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Abstract. 

We discuss an application of risk-sensitive control to portfolio op
timization problems for a general factor model, which is considered a 
variation of Merton's intertemporal capital asset pricing model ([18]). 
In the model the instantaneous mean returns as well as volatilities of 
the security prices are affected by economic factors and the security 
prices. The economic factors are assumed to satisfy stocahstic dif
ferential equations whose coefficients depend on the security prices 
as well as themselves. In such general incomplete market models un
der Markovian setting we consider constructing optimal strategies for 
risk-sensitive portfolio optimization problems on a finite time hori
zon. We study the Bellman equations of parabolic type correspond
ing to the optimization problems. Through analysis of the Bellman 
equations we construct optimal strategies from the solution of the 
equation. We further discuss the problem with partial information. 
We shall obtain a necessary condition for optimality using backward 
stochastic partial differential equations. 

§1. Introduction 

Let us consider a market model with m + 1 securities (82, Bt) := 
(S2,Sl, ... ,Sf')* and n factors Xt = (Xj,Xf, ... ,X;')*. HereS* stands 
for transposed matrix of S. We assume that the set of securities includes 
one bond, whose price is defined by the ordinary differential equation: 

(1.1) 

where r( x, s) is a nonnegative function on Rn+m. The other secutity 
prices Si, i = 1, 2, ... , m, and the factors Xt are assumed to satsfy the 
following stochastic differential equations: 
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(1.2) 

and 

(1.3) 
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dXt = b(Xt, St)dt + A(Xt, St)dWt, 

X(O) =X ERn, 

where Wt = (Wtk)k=l, .. ,(n+m) is an m+n dimensional standard Brownian 
motion process defined on a filtered probability space (0, :F, P, :Ft)· Here 
a and A are respectively m x (m + n), n X (m + n) matrix valued 
functions. Set 

9t = a(S(u), X(u); u:::; t) 

and let us denote investment strategy to i-th security Si(t) by hi(t), 
(i = 0, 1, ... , m) representing portfolio proportion of the amount of the 
i-th security to the total wealth Vi that the investor possesses, which is 
defined as follows: 

Definition 1.1. (h0 (t), h(t)) = (h0 (t), (h1 (t), h2 (t), ... ,, hm(t))*) is 
said to be an invetment strategy if the following conditions are satisfied 

i) h(t) is an Rm valued 9t progressively measurable stochastic pro
cess such that 

m 

L hi(t) + h0 (t) = 1 
i=l 

ii) and that 

P(1T lh(s)l 2ds < oo) = 1. 

The set of all investment strategies will be denoted by H(T). When 
(h0 (t), h(t)*)ostsT E H(T) we will often write hE H(T) for simplicity. 
In what follows we always assume that 

(1.4) aa* > 0. 

For given hE H(T) the wealth process Vi = vt(h) satisfies 

dvt 
vt 

'\'m i( dSi(t) 
L...-i=O h t) Si(t) 

h0 (t)r(Xt, St)dt + I:Z:,1 hi(t){gi(Xt, St)dt 

Vo v 
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under the assumption of the self-financing condition. Then, taking i) 
above into account it turns out to be the solution of 

Vo=v, 

where 1 = (1, 1, ... , 1)*. 
We first consider the following problem. For a given constant J.L < 

1, J.L =F 0 maximize the following risk-sensitized expected growth rate up 
to time horizon T: 

(1.5) 
1 1 

J(v, x; h; T) = -logE[e~t 1ogVT(h}] = -logE[VT(h)IL], 
J.L J.L 

where h ranges over the set A(T) of all admissible strategies defined 
later. The meaning of the maximization is well understood by looking 
at the asymptotics of the criterion as J.L ---+ 0: 

Maximizing (1.5) is a risk-sensitive counterpart of the problem maximiz
ing the expected growth rate of the investor's wealth. The case where 
J.L < 0 is called risk averse and J.L > 0 risk seeking. Concerning this 
problem we introduce the Bellman equation corresponding to the value 
function and we present the results constructing an optimal strategy 
from the solution to the equation through its analysis in section 2. Note 
that the problem maximizing the criterion J( v, x; h; T) is equivalent to 
HARA utility maximization: 

