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An Approximation for Exponential Hedging 

Jun Sekine 

Abstract. 

An optimization problem in mathematical finance, called the 
exponential hedging problem is addressed. First, the relations be
tween the problem and the backward stochastic differential equation 
(abbreviated to BSDE) having a quadratic growth term in the drift 
are reviewed. Next, the asymptotic analysis by Davis (2000) for the 
problem and the motivation of this paper are stated. Further, with 
some extensions, his analysis is reinterpreted by using the asymptotic 
expansion of the BSDE with respect to a small parameter, which sug
gests an alternative approach to the analysis, and the result on an 
approximated optimizer is obtained. 

§1. Introduction 

In [7], Rouge and El Karoui treated the following optimization prob
lem of mathematical finance. For a fixed T > 0, let S := (St)tE[O,T]• 

St := ( s;' ... Sf) I be the price process of n-risky assets defined by the 
stochastic differential equation: 

dSt = diag(St) (atdWt + J.Ltdt), So E R~, 

(I 
0 

l.) diag(St) 
s; .- 0 
0 

on the probability space (0, F, P) with ad(;::: n)-dimensional Brownian 
motion w := (wt)tE[O,T] on it and the augmented Brownian filtration 
(Ft)tE[O,T]' Here, a is ann X d-matrix-valued left-continuous adapted 
process such that aa' E L 00 ([0, T] X n, RnXn) and that Uta~ is invertible 
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for all t E [0, T] ((·)' denotes the transpose of a matrix or a vector), 1-L 
is ann-dimensional predictable process, and>.:= 0"1 (C5C5 1)-1 (1-L- rl) is 
an element of £ 00 ([0, T] X n, Rd), where r(> 0) is the constant interest 
rate and 1 := (1, ... ,1)' ERn. On the other hand, let FE L 00 (0,:Fr) 
be the payoff of a derivative security maturing at time T and consider 
a seller of the derivative security, who trades the assets continuously 
in self-financing way on the time-interval [0, T] to control the terminal 
wealth. The value process of the self-financing portfolio is given by 

or equivalently, 

where x is the initial capital and an n-dimensional predictable process 1f 

is the asset holding strategy. To optimize the terminal wealth - F + x;'rr 
of the seller, the utility maximization problem (called the exponential 
hedging problem in this paper, following Delbaen et. al; 2002, [2]) 

(P) V(x) := supE[U'"Y(-F+X;''11")] 
1rEA 

with respect to the exponential utility function: 

over an appropriately chosen space A of admissible strategies is consid
ered. 

The importance of this problem is, from a viewpoint of mathematical 
finance, that it relates to the pricing and hedging problems of derivative 
securities in incomplete markets: the quantity called utility indifference 
price, 

(1) p(x,F) := inf {v(x+y) ~ supE[U'"Y(x;,'11")]}, 
yER 1rEA 

is proposed as a coherent price of the derivative security in Davis (2000), 
[1] and [7], and the optimizer of the problem (P) is focused and studied 
to control (hedge) the "risk" of the seller in [1], [2] and [7]. 

Duality argument is well established for utility maximization (cf., 
Karatzas and Shreve; 1998, [5], for example) and is often used to attack 
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this problem, as follows. For example, let us employ the space 

as the set of admissible strategies, A, where C C Rn is a fixed closed 
convex cone and .C~n is the totality of the n-dimensional predictable 

processes 7r on the time-interval [0, T] such that J[ 17rtl2dt < oo, a.s. 
For J, x E R, and y > 0, denote 

u-y(x; y, f):= U-y(- f + x)- yx and 1-y(y) := (U~) -l (y) = _ _! log(y) 
'Y 

to see the relation 

( l+logy) sup u-y(x; y, f)= u-y (! + 1-y(y); y, f) = -y f- . 
xER "/ 

Define 
zv := e ( -(>.- 11). w) and zr := e-rtz.r, 

where 11 is an element of 

V := {11 E .C~d; bounded and litE (afC} for all t E [O,T]} 

---and (a~C) is the notation for the negative polar cone of a~C, i.e., 

(afe)(w) := {y E Rd; xy ~ 0 for all X E aaw)C}. 

