-2 := 4 dg dg/(1 + gg) 2 is a pseudometric with conical singularities 
which is single-valued on M. 

(2) The meromorphic differential Q := (S(g)- S(G))/2 is holomorphic 
onM. 

(3) The metric ds 2 := (1 + lgi 2)2IQ/dgl2 is a non-degenerate complete 
metric on M. 

Then there exists a complete CMC-1 immersion f: M ----+ H 3 with hy­
perbolic Gauss map G and secondary Gauss map g. 

Proof. By the second assumption , ordp Q = ordp da- 2 for any point 
p EM. Then, by Theorem 2.2 and Remark 2.3 in [UY3], there exists a 
CMC-1 immersion f: M ----+ H 3 whose hyperbolic Gauss map, secondary 
Gauss map and Hopf differential are G, g and Q, respectively. Moreover, 
by the third assumption, the induced metric is complete. Q.E.D. 

Partial classification for TA(f) :=:; 81r. By Corollary 7.4, a complete 
CMC-1 surface with TA(f) :<::; 81r is either a surface of genus 0 with at 
most 5 ends or a surface of genus 1 with at most 3 ends. We denote by 
r and n the genus and the number of the ends, respectively. 

The case (r, n) = (0, 1). In this case, we may assume M = C and the 
only end is p1 = oo. Since Jl.1 is simply-connected, the representation 
p9 as in (3.3) is trivial, that is, such a surface is H 3-reducible. Then by 
Lemma 5.3, the dual immersion f# is also well-defined on M. And since 
the dual surface of f# is f itself, the classification reduces to that for 
CMC-1 surfaces with dual absolute total curvature at most 81r, which is 
done in [RUY3]. 

The case (r, n) = (0, 2). In this case, the pseudometric da- 2 as in (3.1) 
has the divisor f.LlPl +1-L2P2+6q1 +· · ·+~mqm (see (5.7)), wherep1 andp2 
are the ends and q1, ... , qrn are umbilic points. Since ~k ( k = 1, ... , m) 
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are integers, Lemma A.3 implies that a surface in this class satisfies 
either 

(1) Both ILl and IL2 are integers (the case of r£3-reducible), or 

(2) Both ILl and IL2 are non-integral real numbers (the case of 7i1-

reducible). 

If both ends are regular, such surfaces are completely classified (see 
Example 4.3 or [UY1]), and the only possible case is 0( -2, -2). So 
we may assume at least one end is irregular: d2 ::;: -3. If d1 :::0: -1, 
then ILl E Z by (7.12), and hence we have the case (1). Hence g is a 
meromorphic function on the genus 0 Riemann surface C U { oo}, and 
TA(f) = 47rdegg. Thus degg ::;: 2, and hence ILl and IL2 are 0 or 1. 
Then by (7.8), we have d1 ::;: -1 and ILl = 1. Moreover, by (7.7), 
we have d2 :::0: -4. On the other hand, if d1 ::;: -2, by (7.3), (7.7) 
and (7 .11), we have -7 ::;: d1 + d2 ::;: -4. Hence the possible cases 
are (d1 ,d2 ) = (-1,-3),(-1,-4),(-2,-3),(-2,-4),(-2,-5),(-3,-3) 
and ( -3, -4). Throughout this subsection, we set M = C \ {0}. 

Proposition A.B. There exists no complete CMC-1 immersion 
f: C\ {0} -+ H 3 with TA(f) ::;: 81r and of class 0( -1, -3) or 0( -2, -3). 

Proof. Assume f is of class 0( -1, -3). In this case, ILl E Z by 
(7.12), and then f is 7i3-reducible (the case (1) above). Then the dual 
immersion J# is also well-defined on M whose dual absolute total cur­
vature is not greater than 81r. Such a surface cannot exist because of 
the results in [RUY3] (see Table 1). 

Now suppose f is of class 0( -2, -3). If ILl E Z, then for the same 
reason as in the 0( -1, -3) case, such a surface does not exist. Now 
assume ILl tt Z. Then the surface is of type (2): IL2 tt Z. By the 
same argument as in the case d1 + d2 = -5 of ('y, n) = (0, 2) in the 
proof in [RUY4] of Theorem 2.1 (in this paper), such a surface cannot 
exist. Q.E.D. 

By a similar argument to that in the proof of Proposition A.8, if ILl E Z, 
the classification is the same as the dual case in [RUY3]. Hence the case 
0(-1,-4), and also the case 0(-2,-4) with ILl E Z (7i3-reducible), 
are classified. Furthermore, for the same reason, the 0( -2, -5) case 
with ILl E Z and TA(f) ::;: 81r does not exist. 
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Remark A.9. In the case 0( -2, -4) with (2) holding, we have the 
following examples: Let 

z2- a2 
dg = t z'-' (z2 _ 1)2 dz , 

where 

2 J.L+ 1 
a =--1' 

J.L-
() = J.L(J.L + 2)(J.L- 1) 

4(J.L+1) ' 
-1 < J.L < 0. 

Here t is a positive real number corresponding to the one parameter 
deformation coming from reducibility (see Section 5). Then the residues 
of dg at -1 and 1 vanish, and there exists the meromorphic function 
g defined on the universal cover of C \ {0} (see Remark A.6). We set 
w = Q /dg. Then by Theorem 2.4 in [UY1], one can check that there 
exists an immersion f: C\ {0}-+ H 3 with data (g, Q). For this example, 
J.Ll = J.L2 = IJ.L + 11- 1 = J.L because -1 < J.L < 0 (see Corollary A.5). 
Then, TA(f)/2n = 2(J.L + 2) E (4n, 8n). 