1 1 
supE(-VT(h)IL] = supE(-e~tlogVT(h}J, J.L < 1. 

h J.L h J.L 

The problems on infinite time horizon maximizing 

(1.6) liminf __!_ logE[e~t 1ogVT(h}] 
T-+oo J.LT 

have been considered by several authors e.g. in [8],[9],[10],[14], in the 
case of linear Gaussian factor models since the work by Fleming [7], or 
under more general setting in [5] with the assumption that randomness 
of security price processes and that of factor processes are independent. 
In [23] we have discussed the problem under rather general setting for so 
called Merton's ICAPM ([18]), and the results in section 2 of the present 
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paper are its genaralization in the case of finite time horizon. Here by 
Merton's ICAPM, we mean the case that 

r(x, s) = r1(x), g(x, s) = 91(x), b(x, s) = b1(x), 
a(x,s) = a 1 (x), >.(x,s) = >.1 (x). 

If r 1 , g1 and b1 are linear functions and a 1 and >.1 are constant matrices 
the models are said to be linear Gaussian. In that case the solutions of 
the Bellman equations are expressed explicitly as the quadratic functions 
of x whose coefficients are determined as the solutions of the matrix 
Riccati differential equations and linear differential equations. 

We then consider the maximization problem with partial infroma
tion. In the above investment strategies are defined as Yt progressively 
measurable processes. However, it is not always realistic since economic 
factors Xt are to be considered implicit and so it might be better to 
select our strategies without using all past informations of securities St 
and factors Xt. Our strategies may be well selected by using only in
formations of security prices. Rishel [24] has considered the problem on 
a finite time horizon in such a way in a particular case, namely for a 
linear Gaussian model of one factor and one risky and one riskless assets 
under the assumtion that randomness of the factor process and that of 
the risky asset are independent. We have also considered the problem 
for general linear Gaussian factor models [21] on a finite time horizon 
and, by solving two kinds of Riccati differential equations, constructed 
an optimal strategy. The results are extended to the case of infinite 
time horizon in [22] by studying asymptotics of the solutions of inhomo
geneous (time dependent) Riccati differential equations as time horizon 
goes to infinity. In the present paper we shall consider the maximization 
problem in section 3 under more general setting, namely the case where 
coefficients of security prices are nonlinearly depend on economic factors. 
In that case we don't have explicit expression of the optimal strategies 
but study necessity of optimality. We introduce backward stochastic 
partial differential equations (BSPDEs), which are considered to be ad
joint equations of the problems, and find the necessary condition for 
optimality by using the solutions of the BSPDEs under suitable condi
tions. Such necessary condition is a kind of maximum principle and it 
has been studied by A. Bensoussan for stochastic control problems for 
partially observed diffusion processes (cf. [1],[2], [26]). 

§2. Full information case 

Let us set 
~i =logs;, i = 0, 1, 2, ... ,m, 
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y; _ (':/1 ·v2 "\/"m)* d Y _ ( Y 1 Y"')* Th t- Lt,Lt, .... ,Lt an e- e , ... ,e . en 

and 

(2.1) 

where 
Fi(x, y) gi(x, eY)- HlTlT*)ii(x, eY), 

Ei(x,y) = £Tk(x,eY). 

In the same way, set 

B(x, y) = b(x, eY), A(x, y) = .X(x, eY). 