For 71" E A:= A2 and 11 E V, observe that 

e-rt x;>tr ~ X+ 1t 71"~0",.. { dw,.. + (Au - ll,..)du} 

and that zv J7r'a {dw+(>.-11)du} is a martingale since E[suptE[O,T] 1Zfl2] 

< oo and since 

from Doob's inequality and the boundedness assumptions of a a', >. and 
11. Therefore, the relation 

E [zv X"''rr] < x T T -



282 J. Sekine 

follows. Based on the relation, for n E A and x E R, y > 0, we observe 
the inequalities 

(2) E [U., ( -F + X~'?r)]- yx 

< inf E [u., ( -F + X~'?r)- yZ7:X~·?r] 
vED 

< inf supE [u., (x~·?r;yZ7:,F)] 
vED 1rEA 

< ~~bE [u., (F +I., (yz:;); yZ7:,F)]. 

The minimization problem 

(D) V(y) := ~~tE [u., (F+I., (yz:;) ;yZ7:,F)] 

is called the dual problem of the primal problem (P), and the inequality 

(3) V(x) ~ inf (v(y) + yx) 
y>O 

is deduced from (2). Indeed, the equality can be established in (3) (i.e., 
there is no "duality-gap") and the following expression is obtained. 

Theorem 1. {Theorem 2.1 of Rouge and El Karoui, [7]) For A:= 
A2 , it holds that 

(4) V(x) = U., (erT x- ~sup {Ev['yF]- H (PviP)}), 
"f vED 

where Ev[·] denotes the expectation with respect to the probability mea
sure pv on (n, Fr) defined by 

dPV I 
dP := zr 

:Ft 

and 

H(QIP) := { E [~log~] 
+oo 

is the relative entropy of Q with respect to P. 

ifQ ~ P, 

otherwise 

Remark 1. The duality relations similar to ( 4) have been obtained 
for more general semimartingale S and for other choices of the set of 
admissible strategies A by Delbaen et. al. in [2]. Also, the work by 
Kabanov and Stricker (2002), [4], should be referred. 

For the computations of the value V(x) and the optimizer, one can 
solve the BSDE for the value process of the dual problem, described as 
follows. 
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Theorem 2. {Theorem 4.1-2 of Rouge and El Karoui, [7]} Denote 

zr,T := z:;.;zr, zr,T := Zf/Zf, and r := T- t for 0:::; t:::; T. Let 

e~~iBf E [ U-y ( F + I-y ( yZt,r) ; yzr,T, F) I Ft] 

ye-rr { } 
-- - esssup Ev ['YF -log zr,riFt] + (1 +logy- rr) 

'Y vEV 

ye-rr 
--{-yt + (1 +logy- rr)}. 

'Y 

There exists 3 E H~d := {f E .C~d; E [J{ lftl 2dt] < oo} such that 

(Y, 3) satisfies 

(5) dyt f (t, 2t) dt + 3~dwt, Yr = 'YF, 

where f(t, ~) .- .X~IIcrfC (~+At) - ~ ~~- IIcrfC (~+At) 12 . 

and IIcrf(w)C : Rd 3 x t--+ IIcrHw)cX E aHw)C(c Rd) is the projection 
opemtor onto the closed convex cone a~(w)C. 

In particular, rr* E A2 satisfying 

(6) 
-rT 

a~rr; := _e -IIcr'C (3t +At) for all t E [0, T] 
'Y t 

is an optimizer of the primal problem (P) with A := A 2 , and v* := 
(I- IIcr'c) (3 +.X) attains the infimum of the dual problem {D). Further, 

(7) V(x) = Uy ( erT x- ~) 

holds. 

Remark 2. The existence and the uniqueness of the solution (Y, 3) 
of the quadratic BSDE (5) in the space HT' x H~d' where HT' := 

{! E L 00 ([0, T] x 0); predictable} is ensured by the work of Kobylanski 
(2000), [6]. Further, utilizing the dynamic programming principle and 
the comparison theorems between linear BSDEs and between quadratic 
BSDEs in [6], the above theorem is established. 