Remark A.lO. For the 0( -2, -5) case, the following data gives ex­
amples: We set 

z3 - a3 z3 - a3 2 3 J.L + 1 J.L(J.L2 - 4) 
dg = t z'-' ( 3 1)2 dz, Q = () 2 dz , a = --, () = 4( ) , 

z- z J.L-2 J.L+1 

where J.L E R \ { 0, -1, ±2}, t E R+. Here t is a parameter corresponding 
to a deformation which comes from reducibility (see Section 5). The 
ends are 0, oo and the umbilic points are a, ae211" / 3i, ae411" / 3i. 

In this case, we have J.Ll = IJ.L + 11 - 1 and J.L2 = IJ.LI - 1. Hence 
J.Ll + J.L2 = IJ.L + 11 + IJ.LI- 2 ~ -1, where equality holds if and only if 
-1 ::; J.L ::; 0. Thus the total absolute curvature is TA(f) = 2n( -2 + 
J.L1 + J.L2- d1- d2) ~ 8n and equality holds if and only if -1 < J.L < 0. 

Remark A.ll. For the cases 0( -3, -3) and 0( -3, -4), all ends are 
irregular, and then one cannot solve the period problem immediately. 
In the dual total curvature case, a deformation procedure as in [RUY1] 
can be used to construct examples of type 0( -3, -3) [RUY3]. Unfor­
tunately, this procedure cannot be used here, because the hyperbolic 
Gauss map is not a rational function. 

Remark A.12. In the cases of 0( -3, -4) and 0( -2, -5), it can be 
shown that TA(J) ~ 8n. In fact, in these cases, the divisor correspond­
ing the pseudometric da2 is J.L!Pl + J.L2P2 + 6q1 + · · · + f.mqm, and by 
(7.3), we have 6 + · · · +f.m = 3 is an odd integer. Then by Corollary 4.7 
of [RUY4], we have J.Ll + J.L2 ~ -1. This shows that TA(f) ~ 8n. 



380 W. Rossman, M. Umehara and K. Yamada 

The case (r, n) = (0, 3). If ILl, ~L2 and IL3 are integers, then by Lemma A.1 
and Lemma 5.3, the surface is H 3-reducible and its dual is also well­
defined on M with dual total absolute curvature at most 81r. By [RUY3], 
these must be of type 0( -1, -1, -2), 0(-1, -2, -2), or 0( -2, -2, -2), 
and the first two cases are classified. Also, examples exist in the third 
case as well [RUY3, Example 4.4]. Moreover, for any surface of type 
0( -1, -1, -2), ILl and 1L2 are integers, by (7.12). Then, by Lemma A.3, 
~L3 is also an integer. Thus, surfaces of type 0( -1, -1, -2) must be 
H 3-reducible and are completely classified. 

Next, we assume all ILj tj Z. Then (7.3), (7.7) and (7.11) imply 
that -8 ::=:; d1 + d2 + d3 ::=:; -4, and (7.12) implies that dj ::=:; -2 (j = 
1, 2, 3). Hence the possible cases are 0( -2, -2, -2), 0( -2, -2, -3), 
0( -2, -2, -4) and 0( -2, -3, -3). For the case 0( -2, -2, -2), that is, 
for surfaces with three regular ends, the second and third authors classi­
fied the irreducible ones with embedded ends ([UY7], see Example 4.4). 
For the cases 0( -2, -3, -3) and 0( -2, -2, -4), the sum of the orders 
of the umbilic points are an even integer, by (7.3). Then by Corol­
lary 4.7 in [RUY4] and (7.7), we have TA(f) :::0: 8JT, hence TA(f) = 8JT. 
By Lemma A.3, there exists no surface with only one non-integer ILj. 
Then the remaining case is to assume that one ILj, say ILl, is an integer 
and ~L2 , ~L3 tj Z. Then by (7.12), d2 , d3 ::=:; -2. Also, by (7.7), (7.8) and 
(7.11), we have -5 ::=:; d2 +d3. Hence we have two possibilities: (d2 , d3) = 

( -2, -2) or (d2, d3) = ( -2, -3). When (d2 , d3) = ( -2, -2), by (7.7) 
and (7.8), we have ILl - d1 = 2 or 3. And by (7.3), d1 ::=:; 0. Hence we 
have the possibilities 0( -3, -2, -2), 0( -2, -2, -2), 0( -1, -2, -2) and 
0(0, -2, -2). Similarly, when (d2, d3 ) = ( -2, -3), we have ILl - d 1 = 2 
and d1 ::=:; 1. Hence the possibilities are 0(-2,-2,-3), 0(-1,-2,-3), 
0(0, -2, -3), 0(1, -2, -3). In this case, the corresponding divisor of 
the pseudometric da 2 is 

m rn 

IL1P1 + IL2P2 + IL3P:3 + L ~kqk = IL2P2 + IL3P3 + (2 + dl)pl + L ~kqk ' 

k=l k=l 

where the qk (k = 1, ... , rn) are the umbilic points and ~k is the order 
of Q at qk (see (5.7)). Here, by (7.3), 6 + · · · + ~m = 1 - d1 , so 
ILl + 2::;;'=1 ~k = d1 + 2 + I;;;'=1 ~k = 3. Hence if d1 :::0: -1 (and so 
1L1 E z+), Corollary 4.7 of [RUY4] implies 1L2 + ~L3 :::0: -1. This implies 
that TA(f) :::0: 8JT, and so 

(A.3) For a surface of type O(d, -2, -3) (d :::0: -1), TA(f) :::0: 8JT. 

Proposition A.13. There exists no complete CMC-1 surface f with 
TA(f) ::=:; 8JT and of type 0(0, -2, -3). 
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Proof. Assume such an immersion f : C U { oo} \ {p1 , P2, p3 } -+ H 3 

exists. By (7.3), there is the only umbilic point q1 . We set the ends 
(pl,P2,P3) = (0, 1, oo) and the umbilic point q1 = q E C \ {0, 1}. Then 
the Hop£ differential Q has a zero only at q with order 1, and two poles 
at 1 and oo with orders 2 and 3, respectively. Thus, Q can be written 
as 

z-q 
Q := () ( )2 dz 2 

z-1 
(() E C\ {0}). 