Then the factor prosess is described as 

(2.2) dXt = B(Xt, Yt)dt + A(Xt, yt)dWt 

So, by setting Zt = (Xt, Yt)* and 

{3(z) = (B(x,y),F(x,y))*, a(z) = (A(x,y),E(x,y))*, 

we have 

(2.3) 

Furthermore, by setting g(z) = g(x, eY), r(z) = r(x, eY) for simplicity 
we have 

and so, 

where 

1J(z, h)= 1 ; f..L h*EE*(z)h- r(z)- h*(g(z)- r(z)l) 
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H a given investment strategy h satisfies 

(2.4) E[e~' fci h;E*(Z.)dW.-~ J0T h;EE*(Z.)h.ds] = I, 

then we can introduce a probability measure ph given by 

ph(A) = E[e~'-foT h;E(Z.)dW.-~ It h;EE*(Z.)h.ds; A] 

for A E :FT, T > 0. By the probability measure ph our criterion 
J(v, x; h; T) can be written as follows: 

(2.5) J(v, x; h, T) = logv +.!.log Eh[e-P. fci '1(Z.,h.)ds]. 
1-l 

On the other hand, under the probability measure 

W/' Wt- (W.,p,f~ h*(s)E(Zs)dWs)t 

Wt- p,f; E*(Zs)h(s)ds 

is a standard Brownian motion process, and therefore the factor process 
Xt satisfies the following stochastic differential equation 

(2.6) 

And so, 

(2.7) 

where 
/3p.(z, h)= f3(z) + p,o:E*(z)h. 

We regard (2. 7) as a stochastic differential equation controlled by h and 
the criterion function is written by ph as follows: 

(2.8) 

and the value function 

(2.9) u(t, z) = sup J(v, z; h; T- t), 0 ~ t ~ T. 
hEA(T-t) 
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Here we denote by A(T) the set of all investment strategies satisfying 
(2.4). Then, according to Bellman's dynamic programming principle, it 
should satisfy the following Bellman equation 

(2.10) 

8u h 
!:ll + sup L u = 0, 
UL hERm 

u(T, z) = logv, 

where Lh is defined by 

Lhu(t, z)= ~tr(aa*(z)D2u) +/3p.(z, h)Du+ ~(Du)*aa*(z)Du -TJ(z, h). 

Note that suphER"' Lhu can be written as 

sup Lhu(t, z) = -2
1 tr(aa*(z)D2 u) + /3(z)* Du + !!.(Du)*aa* Du + f 

hERm 2 

+ supdJ.th*Ea* Du + h*(g- Tl)- 1;~'h*EE*h} 

= ~tr(aa*(z)D2u) + f3(z)* Du + ~(g- Tl)*(:EE*)-1Ea* Du 

+ ~(Du)*a(I + ~E*(EE*)-1E)a* Du 

+ 2 ( 1~1-') (g- Tl)*(EE*)-1(9- fl) + f 

Therefore our Bellman equation (2.10) is written as follows: 
(2.11) 

where 

(2.12) 

~~ + !tr(aa* D2u) + ~;Du + (Du)*aN- 1a* Du + U(z) = 0, 

u(T, z) = logv, 

~p.(z) = f3(z) + ~aE*(EE*)-1 (g- fl) 

N-1 (z) =~(I+ ~E*(EE*)- 1 E(z)) 

U(z) = 2(l~p.) (g- fl)*(EE*)-1(g- fl) + r(z). 
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As for (2.11) we note that if f..L < 0, then 

f..L I<N- 1 <!!:.I 
2(1- f..L) - - 2 

and therefore we have 

On the other hand if 0 < f..L < 1 , then 

!!:.I< N- 1 < f..L I 
2 - - 2(1- f..L) 

and therefore we have 

0 f..L * < N- 1 * < f..L * < 2aa - o: o: - 2(1- f..L) o:a . 

In what follows we assume that 

B, F, A, E are locally Lipshitz and that 
(2.13) 

~ II EE* II +~ II AA * II +{3* z ~ c(1 + lzl 2 ), 

then we have a solution (Xt, yt) of (2.1) and (2.2), and so setting 

S i = eY,i ; = 1 2 m So= ey,o = elogso+J;r(X.,ey•)ds 
t ' II ' ' ••• , ' t 

we have a market model (S2, St) satisfying (1.2) and (1.3). Then we 
have the following theorem. 