On the other hand, if the model has a Markovian structure, one can 
solve a dynamic programming equation to compute the value, which is 
suggested in Delbaen et al (2002), [2], and is employed and studied in 
Davis (2000), [1]. In particular, in [1], a special but a typical situation 
is addressed, which can be stated as follows in our setting. 
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(i) Let d = n = 2. u is the following constant matrix 

( U1 0 ) 
u := U2V1 - e:2 U2E 

with u1,u2 > 0, E E [-1,1]. f-L = (f.-L1,f.-L2)' is also a constant 
vector. Further, E =f. 0, E « 1 is assumed, i.e., two assets 8 1 

and 8 2 are closely correlated: 

d(81,82} = ~ ~ 1. 
J d(81 }d(82) 

(ii) F := h(8}) with continuous, piecewise linear h : ~ ~---+ R 
bounded from above. 

(iii) The constraint of the asset~ holding strategy 1r is given by 7rt E 
C := {0} x R: only 8 2 is tradable, and the derivative security 
is written on the untradable asset 8 1 . 

Recall, in the situation, that the expressions 

u'C = {kdE; k E R}, 1J = { ryd~; 71 E .C~\ bounded}, 

and 

hold, where we denote 

dE:= ( ~,e:)' and d~ := (e:,-~)'. 
The dual problem is now, rewritten as 

~~ E [ ( -yZf) { h ( 8}) - ~ ( 1 + logy + log Zf) } ] 

= ye-rT {-sup Ev ['Yh (8}) -logZf] + (1 +logy- rT)}. 
"Y vE'D 

Since 

log Zf = -1T (.>.E- Vt) 1 dwf + !1T i.>.E- Vtl 2 dt, 
0 2 0 

where wv := (w!,w2)', wf := Wt + J;(>.E- vu)du is a 2-dimensional 
pv -Brownian motion, it is equivalent to solve the following: 

sup Ev ["Yh (8}) - ! {T i.>.E- vtl 2 dt] , 
vE'D 2 Jo 
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in which the process S 1 has the dynamics: 

dSf Sf [a1dwr(t) + {111- a1(:r- vi)} dt] 

= Sf {a1dwr(t) + (r- tal'TJt) dt}, 

where we denote v := rydt with some bounded predictable '17· For the 
value function 

v'(t, y) := esssupE" [1'h (S})- ~ [T lA'- Vtl 2 dt I Sf= yl , 
vE'D 2 it 

a dynamic-programming equation is derived and the existence of its 
smooth solution is checked in the setting of [1]. Moreover, the following 
expressions are obtained. 

Theorem 3. {Theorem 6.1, 6.4 and 7.3 of Davis, [1]} 
1. An optimal strategy of the problem (P) is given by 

1r; = e~T (a')-liio-'C { ( -8xv'(\Sl)Sfal ) +A~} 

( e-rT {1-'2-r -v'1-
0

E2!!..1.8 v'(t S 1)S1}) • 
"Y <T~ o-2 X l t t 

2. For the utility indifference price defined by {1}, 

e-rT { T (IL r) 2
} p(x, F)= -;y v'(O, S~) + "2 2a~ 

holds for any x E R. 
3. As E 1 0, the value function has the expansion 

(9) v'(t,y) = T - t ( 112 - r) 2 
7E [h(Ar)IAt = y]- - 2- ---;;:;-

1'2 
+t2 2Var [h(Ar)IAt = y] + O(t4 ), 

where Var[*l·] := E[(*)2 1·]- (E[*I·]) 2 , O(t4 ) depends on the value (t,y), 
and the process A is defined by 

Ao = S~. 
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In particular, we are interested in the expansion (9). From a prac
tical viewpoint, it is an effective and useful expansion: it gives nice ap
proximations of the value of the problem (P) and the utility indifference 
price. By using the relation (7), 

is observed, where we denote the value by v•(x) emphasizing f, and 

holds for any x E R. Also, both quantities E [h(AT)iAt = y] and 
Var [h(AT)iAt = y] are fairly "computable". In [1], it is derived from a 
clever observation, however, the reason why the second term has 0(€2 ) 

and the error term has 0(€4 ) seems to be obscure. To see its intrinsic 
reason is one of our motivations. 