On the other hand, by (7.7), (7.11), (7.8) and (7.12), we have /-Ll = 2, 
and 

(A.4) -2 < 1L2 + /-L3 S -1 and - 1 < /-Lj < 0 (j = 2, 3) . 

The secondary Gauss map branches at (p 1 ,p2 ,p3 ) and q with branch 
orders 2, {-L2 , {-L 3 and 1, respectively. Then by Corollary A.5, we can take 
the secondary Gauss map g such that 

(t E R\ {0}), 

where 

v = /-L2 or - /-L2 - 2 , a= 2 or -4, {3 = 1 or -3, 

and a1 E C \ {0, 1, q} (j = 1, ... , N) are mutually distinct points. 

Without loss of generality, we may assume v = {-L2 (if not, we can 
take 1/g instead of g). Then by (A.2) in Corollary A.5, we have 

- (a + {3) - {-L2 + 2N - 2 = /-L3 or - {-L3 - 2 , 

so /-L2 + /-L3 or {-L 2 -{-L3 is an odd integer. Then by ( A.4), we have {-L2 + {-L 3 = 

-1 and (a, {3, N) = (2, 1, 2) or (2, -3, 0). 

First, we assume (a, {3, N) = (2, 1, 2), and we set {-L2 =f-L. Then 

(A.5) 
z2 (z- 1)~(z- q) 

dg=t (z-a)2(z-b)2 dz (a, bE C \ {0, 1, q}, a :f: b) . 

Such a g exists if and only if the residues of the right-hand side of (A.5) 
vanish: 

(A.6) 

(A.7) 

2 1L 1 2 
-+--+-----=0 
a a-1 a-q a-b 
2 1L 1 2 -+--+-----=0. 
b b-1 b-q b-a 
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Since a =f b, these equations are equivalent to (A.6) - (A.7) and b x 
(A.6)- ax (A.7): 

(A.8) 
(JL + 1)(a2 +b2)- (p,q + 1)(a +b)- 2ab + 2q = 0, 

(JL + 1)(a + b)ab- 2(p,q + q + 2)ab + 2q(a +b)= 0. 

On the other hand, let w = Qjdg, and consider the equation 

(A.9) X"- (logw)'x'- QX = o 

which is named (E.1) in [UY1]. The roots of the indicial equation of 
(A.9) at z = 0 are 0 and -1. By Theorem 2.2 of [UY1], the log-term 
coefficient of (A.9) at z = 0 must vanish if the surface exists: 

(A.lO) 

(See Appendix A of [RUY3] or Appendix A of [UY1].) Here, the solution 
of equations (A.8) and (A.lO) is a= b = q = 4/(JL + 2), a contradiction. 
Hence the case (a, (3, N) = (2, 1, 2) is impossible. 

Next, we consider the case (a, (3, N) = (2, -3, 0). Then one has 

z2(z- 1)~-' 
dg = t ( )3 dz z-q 

(t E C \ {0}). 

The residue at z = q vanishes if and only if 

(A.ll) (JL + 2)(p, + 1)q2 - 4(p, + 1)q + 2 = 0 0 

On the other hand, in the same way as the first case, the log-term 
coefficient of (A.9) at z = 0 vanishes if and only if 

(A.12) 
4 

p,+2=-. 
q 

However, there is no pair (p,, q) satisfying (A.ll) and (A.12) simultane­
ously. Hence this case is also impossible. Q.E.D. 

Proposition A.14. There exists no CMC-1 immersion of type 
0(1, -2, -3) with TA(f) ~ 8n. 

Proof. Assume such an immersion f: C U { oo} \{PI. P2, P3} ---. H 3 

exists. Then we have TA(f) = 81r because of(A.3), and by (7.7), (7.8) 
and (7.11), one has 
(A.13) . 

JL1=3 and JL2+JL3=-1, -1<P,j<O (j=2,3). 
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We set (Pl,P2,P3) = (1, 0, oo). By (7.3), there are no umbilic points. 
Then the Hop£ differential Q can be written as 

(0 E C\ {0}). 

The secondary Gauss map g branches at 0, oo and 1 with orders f.L2, 
/-L3 and 3, respectively. Then by Corollary A.5, dg can be put in the 
following form: 

(z 1)0 

dg = tz~-'2 dz TI;':1 (z- aj) 2 ' 

where ai E C \ { 0, 1} (j = 1, ... , N) are mutually distinct numbers, t is 
a positive real number, and o: = 3 or -5, and -{L2 - o: + 2N- 2 = f.L3 
or /-L3 - 2. The second case is impossible because of (A.13). Hence 
2N = o: + 1, and then o: = 3 and N = 2. Thus we have the form 

_ 1-' (z- 1)3 

dg- tz (z- a)2(z- b)2 dz 

Such a g exists if the residues at z = a and z = b vanish: 

1-L 3 2 
-+-----=0 
a a-1 a-b 

By direct calculation, we have 

and 
1-L 3 2 
-+-----=0. 
b b-1 b-a 

-2 + 1-L + /-L2 + v'2J2- 1-L- /-L2 a = __ ..:...._-:-"---:-:--..:...._:-:--...:.._~-
(f.L + 1 )({L + 2) ' 

b = -2 + 1-L + /-L2- J2J2- 1-L- /-L2 
(f.L+1)({L+2) 

Consider the equation (E.1) in [UY1] with w = Qjdg. Then, the indicial 
equation at z = 1 has the two roots 0 and -1 with difference 1. By 
direct calculation again, the log-term at z = 1 vanishes if and only if 

2 2 1 
1-L + 2- ---- = --(f.L + 2) = 0' 

1-a 1-b 3 

which is impossible because f.L = f.L2 > -1. Q.E.D. 