Theorem 2.1. Let u E C1•2 ([0, T) x RN) be a solution of {2.11). 
Define 

ht = h(t, Zt) 

h(t, z) = 1 ~~' (EE*)- 1(g- rl + pEo:* Du)(t, z), 

where Zt is the solution of {2.3), then, under the assumption that 
(2.14) 
E[e- J0T {2N- 1 a* Du+2!LK)*dW.-! J0T {2N- 1 a* Du+2!LK)* {2N- 1 a* Du+2!LK)ds]=1, 



with 

Risk-sensitive portfolio optimization 

K = 1 E*(EE*)-1(9- fl) 
2(1- J.L) 
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ht E AT is an optimal strategy for the portfolio optimization problem of 
maximizing the criterion {1.5}. 

The proof of this theorem is similar to that of Proposition 2.1 in [23) 
and we omit it here. 

We then consider equation (2.11). Such kinds of equations have been 
studied in [20), or [3) in relation to risk-sensitive control problems under 
more general settings in the case of J.L < 0 and in [4) in the case where 
J.L > 0. Here we consider the case where J.L < 0 and obtain the following 
result along the line [3), Theorem 5.1 with refinement on estimate (2.16). 
It is a generalization of Theorem 2.1 in [23). 

Theorem 2.2. i} If, in addition to {2.13}, J.L < 0 and 

(2.15) !lrl~l 2 ::; eaa*(z)~::; ~~~1~1 2 , r = lzl, llr, ~~~ > 0, 

then we have a solution of {2.11} such that 

u, ~~, Dku, DkjU E LP(O, T; Lfoc(Rn+m)), 

a2 u BD,u BD1cjU D E £P(O T· LP (Rn+m)) 
W• at ' at ' kj!U ' ' loc ' 

u 2:: log v, ~ ::; 0. 

1 < \lp < 00 

Furthermore we have the estimate 

(2.16) 

z E Br, t E [0, T) 

where 
Q _ N-1 * _ 4(l+c)(1-~) C > 0 -a a, Co- -~ , 
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and Cr is a positive constant depending on n, r, lin ~~~ and c. 

ii) If, in addition to the above conditions, 

. ( ) 2 1 . ( ) . U(z) 
mf U z , r 1 mf U z , r mf -

1
(3 ( ) I -t oo 

lzi::=:r llr izi::=:r lzl:;::r 11- Z 

as r -t oo, then the above solution u satisfies 

inf u(z, t) -too, as r -t oo. 
izi:;::r,tE(O,T) 

Moreover, there exists at most one such solution in L00 (0, T; W1~;' (Rn+=)) 

Remark. If 

(2.17) 3m>O, 

then we have 

Cr :<:::; M'(1 + rm'), 3m' 

in estimete (2.16). In particular, if m = 0, then Cr can be taken inde
pendent of r. 

Corollary 2.1. Condition (2.14) is valid if 

(2.18) 
B, F, A, E are globally Lipshitz. 

The proofs of Theorem 2.2 and Corollary 2.1 are similar to those 
of Theorem 2.1 and Proposition 2.1 (ii) in [23] and we omit them here. 
Instead, we illustrate an example. 

Example (Generalized linear Gaussian factor model) 
Let us consider the case where B, g, and f are all linear functions 

of z and A and E are constant matrices, namely 



Risk-sensitive portfolio optimization 267 

~P- (z) f3(z) + _1!:_ ( A~*(~~*)- 1 (g- rl) ) 
1-p, g- rl 

K1z + L1 

where 

Furthermore 

-1 *-!!:. ( A(J + 1~p,~*(~~*)-1~)A* 1~p,A~* ) = ~ 
aN a - _1_~A* _1_~~* - Ko, 

2 1-p, 1-p, 2 

where 

1 ((A1-lRi)*(~~*)-1 (A1-lRi) (A1-lRi)*(~~*)-1 (A2-1R;)) 
1- J-L (A2-1R;)*(~~*)- 1 (A1-lRi) (A2-1R;)*(~~*)- 1 (A2-1R;) 

and 
_ 1 ( (A1 -1Ri)*(~~*)- 1 (a- rl) ) 

L 2 - 1- J-L (A2 - 1R;)*(~~*)- 1 (a- rl) . 