Further, we are interested in the approximation of the optimal strat
egy (optimizer), which is not mentioned in [1]. It looks natural to deduce 

the strategy 7r := ( 7r1 , 7r2 ) 1 defined by 7r1 = 0 and 

-2 
1rt 

and expect the approximation such that 

for example. 
In the next section, using the BSDE in Theorem 2 and its asymptotic 

expansion with respect to f (precisely saying, with respect to €1, cf., the 
BSDE (14)), we reconstruct the expansions (9-10), which yields an alter
native approach to the above analysis. The main contribution of this pa
per is Theorem 4 in the next section, extensions of (9-10) under Assump
tion 1. It is also suggested that the i-th derivatives (a;, yo .• , a;,s0·•) = 0 
for odd numbers i = 1, 3, 5, · · · (cf., Remark 4). 
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§2. An approximated optimizer 

In this section, the probability space is assumed to be the product of 
Wiener spaces: (n, :F, P) := II~=l (n,, :F'' P.), where n, := Co([O, T], R), 
:F' := B(S1i) and P, is the Wiener measure, the law of the i-th canon
ical Brownian motion w' := ( w;)tE[O,TJ. The filtration (:Ft)tE[O,T] := 

(:Fl x .rf)tE[O,T] is the augmented natural filtration. Sometimes a ran
dom variable X on (n~, :F\ H) is identified with X o j 1 on (n, :F, P), 
where j1 : S1 3 w := (w~, w2) 1---+ w1 E S11 is the projection onto the first 
probability space. 

We now impose the following conditions. 

(i)' The volatility matrix of the process Sis given by (8). On the 
other hand, p. = (JJ-1, JJ-2)' is a bounded :Fl-predictable process, 
i.e., p. : [0, T] x S11 3 ( t, wl) 1---+ p.( t, wl) E R 2 is measurable 
with respect to the predictable u-algebra on (0, Tj X f21. 

(ii)' F(wl) = h(S1 (wl)) with a bounded measurable function h on 
C((O,T],R+)· 

(iii) The constraint of the strategy 1r is given by 7rt E C := {0} x R. 
Remark 3. The condition (i)' is considered as an extension of the con
stant p. case employed in (i) in the previous section, though Assumption 
1.1 will be added later. On the other hand, the conditoin (ii)' does not 
include the conditon (ii) in the previous section. 

Further, we consider the problem (P) over the extended space: A:= 
A1, where 

A1 .- { 1r E £~2 ; 7rt E C for 'Vt E (0, T], 

E [ (foT 17rt l2dt) q/2
] < oo for 3q > 1} 

and construct an approximated optimizer in A1 , not in A2. We first 
remark the following. 

Proposition 1. Let 7r* be the process defined by the formula ( 6) 
and by the solution (Y, S) E HT' x H~2 of the BSDE (5). It is also an 
optimizer of the problem (P) with A := A1. 

Proof. We first observe that E [ ZfX;',.. J ~ x for all ( 1r, v) E A1 x V 
and x E R. For the purpose, since 

e-rt X"'',.. = x + 1t 1r1 u dwv t u u u 
0 
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holds, to show the martingale property of the process Z" J Tr1 udw" is 
sufficient, which can be verified by checking 

E[ sup jzr 1t Tr~u.,.dwrj] 
tE[O,T] 0 

< E[ sup jzr1tTr~u.,.dwtj] +E[ sup jzr1tTr~u.,.(.X.,.-v.,.)dul]· 
tE[O,T] 0 tE[O,T) 0 

< E[ sup (Zft]l/p{E[ sup ltTr~u.,.dw.,.jq]l/q 
tE[O,T) tE[O,T) lo 

+E [ sup I r Tr~u .. (.X.,.- v.,.)dulq] l/q} 
tE[O,T] lo 

for p, q > 1 satisfying 1/p + 1/q = 1 by using the Holder inequality and 
the Burkholder-Davis-Gundy inequality. In particular, the inequalities 
{2) and 

{11) E [U, ( -F + x;.• .. )J- yx ~ V(y) 

are deduced for any Tr E A1 x E R and y > 0. 
Next, note that the pair {1r*, v*) defined by {6) and the formula 

v; := (I- 11,.~ 0) {3~ + .Xt) satisfies the relation 

{12) { F +I, (Y(x)zT•) = x;,·,.· 
with Y(x) := exp (Yo+ rT- -yerT x). 
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In fact, the solution of the BSDE satisfies 

which is equivalent to (12). Using (12) and Theorem 2, we observe that 

(13) 

-rT 
_e -{Yo -log (Y(x)e-rT)} = x. 