Proposition A.15. For a non-zero real number f.L ( -1 < f.L < 0) 
and positive integer m, set 

(A.14) G = zm+l mz- (m + 2) 
(m + 2)z- m 

and 



384 W. Rossman, M. Umehara and K. Yamada 

Then there exists a one parameter family of conformal CMC-1 immer­
sions f: C\ {0, 1}---+ H 3 of type 0(0, -2, -2) with TA(f) = 411'(JL+2), 
whose hyperbolic Gauss map and secondary Gauss map are G and tg 
(t E R+), respectively. 

Conversely, any CMC-1 surface of type 0(0, -2, -2) with TA(f) s; 
81!' is obtained in such a manner. In particular, TA(f) < 811'. 

Proof. For g and Gas in (A.14), set 

Q := ~ (S(g) _ S(G)) = m(m + 2)- JL(JL + 2) dz2 . 

2 4 ~ 

Since JL fj_ Z, the right-hand side is not identically zero. Moreover, one 
can easily check that the assumptions of Proposition A. 7 hold. Hence 
there exists a complete CMC-1 immersion f: C \ {0, 1} ---+ H 3 with 
hyperbolic Gauss map G, secondary Gauss map g and Hopf differential 
Q. Conversely, suppose such a surface exists. Then without loss of 
generality, we set M = C\ {0,1} and (pl,P2,P3) = (1,0,oo). By (7.3), 
there are no umbilic points. Then the Hopf differential Q has poles of 
order 2 at 0 and oo, and has no zeros. Hence we have Q = () z-2 dz 2 

(8 E C \ {0} ). This implies that the secondary and hyperbolic Gauss 
maps branch only at the ends. Hence both S(g) and S(G) have poles of 
order 2 at z = 0, 1, oo and holomorphic on M. More precisely, we have 

S( ) = c3z2 + (c1- c2- c3)z + c2 d 2 
g z2(z- 1)2 z ' 

# 2 ( # # #) # S( G) = c3 z + cl - c2 - c3 z + c2 dz2 
z2 (z- 1)2 ' 

(A.15) 

where Cj and cf are as in (7.2). Here, J,t1 = J-tf because of (7.12). Hence 
we have 

2Q = S(g)- S(G) 

= (c2- cf + (c2- c3)- (cf- ct) _ (c2- c3)- (cf- ct)) dz2. 
z2 z z- 1 

Thus we have 

(A.16) 

On the other hand, (7.7), (7.8) and (7.11) imply that J-ll = J-tf = 2 
or 3. If J-ll = 3, (7.7) implies that J,t2 + J,t3 s; -1. Then by (7.11), 
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-1 < f.Lj < 0 for j = 2,3. Hence using (A.16), we have 

1 > 1M2 - f.L31 > IMt - f.Lt I . 

Here f.Lt and Mt are integers, hence f.Lt = f.Lt. The hyperbolic Gauss 
map G is a meromorphic function on C U { oo}. Then the Riemann-

Hurwitz relation implies that Z 3 degG = !(2 + f-Lf + f.Lt + Mt) = 

Mt + 2 + !· This is impossible. 

When f.Ll = f-Lf = 2, by similar arguments, we have -1 < f.Lj < 1 
(j = 2, 3) and f.L2 + f.L3 ::; 0. This implies that IM2 - f.L31 < 2. Thus by 
(A.16), we have IMt- Mtl = 0 or 1. We may assume that Mt ~ f.Lt (if 
not, exchange the ends 0 and oo). Assume f.Lt - f.Lt = 1. In this case, 

Z 3 degG = !(2 + f-Lf + f.Lt + f.Lt) = f.Lt + 2 +!,which is impossible. 

Hence, using also (A.16), we have Mt - f.Lt = f.L3- f.L2 = 0. Moreover, 
f.L2 + f.L3 =2M2 ::; 0, so f.L2 ::; 0. Putting all this together, we have 

# 
_ #_ _ #_ # _c2-:-c2 2 

f.Ll - f.L 1 - 2 , -1 < f.L2 - f.L3 ::; 0 , f.L2 - f.L3 , and Q - 2z2 dz . 

If f.L2 = 0, the secondary Gauss map g is a meromorphic function on C U 
{ oo} with only one branch point, which is impossible. Hence f.L2 < 0. In 
this case, the pseudometric dC12 branches on the divisor f.LlPl +f.L2P2+f.L3P3 
because there are no umbilic points. Thus the secondary Gauss map g 
satisfies (A.15). One possibility of such a g is in the form (A.14) with 
f.L = f.L2. On the other hand, since the surface is 7t1-reducible, g can be 
normalized as in (A.14) because of Corollary A.5. Since S(G) = S(g)-
2Q, the Schwarzian derivative of the hyperbolic Gauss map G is uniquely 
determined, and G is determined up to Mobius transformations. Then 
such a surface is unique, with given g and G. Q.E.D. 

Proposition A.16. Let f.L E (-1,0), m ~ 2 an integer, 

m + f.L + 2 af.L + a - a 2 
a:=- ' p := ' 

m - f.L - 2 af.L + a - 1 

and M = CU {oo} \ {0, 1,p}. Then there exist a meromorphic function 
G on C U { oo} and a meromorphic function g on the universal cover M 
of M such that 
(A.17) 

(z _ p)m-2 
dG = z (z _ 1)m+2 dz and 

(z- 1)~-'(z- p)_~-'_2 

dg = t z ( )2 dz z-a 

respectively, where t E R+, and there exists a complete CMC-1 immer­
sion f: M ----> H 3 whose hyperbolic Gauss map and secondary Gauss map 
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are G andg, respectively. MoreoverTA(f) = 47r(fL+2) E (47r,87r). Con­
versely, an H 1 -reducible complete CMC-1 surface of class 0( -1, -2, -2) 
with TA(f) < 87r is obtained in such a way. 