In this case the solution to (2.11) has an explicit form such that 

u(t, z) = ~z* P(t)z + q(t)* z + k(t), 

provided that equation (2.19) below has a solution. Here P(t), q(t) and 
k(t) are the solutions to the following ordinary differential equations: 

(2.19) F(t) + K; P(t) + P(t)K1 + P(t)K0 P(t) + K 2 = 0, P(T) = 0, 

(2.20) 

q(t) + K 1q(t) + P(t)L1 + P(t)K0 q(t) + ( ~~ ) + L2 = 0, q(T) = 0 
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and 
{2.21) 
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k(t) + !tr(o:o:* P(t)) + Liq(t) + r + 2(~~,.) {a-rl)*(EE*)-1{a-rl)=O, 

k(T) = logv. 

Note that if p, < 0, then {2.19) has a unique solution and so do (2.20) 
and (2.21). 

§3. Partial information case 

Now we consider a partial information case. Namely, the case where 
portfolio strategies are selected by using only past information of secu
rity prices. In this case the economic factor process Xt is considered 
unobservable and so we cannot use the information about it to choose 
our strategies. Thus the factor process Xt defined before by (2.2) may be 
reformulated as the solution with the initial condition X 0 = x0 , where 
xo is a random variable having a disrtibution density 1r(x) on R". We 
then introduce 

9t = u(S(u); u:::; t) 

and the admissible strategies are assumed to be 9t measurable. In this 
case we consider more specific one than the above, namely we assume 
{2.18) and that u(x, S) = u(S). 

Then we consider the problem maximising the criterion (1.5) by 
selecting portfolio stratgies which are 9t measurable. 

Let us set 

(3.1) I(v; h; T) = E[e"IogVT(h)], 

and reformulate the problem as the one of partially observable stochastic 
control. Recall that yt is a solution of 

(2.1)' 

in the present case and we regard it as the SDE defining the observation 
process. On the other hand, Xt defined by (2.2) with the initial condition 
Xo = xo is regarded as a system process. System noise A{Xt, Yt)dWt 
and observation noise E(yt)dWt are correlated in general. u(Y.,.,; u :::; 
t) = u(S(u); u:::; t) holds since log is a strictly increasing function, so our 
problem is to minimize (or maximize) the criterion (3.1) while looking at 
the observation process yt and choosing a u(Y.,.,; u:::; t) = 9t measurable 
strategy h(t). Though there is no control in SDE (2.2) defining the 
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system process Xt the criterion I( v; h; T) is defined as a functional of the 
strategy h(t) measurable with respect to observation and the problem is 
the one of stochstic control with partial observation. 

In what follows we consider the case where F(x, y) = F(x), E(y) = 
E = constant, B(x,y) = B(x), A(x,y) = A(x), r(x,y) = r(x) for 
simplicity. Similar arguments are possible for general case as long as E 
does not depend on x. Now let us introduce a new probability measure 
P on (0, F) defined by 

where 

(3.2) 
Pt = exp{- J; F(Xs)*(EE*)-1EdWs 

-~ J; F(Xs)*(EE*)-1F(Xs)ds}. 

We see that P is a probability measure since it can be seen by stan
dard arguments (cf. [1]) that Pt is a martingale and E[pr] = 1 under 
assumption (2.18). Moreover, according to Girsanov theorem, 

(3.3) 

turns out to be a standard Brownian motion process under the proba
bility measure P and we have 

We rewrite our criterion I(v; h; T) by new probability measure P. 

where 

and 
Q(x, h)* (EE*)- 1 F(x) + J-Lh 

(EE*)-1{F(x) + J-L(EE*)h}. 
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Set 

(3.7) qh(t)(cp(t)) = E[exp{ -p. 1t 1J(Xs, hs))ds }'lltcp(t, Xt)l9t]· 

Then (3.6) reads 

(3.8) I(v; h; T) = v~-' E[qh(T)(1)] 

Hence, if p. < 0 (resp. 1 > p. > 0) our problem is reduced to minimize 
(resp. maximize) I of (3.8) when taking hover 'H.(T). Let us set 

(3.9) 
1 .. . 