"' 
Finally, replacing y by Y(x) in (11) and using Theorem 2 and (12-3), we 
deduce that 

E [U7 ( -F + x;,'")]- Y(x)x 

< E [u7 (F+I7 (Y(x)Zf") ;Y(x)Zf",F)] 

E [u-r ( -F + x;,,"") J- Y(x)x 

for al11r E A 1 , which implies the optimality of 1r*. 1 
The BSDE (5) for the optimizer is now rewritten as, in the situation 

of this section, 

d~€ f (t, B~, E) dt + (B~)' dwt, YY, = "(F, 

where f(t,~,E) .- ~{~~-(~,d~) 2 }+~t(~,d€), 

(·, ·) denotes the standard inner-product in R 2 and 

Denote 
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to reexpress the solution (Y', 3') = (Y''', 3''') by using the BSDE: 

(14) v,;.',, = "(F, 

where g (t, ~, t/) 

We consider the asymptotic expansion of (Y'' ,, , 3'' ,, ) with respect to E1 

at 0. Let (a~, yo,,, a~,3°'') := (Y0 '', 3°'') and introduce the BSDEs: 

using the functions 9i defined inductively 

i-1 

and 9i (t, (~j)j=O, ... ,i,E1) ·- L (at;J9i-1 (t, (e)k=o, ... ,i-l,E1) ,~j+l) 
j=O 

+ae'9i-1 (t, (~k)k=O, ... ,i-1> E1) · 

Formally, it is expected that (a~, yo,,, a~,3°'') is the i-th derivative of 

( y•' ,, , 3'' ,, ) with respect to E1 at E1 = 0, although we have not been 

able to show the property. The standard results on the differentiation of 
the solution of BSDE with respect to a parameter (cf., El Karoui et. al 
; 1997, [3], for example) cannot be applied to our quadratic BSDE (14). 

Define the probability measure Y on (n, Fr) by 

dP' I 
dP :F, 

and the space H~2'' := {! E .C~2 ; J0T lftl2dt E L1 (P')} to obtain the 

expressions for the solution of (15) fori= 0, 1, 2, 3, as follows. 
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Lemma 1. 1. The solution (Y0 •', 8°•') in the space HT' x H~2 has 
the expressions: 

and S~·'(t) = 0 for all t E [0, T], where E'[·] denotes the expectation 
with respect to the probability measure p'. 
2. (8~,Y0•',8~,8°•') = o fori= 1,3. 
3. A solution of {15} with i = 2 exists in HT' x H~2·' and is given by 

a;,~o,. = E [lr (s~·'(u)r du 1 .rt] 

Var' [rF- ~ 1T X~du I Ftl, 

a;,y0°·' + fot a;,s~·'(u)awi(u) E [for (s~·'(u)r du I Ft], 

and a;,s~·'(t) = 0 for all t E [0, T], where we denote Var'[.IFt] .

E'[(·)21Ft]- ( E'[·IFt]f. 

Proof. 1. Suppose 8~·· = 0, then 

is observed. 1 is now a consequence of the standard result of linear 
BSDE ( cf., El Karoui et. al, [3]) and the result on the uniqueness of the 
quadratic BSDE studied in Kobylanski (2000), [6]. 
2-3. Observe that 

dj_ 
€ 
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(i) Noting that 

and that :=:g = 0, we can deduce 

d (aE'~O,E) = aE,:::;~,E~l aE,y~,E = 0 

and (ae,yO,e, aE,:::;O,e) := 0. 
(ii) Observing that 

g2 (t, (~i)j=o,t,2, o) 
- (~\ #) { (~\ d~) + (~0 , Be'd~)} 

- (~0 ,d~) {(e,d~) + (~\aE,d~)} 
- (~0,ae,d~) {(e,d~) + (~0 ,ae,d~)} 
- (~0 ,d~) {(e,ae'd~) + (~0 ,a;,d~)}, 

we rewrite the BSDE for (82 yo,e 82 o;:;O,e) as 
E' ' €,..._. 

a2 y;O,e = O 
E1 T -

since 3~'E = 0 and aE,:::;O,E = 0. Define PE-martingales M, N by the 
formulas 

and Nt := Ee [ (M)TIFt] for t E [0, T], respectively. Note that M is 
bounded and that N is Pe -square integrable: 

-E 2 -E 2 -E 2 2 
[( t ) 2] E [Nt] :::;E [(M)t) =E Mt -M0 -21 MudMu <oo. 