Proof. The residue of dG in (A.17) at z = 1 and the residue of dg 
in (A.17) at z =a vanish. Thus there exist G and g such that (A.17) 
hold. Moreover, by direct calculation, we have 

Then by Proposition A.7, there exists a CMC-1 immersion f: M -+ 

H 3 . One can easily check that f is complete and TA(f) = 47r(fL + 2). 
Conversely, assume such a surface exists. Then by (7.3), there is only one 
umbilic point q1 of order one. We set (p1,P2,p3 ) = (0, 1,p) and q1 = oo, 
where p E C \ {0, 1}. By (7.7), (7.8), (7.12), (7.9) and (7.11), we have 
/LI = 1 or 2. When /Ll = 2, by Corollary 4.7 of [RUY4], /L2 + fL3 ~ -1 
holds, and then TA(f) ~ 87!". Assume /LI = 1 and TA(f) ~ 87!". If 
one of fLJ (j = 2, 3) is an integer, by Lemma A.3, the other is also an 
integer, and hence the surface is 7-{3-reducible. Thus both fL2 and fL 3 are 
non-integers. By (7.7) and (7.11), we have 

(A.18) -2 < /L2 + /L3 ~ 0 ' -1 < /Lj < 1 (j = 2, 3) . 

Then the secondary Gauss map g branches at 0, 1, p and oo with orders 
fLI, fL2, /L3 and 1, respectively. Then by Corollary A.5, g can be chosen 
in the form 

where VJ = fLJ or -fLJ- 2, and a= 1 or -3, and {a1, ... ,aN} C 
C \ {0, 1, p} are mutually distinct points. We may assume v2 = fL 2 (if 
not, take 1/g instead of g). Then by (A.2), 

-~L2-v3 -a+2N-2=1 or -3 

holds. This implies that fL2 + fL3 or fL 2 - fL 3 is an even integer. Then by 
(A.18), we have 

fL := /L2 = /L3 E (-1,0), a = 1, and N = 1 . 

Hence we have 
(A.19) 

z(z- 1)~-'(z- p)_~-'_ 2 

dg = t ( )2 dz z-a 
(tER+, aEC\{0,1,p}). 



CMC-1 surfaces 387 

Such a map g exists on the universal cover of C \ {0, 1,p} if and only if 
the residue at z =a of the right-hand side of (A.19) vanishes, that is, if 
p = ( aJL + a - a 2 ) / ( aJL + a - 1). The Hopf differential of such a surface 
can be written in the form 

(A.20) (8 E C\ {0}) 

because it has poles of order 2 at z = 1 and p, a pole of order 1 at z = 0 
and a zero of order 1 at z = oo. Let JLf, JLt and JLf be the branch 
orders of the hyperbolic Gauss map at p 1 , p 2 and p3 , respectively. Then 
by (7.1), we have 

(A.21) 

where c1 and cj are as in (7.2). Then p and 8 are positive real numbers. 

Without loss of generality, we may assume JLt 2: JLf. Then we have 

(A.22) 0 > c#- c# = 28 
- 2 3 p(1-p) 

Hence JLt "1- JLf, that is, JLt > JLf. Since JLf = 1 by (7.12), the 
hyperbolic Gauss map branches at 0, 1, p and oo with branching order 
1, JLt, JLf and 1, respectively. Then the Riemann-Hurwitz relation 

implies that deg G = 2 + (JLt + JLf)/2 < JLt + 2. On the other hand, we 
have deg G 2: JLt + 1. Hence we have deg G = JLt + 1 and JLf = JLt- 2. 
We set m := JLt. By a suitable Mobius transformation, we may set 
G(p2 ) = G(1) = oo. Since z = 1 is a point of multiplicity m + 1, G has 
no pole except z = 1. Then dG can be written in the form 

(z _ p)m-2 

dG = cz (z _ 1)m+2 dz (cEC\{0}), 

and we can choose c = 1 by a Mobius transformation again. Moreover, 
the Hopf differential Q = (S(g)- S(G))/2 is as in (A.20) if and only if 
a= -(m + JL + 2)/(m- JL- 2). Q.E.D. 

Proposition A.17. Let m be a positive integer and JL E ( -1, 0) a 
real number. 

(1) If > 3 ._ m(m+2)-ll(ll+2) 8 ._ (fl-3m+2) 2(m(m+2)-ll(ll+2)) 
m - ' p .- (m-2J2-Il2 ' .- ((m-2)2-!l2)2 ' 

then there exists a complete CMC-1 immersion f: M := C U { oo} \ 
{0, 1,p}-+ H 3 with hyperbolic Gauss map G and Hopf differential Q so 
h de 2(z-p)m-3 d Q B d 2 

t at = z (z-1)=+2 z, = z(z-1)2(z-p)2 z . 
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(2) If m > 1 p ·= e+m+2 () ·= (m-JL)(JL+m+2) then there exists a 
- ' · JL+m ' · (m+JL)2 ' 

complete CMC-1 immersion f: M := C U {oo} \ {0, 1,p} ---> H 3 with 
hyperbolic Gauss map G and Hopf differential Q so that 

2 (z-p)m-1 () 2 
dG = z ( )m+2( )2 dz, Q = ( )2( )2 dz , z-1 z-a zz-1 z-p 

h m-JL±y'9( m-JL)2+ 16m(JL+1)+16JL( m+ 1) 
w ere a:= 2(JL+m) · 

In each case, the immersion f is complete, of type 0(-1,-2,-2), rt1-
reducible and satisfies TA(f) = 81r. Conversely, any 'H 1 -reducible CMC-
1 immersion of class 0(-1, -2, -2) with TA(f) = 81r is obtained in this 
way. 