Lcp = "2(AA*)'3 (x)Dii'P + B(x)'Di'P· 

Here and in what follows we utilize summation convention. Then, we can 
see that qh(t) satisfies a so called modified Zakai equation in a similar 
way to deducing Zakai equations as for conditional expectations of dif
fusion processes with respect to unnormalized conditional probabilities 
(cf. [2], [13], [21]). We actually have the following proposition. 

Proposition 3.1. Assume {2.18}, thenq(t)(cp(t)) = qh(t)(cp(t)) sat
isfies the following stochastic partial differential equation {SPDE): 
(3.10) 
q(t)(cp(t)) = q(O)(cp(O))+ I~ q(s)(if(s, ·)+Lcp(s, ·)+p.h:EA*(·)Dcp(s, ·) 

-P,1Js(·)cp(s, ·))ds +I~ q(s)(cp(s, ·)Q(·, hs))dYs 

+I; q(s)((Dcp)*(s, ·)A(·)E*(EE*)-1)dYs, 

where 1J8 (-) = 1J(·, hs)). 

Let us introduce some notations and describe a strong form of 
stochstic partial differential equation (3.10). Set 

L0 cp = ~Di(AA *(x)ii Dicp), 

B(x)i = B(x)i- ~Dj(AA*)ii. 

Then Lcp = L0 cp + B(x)* Dcp and its formal adjoint L* is written as 

We set 
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and 

We define 

.C}(O,T;H1(Rn)) = {v E L 2(0,F,F;L2 (0,T;H 1(Rn)), 

v(t) E L 2 (0,Qt,F;H 1(Rn)) a.e. t} 

271 

Then we consider the following stochastic partial differential equation 

which has a solution q(t) such that qte6Vl+lxl 2 E ,Cy([O, T]; H 1 ). 

(3.11) 

Furthermore we assume 

(3.12) A, DA, B, DB, F, are bounded 

and the set of admissible strategies AT is defined as the totality of Qt 
measurable strategy h satisfying the condition i) of definition 2.1 and 
ht E r, '<It for some convex compact r c Rm. Take a positive constant 
8 > 0. Then we have the following theorem. 

Proposition 3.2. Let us assume {2.18}, {3.12}, and 1!"e6VHixl 2 E 

H 1 . Then for each addmissible strategy h {3.11} has a unique solu-

tion qt = q(t, x) such that qte6~ E .C}(O, T; H 1(Rn)) n £ 2 (0, F, F; 
C(O, T; L 2 (Rn)) and that q0 = 11". Furthermore we have J q(T,x)'!f;(x)dx= 
q(T)('I/;) for all bounded Borel function '1/J. 

For the proof of this proposition we prepare the following lemma. 

Lemma 3.1. Under assumption {2.18} 

A(In+m- E*(EE*)-1E)A* ~ c1In 

Proof. Note that 

under assumtion (2.18). Therefore, setting ( = -(EE*)-1EA*6 for 
6 ERn, we see that 

GA(In+m- E*(EE*)-1E)A*6 

= ~iAA*6 + ~iAE*( + (EA*6 + (EE*( 

~ c1(l6l 2 + 1(12 ) ~ c1l6l 2 
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0 

Proof of Proposition 3.2. Set iit = qte6vfl+lx1 2
, 6 > 0 and 

v(x) = oJ1 + lxl2. Then (3.11) can be written as 

(3.14) diit = (L0 iit + G(h)iit)dt + M(h);iitdY/, 

where 

G(h)ij = G(h)ij + (AA)ii D;vDiij 

+{ !Di((AA)ii D;v)+!(AA *)ii DivD;v-(iJi Div+J..Lhi(EA *)ii D;v)}ij, 

and 

Q; = Q;- Div[AE*(EE*)-1]~. 