The martingale representation theorem implies that Ht := E[Z~ (T)NTIFt] 
=No+ J; ¢udwt(u) holds for all t E [0, T] and for some Fl-predictable 

¢such that J0T ¢~du < oo. Therefore, 
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is observed from the ItO-formula. The solution is now constructed by 
setting 

d 82 ::;O,e _ O an .,~2 = . 
(iii) For (~j) ._0 1 2 3 such that ~g = ~~ = 0 and e = 0, we can check 

3-' '' 
that 

so the equation 

d (a3 -.7 0,•) 83 ~o,e .1=<0 83 y;O,e = 0 
e' L t == E1 ~t uwt' e' T -

and (a:,yo,•,a:,so,.) = 0 are deduced. 1 
We are now in the position to state our last theorem, an extension 

of Theorem 3.3. We require the conditions: 

Assumption 1. 1. The process f..L2 is bounded and deterministic. 
2. There is a kernel 8F, finite measures 8F(w1, ·) on B([O, T]) for each 
w1 E !11, satisfying 

1 1T lim -{F(w1 + E¢)- F(w1)} = ¢(t)8F(w1, dt) 
E-+0 E 0 

for all¢ E C1 ((0, T]) and the Clark formula: 

F = E[F] + 1T E[8F(·, (t, T])IFt]dwl(t). 

(For sufficient conditions on F and 8F to ensure the formula, cf., Ap
pendix E of (5], for example). Moreover, 8F(·, (·, T]) E £ 00 (!11 x (0, T]) 
holds. 

For n = 1, 2, ... , define 

n 2i 
y•,n ·= """'82iy_:O,,_E_ 

. L...J •' t (2i)! 
•=0 

n 2i 
d ;:;:;;€,n """'a2i~O E E 

an .:::. := L...J •' .:::.t' (2i)! 
•=0 

and introduce the approximated strategy w•,n .- (?i'~'n)tE[O,T] by the 
formula 

-rT 
(16) ?i'~,n .- ~(a')-1Ilu'C (s;·n + .\'(t)) 

( e-;T { a22(f..L2(t)- r): V1- E2CT2 1S~'n(t)} ) · 
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Note that 7r•1 E A:= A1 since E [Jtls~·el 2 dt] < oo and since 

for 0 < q < 2. We obtain the following. 

Theorem 4. Under Assumption 1, the relations 

ll ye Ye,lll 0{€4) 
L 00 ([O,T] xO) 

and logVe(x)-logE[u"Y(-F+X~.'w··1 )] 0(€4 ) 

hold as € l 0. 

Proof. Denote AE(t) := u;-x ... du)de and define the Wiener functional 
and the kernel: 

First, we observe the following: 

s~·e(t, w1) = E[8G(·, (t, T])l.1't]{wl +AD, 

8~,S~·e(t,wl) = 2{E[8G{·,{t,T])GJ.1't] 

-E [8G(·, (t, T])J.1't] E [GIFt]} {w1 + A1). 

In fact, the first expression is a consequence from the Clark formula, 

G(wl) = E[G] +1T E[8G(·,(t,T])J.1't](wl)dwl(t,wl), 

the Cameron-Martin formula, P(-) = P(·+Ae), and the relation Wt(w+ 
A e)= wt(w), 

G(w1 + A1) = E [G{w1 + A1)] 

+ 1T E[8G(·,(t,T])l.1't](wl +ADawHt,wl)· 
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The second expression is deduced from the relation 

{T 2 

lo (s~·'(t)) dt 

( 
T ) 2 T t 

1 :=:~·'(t)awl(t) - 21 (1:=:~·'(u)aw1(u)) :=:~·'(t)d11J1(t) 
2 {T 

( G- E'[GJ) -2 Jo {E[G/Ft](- +A')- E[G]} 3~·'(t)d11J1(t) 
2 {T 

G2 - ( E'[G]) - 2 Jo (E[G/Ft]E[8G(-, (t, T])/Ft]) (· + ADawl(t), 

the Clark formula, and the chain rule for differentiation. In particular, it 

holds that =:~··,a;,=:~·' E HT'. Therefore, in the BSDE for (Y''n,Sn,e): 