Proof. Since the residue of dG as in (1) at z = 1 vanishes, there 
exists a meromorphic function G. Since the metric ds2 # as in (3.9) is 
non-degenerate and complete on M := C U {oo} \ {0, 1,p}, there exists 
a CMC-1 immersion f: M ---> H 3 with hyperbolic Gauss map G and 
Hopf differential Q as in (1), where M is the universal cover of M. (In 
fact, there exists a CMC-1 immersion f#: M ---> H 3 with Weierstrass 
data (G, -QjdG). Then taking the dual yields the desired immersion.) 
Let F be the lift of f. Then F is a solution of (3.10), and there exists a 
representation PF as in (3.17). 

The components F 21 and F 22 ofF satisfy the equation (E.1)# in 
[RUY3]: 
(A.23) 

X"- (log(w#)')X' + QX = 0, (w# := w# dz = d~' Q = Qdz2 ). 

By a direct calculation, the roots of the indicial equation of (A.23) at 
z = 0 are 0 and -2, and the log-term coefficient at z = 0 vanishes (see 
Appendix A of [RUY3]). Hence F21 and F22 are meromorphic on a neigh­
borhood of z = 0, and then, the secondary Gauss map g = -dF22 j dF21 
is meromorphic at z = 0. Hence, by (5.8), PF(71) = ±p9(71) = ± id, 
where PF is a representation corresponding to the secondary Gauss map 
g, and 71 is a deck transformation corresponding to a loop surrounding 
z = 0. Moreover, the difference of the roots of the indicial equation 
at z = 1 is 11 + 1 rf. Z. This implies that one can choose the sec­
ondary Gauss map g such that g o 72 = e21ri~"g, where 72 is a deck 
transformation of M corresponding to a loop surrounding z = 1. Then 
PF(72) = ±p9 (72) = diag{e7riJL,e-7riJL} E SU(2). Hence the representa­
tion PF lies in SU(2), since 71 and 72 generate the fundamental group 
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of M. Then by Proposition 3.2, the immersion f is well-defined on M, 
and by Lemma 3.1, f is a complete immersion. Using (7.1), we have 
/-ll = 2, f.l2 = f.l, f.L 3 = -f.l- 1. Then by (7.7), we have TA(f) = 81r. 

In the case (2), we can prove the existence off in a similar way. 

Conversely, we assume a complete 7-tl-reducible immersion f: M ___, 
H 3 of type 0(-1,-2,-2) with TA(f) = 81r exists. Without loss of 
generality, we may set (p1 ,p2 ,p3 ) = (0, 1,p) and the only umbilic point 
q = oo. As shown in the proof of Proposition A.16, we have /-ll = f-lf = 2. 
Thus, by (7. 7) and the assumption TA(f) = 81r, we have /-l2 + /-l3 = -1. 
Hence by (7.11), we can set f.l 2 = f.l, f.L3 = -1- f.l, -1 < f.l < 0. Without 
loss of generality, we may assume f.l~ ~ f.lr. Then by the Riemann­
Hurwitz relation, we have 

On the other hand, deg G ~ f.l~ + 1. Thus we have deg G = f.l~ + 1 or 
f.l~ + 2. We set m := f.lr. Assume deg G = f.l~ + 1 = m + 1. Then by 
(A.24), f.lr = m- 3. Hence, the hyperbolic Gauss map G branches at 
0, 1, p and oo with branch orders 2, m, m- 3 and 1, respectively. By a 
suitable Mobius transformation, we assume G(1) = oo. The multiplicity 
of Gat z = 1 ism+ 1 = deg G. Then G has no other poles on CU { oo }. 
Thus, dG can be written in the form 

2 (z- p)m-3 
dG=cz (z- 1)m+2 dz, 

where c E C \ {0}. By a suitable Mobius transformation, we may set 
c = 1. On the other hand, the Hopf differential Q can be written in the 
form 

Q = () dz 2 

z(z- 1)2(z- p)2 

because f is type 0( -1, -2, -2) and oo is the umbilic point of order 1. 
Thus, by (7.1), we have 

(A.25) 
2() 

c2- c~ = , (1- p)2 

2() 
C3- cr = ' (1- p)2p 

where Cj and cj are as in (7.2). Thus we have the case (1). 

Next, we assume deg G = m + 2. Then by (A.24), we have f-lf = 
m- 1. If we set G(l) = oo, then G has only one simple pole other than 
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the pole z = 1, since the multiplicity of G at z = 1 is m + 1. So dG can 
be written in the form 

2 (z- p)m-1 
dG = cz (z- 1)m+2(z- a)2 dz (aEC\{0,1,p}), 

where c E C \ {0}, which can be set to c = 1 by a suitable Mobius 
transformation. The residue of dG at z = a vanishes if and only if 
p = (a(m + 1) + a2)/(ma + 2). On the other hand, the relation (A.25) 
also holds in this case. Thus we have the case (2). Q.E.D. 

The case ('y,n) = (0,4). If two of the P,j are integers, (7.7) and (7.8) 
imply that TA(f) > 81r. So at most one P,j is an integer. By (7.7), 
(7.3) and (7.11), we have -9 ~ d 1 + d2 + d3 + d4 ~ -4. When all 
P,j rf_ Z, all d1 ~ -2. Hence the possible cases are 0( -2, -2, -2, -3) 
and 0( -2, -2, -2, -2) (see Example 4.5). 

Assume p,1 2: 0 is an integer. Then p,2 , p,3 , p,4 rf_ Z and d2 , d3 , d4 ~ 

-2. In this case, by (7.7) and (7.8), we have -6 ~ d2 + d3 + d4 . Hence 
dz = d3 = d4 = -2 and f.-tl - d 1 = 2. This implies that d1 2: -2. 
Moreover, by (7.3), we have d1 ~ 2. Hence the possible cases are 
O(d, -2, -2, -2) with -2 ~ d ~ 2. Moreover, p,1 = 2 + d holds and 
there are 2- d umbilic points. Then when d 2: -1, we have f.-tl E z+, 
and so by Corollary 4.7 in [RUY4], we have TA(f) 2: 81r. So TA(f) = 81r. 