It suffices to check the coercivity condition for (3.14) because of general 
theory of stochastic partial differential equarions ([2],[13], [25]): 

Indeed, setting Q; = Q;- Di([AE*(EE*)-1U) we see that 

-2(L0 q, q) - (M(h);q, (EE*)ik M(h)kq) 

= I(Dq)*AA*Dqdx- I(Dq)*AE*(EE*)- 1EA*Dqdx 

- I(Q*EE*Q)q2dx- 2I(Dq)*AE*Qqdx 

;::: I(Dq)*A(I- E*(EE*)-1E)A*Dqdx- I Q(EE*)Qq2dx 

- E I IDqi 2dx - *I IAE*Qi 2 q2dx 

;::: c2 I IDqi 2dx- E I IDqi 2 dx - ca I iqi 2dx 

for some c2, c3 > 0 and sufficiently small E > 0 by using the above 
lemma. Since 

we can easily see the coercivity condition holds for (3.14). 

0 
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Lemma 3.2. Let us assume the assumptions of the above proposi
tion and h, k be admissible strategies, then 

(3.15) l . I(v; h.+ Ok.; T)- I(v; h.; T) = ll.EA ( r (k) ] 
un (} v < '>T , 1 > , 

6-+0 

where (t = (t(k) is a solution of the following stochastic partial differ
ential equation 
(3.16) 
d(t = (L0 (t + G(h)(t + k1Gh•(h)qt)dt + (M(h)j(t + k;Mh•(h)jqt)dY/ 
(o= 0, 

where qt is a solution to (3.11}, 

-JLDi((EA*)iiq)- JLlf!rq 

-JLDi((EA*)iiq)- JL[(1- JL)(EE*h)i- (g- rl)i] 

and 
aQj(-, h) 

Mh•(h)iq = ahi q = JLOiiq. 

Proof. Note that we can see that (3.14) has a unique solution such 

that qte6Vl+lxl 2 E .C~(O, T; H 1 (Rn)) n L2 (n,:F, P; C(O, T; L2 (Rn)) in a 
similar way to the proof of the above proposition. Let us set 

iJB(t) = q6(t)- q(t) - (, 
(} 

where q9(t) is the solution to : 
(3.17) 

dq9(t) = {L0q9(t) + G(h + Ok)q9(t)}dt + M(h + Ok)iqB(t)dY/ 

q6(0) = 1T" 

We define in the same way as above 

iiB(t) = q6(t)ev(x)' ( = (ev(x). 

Then in a similar way to getting (3.14), we have stochastic partial dif
ferential equations for ij9(t) and (. We set 

Then we can see that 

: ( ) _ ij9(t) - ij(t) _;: 
q6 t - (} .... 
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as ()---. 0 by using the energy equality for q9 (t) . Since 

we obtain the present proposition. 

0 

Let us introduce the following backward stochastic partial differen
tial equation. 

(3.18) 

where 

Set 

(L0'Yt + G(hht + M(h)Rt)dt- R;(EE*)- 1dyt 
1 

G(h)cp = B* Dcp + ~-th*EA* Dcp- J-tTJ(-, h)cp 

;:.; - e-v(x)"' R. - e-v(x)R ,t - ,t, t - t· 

Then we have the following backward SPDE 

(3.19) 

where 

G(h)cp = {(Dv)* AA* + B* + ~-th*EA*}Dcp 

and 

+{L0 v + !(Dv)* AA* Dv + (B* + ~-th*EA*)Dv- J-t'TJ(·, h)}cp 

M(h)U = 2::)AE*(EE*)- 1J;DiUj 
i,j 

+ E1{Qj(·,h) + EdAE*(EE*)-1J;Div}U1 

= Li,j(Ml);DiUj + Lj(M2)jU1. 
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Let it be a solution to (3.19) with the terminal condition iT = 0 and 
set (M~); = (M2); + D;(GI)i. We have by Ito's formula 
(3.20) 