(17) { ( ;;:::;e,n ) R' n} d ;;:::;e,n .=e g t,.:::.t ,E + ... 'i' t+ct uwt, 

where R~,n := 

I/R'•1 /IL""([O,T],O) = 0(E4) is satisfied because of the boundedness of .A', 
ai d.L d ai ~o < ( • 0 3) 

e' 0 ' an f.'= ' 't == ' .. 0 ' • 

Next, we introduce the linear BSDE for (LlY<,n, Ll3'•n) := (Y' -
Y <,n ~e ;;:::;e,n) d "bed ,.::::. -.::::. , escn as 

{ 
dLlY/'n = {-~ ( 3~ + S:'n; d-j-) ( Ll3~,n, d-j-) - R~,n} dt + Ll3~,n dW~, 
LlY;•n =: 0 

to observe the expression: 

(18) -r sLlYse,n = -rtLlY/'n- it r uR':l_ndu + Mt- Ms 

for 0 :::; s :::; t :::; T, where r := (rt)tE[O,TJ is the solution of the SDE: 

drt = rt {~ (:=:~ +S:'n,d-j-) (d-f-)' dW~}, ro = 1 

and M := (Mt)tE[O,T] is the P'-local-martingale defined by 
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Let n = 1. For a sequence of increasing stopping times (rm)mEN• which 
localizes the local martingale M, we deduce the relation 

with some constant C1 > 0 from (18). The first term of the right-hand
side is 

as m -+ oo by using the optional stopping theorem, and the second term 
of the right-hand-side is 

as m -+ oo for a continuous version of EE[JT r ... duiF.] by using the 
monotone convergence theorem. Therefore, IIL1Y•·1 II£oc([O,T]xn) = O(t:4 ) 

follows. 
Finally, define the process ir•n := (i7•n)tE[O,T] by 

(19) 

to deduce 

-• n (J II ) (;::::;e,n '•) Vt' := - u'C .=,t + "'t 

"(F Y~,n + 1T (erT "fO"'~'n- ..x: + v;·n)' dW:, 

+ 1T ( I..X~I2 -/il~'nl2 + ~,n) dt 

from (16-7) and (19). Therefore, for x E R, we obtain that 

F + f-y (Y'n(x)Z:f'n) 

where y•'n(x) 

x;.,:;r•·n + 1T ~,ndt, 
exp (Y~'n - "(erT X) , 



which implies 
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logE [u-r ( -F+X~,7r·1 )] 

logE [u-r (I-r (Y'\x)Zf'' 1
) -1r ~· 1dt) l 

-~y•,l(x) + 0(E4) 
'Y 
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Remark 4. For the higher order terms, the following is observed, for 
example: 

a;,s~·'(t) = 0, and 8~,3°•'(t) = 0 for all t E [0, T]. So, if we assume 
a;,3°•' E HT', then 

'lye y•,211 0(E6) 
L"" ([O,T] xfl) 

and logW(x)-logE[u-r(-F+X~·7f''2 )] 0(E6) 

are deduced as E l 0. 

Example: European put option case. Let /Ll, J.L2 be constant and 
set F = (k- S})+ (k > 0). Then, Assumption 1 is satisfied, and we 
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have that 

-2 

"' { k~( -ct-) - e11"(T-t) SJ~( -ct)} - A (~- t)' 

82-vO,• 
f'Lt 72 { k2~( -ct)- 2ke11"(T-t) Si~( -4) 

+e(211•+cr~)(T-t) (Si )2~( -ct+)}, 
:::~··(t) = -7aie11·cT-t)~( -ct)Si, 

a~,:::~·'(t) = 2"{2al { -ke11"(T-t) Si~( -ct) 

where 

+e(211•+cr~)(T-t) (Si )2~( -ct+)} 
+27a1e11·(T-t)~( -4)Si 

x [ 7 { k~( -ct) - e11•(T-t) Si~( -4)} - X\~- t)] , 

1 {log(Sl) + (ry•- a~) (T-t)}, 
a1JT-t k 2 
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