Proposition A.18. There exist no CMC-1 surfaces in H 3 with 
TA(f) ~ 81r of class 0(2, -2, -2, -2). 

Proof. Assume such an immersion f: C U { oo} \ {Pl, ... , P4} ----+ 

H 3 exists. Then there are no umbilic points, and by (7.7), (7.8) and 
(7.11), p, 1 = p,r = 4 holds. Let G be the hyperbolic Gauss map. Then 
deg G 2: 5 because p,r = 4. Hence by the Riemann-Hurwitz relation, 

10 ~ 2 deg G = L~=2 p,J + p,r + 2 = L~=2 p,J + 6 holds. This implies 

that p,r + p,f + p,r is an even number not less than 4: 

(A.26) # # #- 2l f-t2 + f.-t3 + f.-t4 - ' (l E Z, l 2: 2) . 

Since TA(f) = 81r, we have 

(A.27) f.-t2 + f.-t3 + f.-t4 = -2 . 

Hence by (7.11), 

(A.28) -1 < P,j < 0 (j = 2, 3, 4). 
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We set (pl,P2,P3,P4) = (p, 0, 1, -1), where p E C U {oo}. We may 
assume Pl E C. In fact, if P1 = oo, the Mobius transformation 

(A.29) 
z-1 

z 1---+ --
3z + 1' 

maps the ends (pl,P2,P3,P4) = (oo, 0, 1, -1) to (1/3, -1, 0, 1). The Hopf 
differential can be written as 

Q 82 (z-p)2 2 

= 2 z2(z2- 1)2 dz (8 E C\ {0}). 

By the relation (7.1), we have 

where ci and cf are as in (7.2). Since -1 < f-Li < 0 and f-Lf is a non­
negative integer, we have 

(A.31) 
1 

0 < Cj < 2, c# < 0 
J - ' 

and consequently, Cj - cf > 0 (j = 2, 3, 4). Let 

(A.32) 
1 

0:3 = -8(1 - p) ' 
2 

Then we have 4o:] = Cj - cf, which implies that the O:j (j = 2, 3, 4) are 
real numbers. And then p = o:2 /(o:3 + 0:4) and 8 = o:3 + o:4 are real 
numbers. Here, without loss of generality, we may set 0 < p < 1. (In 
fact, if p < 0, applying the coordinate change z f-+ -z, we have p > 0. 
Moreover, if p > 1, by the transformation (A.29), we have 0 < p < 1.) 

We choose the sign of 8 as 8 > 0. Then, we have o:2 , o:3 and o:4 are 
positive numbers. Moreover, by (A.32), we have 

(A.33) 

Using this, we have 

(A.34) 

In fact, by (A.33) we have O:j < o:4 for j = 2, 3. Then Cj - cf < 
c4-ct. Hence by (A.31), -cf < ~ -cf- By definition, this implies that 

t-Lf(f..Lf +2) < 1+t-Lt(t-Lt +2). Thus we have (t-Lf-t-Lt)(t-Lf +t-Lt+2) < 1 
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for j = 2, 3. As the f.lf are non-negative integers, f.lf - f-lf ~ 0, which 
implies (A.34). By (A.30) and the definition of aj, we have 

Since /-lj E ( -1, 0), this implies that 
(A.35) 

(j = 2, 3, 4). 

f.lj+1 = V1 + f.Lf(f.lf + 2)- 8a] = V(f.lf + 1)2- 8a] (j = 2, 3, 4). 

Now, defining mi := f.lf + 1 ?: 1 (j = 2, 3, 4), (A.34) and (A.33) imply 

(A.36) and 

Moreover, 

(A.37.) 

holds. To prove this, if m2 + m3 = m4, then f-lf + f-lf + 2 = f-lf + 1. This 
implies that f-Lf + f-lf + f-lf is an odd number, contradicting (A.26). 

Using (A.35) and (A.36), the equality (A.27) can be written as 

(A.38) 

We shall prove that (A.38) cannot hold, making a contradiction. Let 
m2, m3, m4 be positive integers which satisfy (A.36) and (A.37). Define 

cp(a2, a3) := Jm~- 8a~ + Jm~- 8a~ + Jm~- 8(a2 + a3)2 . 

on the closure D of the open domain 

in the a2a3-plane. Then one has cp(az, a3) > 1 if (a2, a3) E D. To 
prove this, note that since cp is a continuous function on a compact set 
D, it takes a minimum on D. By a direct calculation, we have 

on D. 

So cp does not take its minimum in the interior D of D, but rather on 
aD. Similarly, 8cp / 8a2 < 0 on D, so the minimum occurs at ( a 2 , a 3) = 

(m2/VS,m3/VS), where cp(m2/VS,m3/VS) = Jm~-(m2+m3)2 ?: 
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1' if the line 0!2 + 0!3 = m4 I .j8 does not intersect aD. If the line 
a2 + a3 = m4j.j8 does intersect oD, then m2 + m3 > m4 holds, and 
the minimum occurs somewhere on this line with a 2 in the interval 
[(m4- m3)j../8, m2/../8]. We have 

cp(a2,m4jVB- a2) = Jm~- 8a~ + Jm~- 8(m4/VB- a2)2 , 

which takes its minimum values J(m3 + m2- m4)(m3 + m4 - m2) and 
J(m3 + m2- m4)(m2 + m4- m3) ~ 1 at the endpoints of the interval 
[(m4- m3)j../8, m2/../8]. Hence cp > 1 on D, contradicting (A.27) and 
proving the theorem. Q.E.D. 