E[ll it lli2l 

= E[Jt {2(L0is + G(h)is + M(h)Rs, is} - (Rs, (EE*)-1 Rs)}ds] 

= E[ftT J {-(Dis)* AA *Dis+ Gi D(i~) + 2G2i: 

+ 2{M~);R~is - 2R~(M1)~Diis - fl:{EE*)- 1 R8 }dx ds 

= E[ftT J{-(Dis)A(J- E*(EE*)-1E)A*Dis 

- [(EE*)-1 Rs +MiDis- (M~)*'Ys]*(EE*)[(EE*)- 1 Rs 

+MiDis - (M~)*'Ys] 

+ [M~EE*(M~)* + 2G2 - l::; D;(G1 + M1EE*(M~)*)i]t~}dx ds 

rT A 2 
~ C Jt E[ll is lb]ds 

for some constant C > 0. By using (3.20) we can obtain the following 
lemma. 

Lemma 3.3. Under the assumptions of Proposition 3. 2 the solu

tion bt, Rt) to {3.18} such that e-6v'Hixi 2 'Yt E .C}(O, T; H 1(Rn)) n 
L2 (0,:F,P;C(O,T;L2 (Rn)) and e-6v'Hixi 2 Ri E .C}(O,T;H1 (Rn)) n 
L2 (0,:F,P;C(O,T;L2 (Rn)), i = 1,2, ... ,m is unique. 

We can also see the existence of the solution to (3.18) in a similar 
way to Theorem 8.2.3 [2] through aproximation procedure, or directly 
thanks to Chapter 5, Theorem 2.2 in [16]. 

Lemma 3.4. Under the assumptions of Proposition 3.2 

E[< (T,1 >] = E[1T{('Yt,k!Gh·(h)qt > + < R{,k!Mh·(h)jqt >}dt]. 

Proof. From (3.16) and (3.18) we obtain 

d((t,'Yt} = {(k!Gh•(h)qt,'Yt} + (k!Mh•(h);qt,R{}}dt 

+{ (M(h);(t, 'Yt} + (k~Mh' (h);qt, 'Yt} + (M(h);(t, 'Yt} }dY/ 

and we have the present lemma. 

0 
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Finally we have the following theorem 

Theorem 3.1. We assume the assumptions of Proposition 3.2. If 
h is optimal, then it satisfies 
(3.21) 

(k- ht)*{-(1- M)(~~*)ht < /t,Qt > + < ~A*D/t,Qt) > 

+ < (g- rlht,Qt > + < Rt,qt >} ~ 0, 

a.e. t a.s. Vk E r. 

Proof. Let ht, kt be admissible atrategies and ht is an optimal one. 
Since r is convex h + fJ(k- h) = (1- fJ)h + fJk E r, for h, k E r. Thus 
we have 

I(v; h.; T) 2:: I(v; h.+ fJ(k.- h.); T), 0 ~ VfJ ~ 1 

if 1-l > 0. Therefore, because of Lemma 3.2 

E[((r(k- h),1)] ~ 0, 

which implies that 

for all admissible strategy kt by Lemma 3.4. Set 

For each to E [0, T], E > 0, M > 0 and Gt0 measurable random variable 
kt0 , we define 

Then, through limiting procedure as E ~ 0 and M ~ oo after multilying 
(3.22) by ~' we see that 

for each to and Gt0 measurable random variable kt0 , which implies that 
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for each k E r. Hence 
(3.23) 

p,(k- ht)* { -(1- p,)(EE*)ht < /t, Qt > + < EA * D/t, qt) > 

+ < (g- rl)'Yt, Qt > + < Rt, Qt >} :-::; 0. 

Since p, > 0 we have (3.21). 

277 

If p, < 0 we obtain the converse inquality of (3.23) and we conclude 
the present theorem. 

0 
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