Remark A.19. There exist CMC-1 surfaces of class 0( -2, -2, -2, 0) 
with TA(f) = 8n: We set (Pl, P2, p3, P4) = (1, -1, oo, 0) and M := 

C U { oo} \ {PbP2,P3,P4}· Set 
(A.39) 

(z2 - 1)M(z2 -q2)z2 
dg:= ( 2 2)2 dz (a,qEC\{0,1}, a#±q, {lER) 

z -a 

and 

(A.40) 

where ~ya1 + ~ + 1. = 0. Then the residues of dg at z = ±a vanish, a - a -q a 

and thus, there exists the secondary Gauss map g as in (A.39). We 
2 

assume -1 < 1-l < - ~ and a2 = - t;;:~3qq2 • Then by Theorem 2.4 of 
[UY1], there exists a CMC-1 immersion f: M --+ H 3 with given g and Q. 
One can check that such an immersion is complete and has TA(f) = 8n. 

The case ('y, n) = (0, 5). In this case, by Corollary 7.4, the only 
possible case is 0( -2, -2, -2, -2, -2). 

The case of 1 = 1. By Corollary 7.4, a surface of this type has at 
most three ends, and if the surface has 3 ends, the only possible case 
is I( -2, -2, -2). If a surface has only one end, part (3) of Lemma 7.3 
implies that it must be of type I( -3) or I( -4). 

Now suppose there are two ends. By (7.3), (7.7) and (7.11), we have 

(A.41) 

Also, by (7. 7) and (7.8), TA(f) = 8n if d1, d2 ~ -1. Suppose that both 
ends are regular (i.e. d1 , d2 ~ -2). Then Theorem 7 of [RUY2] implies 



394 W. Rossman, M. Umehara and K. Yamada 

(a) (b) (c) 

Fig. 8. Examples B.l, B.2 and B.3. The first two graphics 
were made by Katsunori Sato of Tokyo Institute of 
Technology. 

that if d1 = -2, then also dz = -2. Furthermore, by Lemma 3 of [UY5] 
combined with (7.7), (7.8) and (7.12), if di 2: -1, then the end at Pi is 
embedded. Therefore, when di 2: -1, Proposition 7.1 implies that the 
flux at the end Pi is zero if and only if di 2: 0. By the balancing formula 
(7.15) and Proposition 7.1, we conclude that the only possibilities are 
I(-2,-2), I(-1,-1), and I(O,O). But in fact the case I(O,O) cannot 
occur, because then (7.3) and (7.4) imply that the hyperbolic Gauss map 
G has at most two branch points, contradicting (7.13). If the end P1 is 
irregular, d1 ~ -3. Then by (A.41), we have d2 2: -2. In particular, 
the other end p2 is regular. When d2 2: -1, then J.ll, J.lz E Z, and (7.7) 
and (7.8) imply J.ll - d1 = J.lz - dz = 2. In particular d1 = J.ll - 2 > -3, 
a contradiction. Hence the only possible case is I( -2, -3). 

Remark A.20. The genus one catenoid cousin in [RS] is of type 
I( -2, -2) (Figure 8 in Appendix B). However, the total absolute curva­
ture seems to be strictly greater than 8rr. 

Remark A.21. There exists an example of CMC-1 surface of type 
I( -2, -2, -2), which is so-called the genus one trinoid ([RUY1], see Fig­
ure 8 in Appendix B), which is obtained by deforming minimal surface in 
R 3 . However, the absolute total curvature of the original minimal sur­
face is 12rr, so the obtained CMC-1 surface has TA(f) close to 12rr. Thus, 
surfaces obtained by deformation are far from satisfying TA(f) ~ 8rr. 

§Appendix B. Further examples 

In this appendix, we introduce examples of interesting CMC-1 sur­
faces which do not appear in the classification table (Table 3). 
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Fig. 9. Example B.4 

Fig. 10. Example B.5 

Fig. 11. Example B.6 

Example B.l. There exists a genus 1 catenoid cousin in H 3 [RS] 
Figure 8 (a)). No corresponding minimal surface can exist, by Schoen's 
result [Sch]. Levitt and Rosenberg [LR] have proved that any complete 
properly embedded CMC-1 surface in H 3 with asymptotic boundary 
consisting of at most two points is a surface of revolution, which implies 
that this example and the last two examples in Figure 2 cannot be em­
bedded, and we see that they are not. A CMC-1 genus 1 catenoid cousin 
in H 3 was proven to exist in [RS]. See Remark A.20 in Appendix A. 

Example B.2. Figure 8 shows a genus 1 trinoid in H 3 proven to 
exist in [RUY1]. See Remark A.21 in Appendix A. 

Example B.3. Figure 8 (c) shows 5 ended CMC-1 surface in H 3 

found in [UY1]. Here we show only one of six congruent disks that form 
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the surface. The full surface is constructed by reflections across planes 
containing boundary curves of the disk shown here. 

Example B.4. Figure 9 shows genus 0 and genus 1 Enneper cousin 
duals. Each surface has a single end that triply wraps around itslimiting 
point at the south pole of the sphere at infinity. These surfaces are of 
type 0( -4) and I( -4), and have TA(J#) = 47r and TA(J#) = 81r. 
In both cases only one of four congruent pieces (bounded by planar 
geodesics) of the surface is shown. 

Example B.5. Figure 10 shows a CMC-1 surface in H 3 , proven 
to exist in [UY1]. This example is interesting because the hyperbolic 
Gauss map has an essential singularity at one of its two ends, like the 
end of the Enneper cousin. And the geometric behavior of the end here 
is strikingly similar to that of the Enneper cousin's end (see the middle 
figure of Figure 1). Here we show three pictures consecutively including 
more of this end. 

Example B.6. A CMC-1 "Costa cousin" in H 3 was proven to exist 
by Costa and Sousa Neto [CNJ. In Figure 11, rather than showing 
graphics of this surface, we show two vertical cross sections by which the 
surface is reflectionally symmetric (including the "circles" at infinity), 
and a schematic of the central portion of the surface. 
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