Advanced Studies in Pure Mathematics 41, 2004 Stochastic Analysis and Related Topics pp. 233–246

Stochastic Newton Equation with Reflecting Boundary Condition

Shigeo Kusuoka

§1. Introduction

Let D be a bounded domain in \mathbf{R}^d with a smooth boundary and $n(x), x \in \partial D$, be an outer normal vector. Let $a^{ij} : \mathbf{R}^d \to \mathbf{R}$, $i, j = 1, \ldots d$, be smooth functions such that $a^{ij}(x) = a^{ji}(x), x \in \mathbf{R}^d$. Also, let $b^i : \mathbf{R}^{2d} \to \mathbf{R}, i = 1, \ldots d$, be bounded measurable functions. We assume that there are positive constants C_0, C_1 such that

$$C_0|\xi|^2\leq \sum_{i,j=1}^d a^{ij}(x)\xi_i\xi_j\leq C_1|\xi|^2,\qquad x,\xi\in \mathbf{R}^d.$$

Let L_0 be a second order linear differential operator in \mathbf{R}^{2d} given by

$$L_0 = \sum_{i=1}^d v^i \frac{\partial}{\partial x^i} + \frac{1}{2} \sum_{i,j=1}^d a^{ij}(x) \frac{\partial^2}{\partial v^i \partial v^j} + \sum_{i=1}^d b^i(x,v) \frac{\partial}{\partial v^i}$$

Let $\tilde{W}^d = C([0,\infty); \mathbf{R}^d) \times D([0,\infty); \mathbf{R}^d)$. Now let $\Phi : \mathbf{R}^d \times \partial D \to \mathbf{R}^d$ be a smooth map satisfying the following .

(i) $\Phi(\cdot, x) : \mathbf{R}^d \to \mathbf{R}^d$ is linear for all $x \in \partial D$.

(ii) $\Phi(v,x) = v$ for any $x \in \partial D$ and $v \in T_x(\partial D)$, i.e., $\Phi(v,x) = v$ if $x \in \partial M$, $v \in \mathbf{R}^d$ and $v \cdot n(x) = 0$.

(iii) $\Phi(\Phi(v, x), x) = v$ for all $v \in \mathbf{R}^d$ and $x \in \partial D$.

(iv) $\Phi(n(x), x) \neq n(x)$ for any $x \in \partial D$.

The main theorem in the present paper is the following.

Theorem 1. Let $(x_0, v_0) \in (\overline{D})^c \times \mathbf{R}^d$. Then there exists a unique probability measure μ over \tilde{W}^d satisfying the following conditions. (1) $\mu(w(0) = (x_0, v_0)) = 1$. (2) $\mu(w(t) \in D^c \times \mathbf{R}^d, t \in [0, \infty)) = 1$.

Received April 4, 2003.

(3) For any $f \in C_0^{\infty}((\bar{D})^c \times \mathbf{R}^d)$, $\{f(w(t)) - \int_0^t L_0 f(w(s)) ds; t \ge 0\}$ is a martingale under $\mu(dw)$. (4) $\mu(1_{\partial D}(x(t))(v(t) - \Phi(v(t-), x(t))) = 0$ for all $t \in [0, \infty)$) = 1. Here $w(\cdot) = (x(\cdot), v(\cdot)) \in \tilde{W}^d$.

Now let us think of the following Stochastic Newton equation

$$egin{array}{rcl} dX_t^\lambda &=& V_t^\lambda dt \ dV_t^\lambda &=& \sigma(X_t^\lambda) dB(t) + (b(X_t^\lambda,V_t^\lambda) - \lambda
abla U(X_t^\lambda)) dt \ X_0^\lambda &= x_0, \qquad V_0^\lambda = v_0. \end{array}$$

Here B(t) is a *d*-dimensional Brownian motion, $\sigma \in C^{\infty}(\mathbf{R}^d; \mathbf{R}^d)$, $b : \mathbf{R}^{2d} \to \mathbf{R}^d$ is a bounded Lipschitz continuous function, and $U \in C_0^{\infty}(\mathbf{R}^d)$.

We assume the following also.

(A-1) There are positive constants C_0, C_1 such that

$$|C_0|\xi|^2 \leq |\sigma(x)\xi|^2 \leq C_1|\xi|^2, \qquad x, \xi \in \mathbf{R}^d.$$

(A-2) Let $D = \{x \in \mathbf{R}^d; U(x) > 0\}$. Then there are $\varepsilon_0 > 0, U_0 \in C^{\infty}(\mathbf{R}^d; \mathbf{R})$ and a non-increasing C^1 -function $\rho : \mathbf{R} \to \mathbf{R}$ satisfying the following.

(1) $x \in \partial D$, if and only if $U_0(x) = 0$ and $dis(x, \partial D) < \varepsilon_0$.

(2)
$$\nabla U_0(x) \neq 0, x \in \partial D$$
.

(3) $\rho(t) = 0, t \ge 0, \rho(t) > 0, t < 0, \text{ and } U(x) = \rho(U_0(x)) \text{ for } x \in \mathbf{R}^d$ with $dis(x, \partial D) < \varepsilon_0$.

(4) $\lim_{t\uparrow 0}\frac{\rho'(t)}{\rho(t)}=-\infty.$

Now let $d\tilde{i}s$ be a metric function on \tilde{W}^d given by

$$dis(w_0,w_1) = \sum_{n=1}^{\infty} 2^{-n} (1 \wedge ((\max_{t \in [0,n]} |x_0(t) - x_1(t)|) + (\int_0^n |v_0(t) - v_1(t)|^n)^{1/n})),$$

for $w_i(\cdot) = (x_i(\cdot), v_i(\cdot)) \in \tilde{W}^d$, i = 0, 1. Then we will show the following.

Theorem 2. Let ν^{λ} , $\lambda \in [1, \infty)$, be the probability law of $(X_t^{\lambda}, V_t^{\lambda})$, $t \in [0, \infty)$, on \tilde{W}_0 , and μ be the probability measure given in Theorem 1 in the case when $\Phi(v, x) = v - 2(v \cdot n(x))n(x)$, $v \in \mathbf{R}^d$, $x \in \partial D$. Then ν^{λ} conveges to μ weakly as $\lambda \to \infty$ as probability measures on $(\tilde{W}_0, \tilde{d}is)$.

$\S 2.$ **Basic lemmas**

Let $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \in [0,\infty)}, P)$ be a filtered probability space, and $B(t) = (B^1(t), \ldots, B^d(t))$ be a *d*-dimensional Brownian motion. Let $B^0(t) = t$, $t \in [0, \infty)$. Let $\sigma_i : \mathbf{R}^N \to \mathbf{R}^N$, $i = 0, 1, \ldots, d$, be Lipschitz continuous functions, and let $X : [0, \infty) \times \mathbf{R}^N \times \Omega \to \mathbf{R}^N$ be the solution to the following SDE

$$X(t,x) = x + \sum_{i=0}^d \int_0^t \sigma_i(X(s,x)) dB^i(s), \qquad t \ge 0, \ x \in \mathbf{R}^N.$$

We may assume that X(t, x) is continuous in (t, x) (cf. Kunita [2]).

Then we have the following.

Lemma 3. For any T > 0 and $p_0, p_1, \ldots, p_m \in (1, \infty)$, $m \ge 1$, with $\sum_{k=0}^{m} p_k^{-1} = 1$, there is a constant C > 0 such that

$$E[\int_{\mathbf{R}^{N}} \prod_{k=0}^{m} |f_{k}(X(t_{k}, x))| dx] \le C \prod_{k=0}^{m} || f_{k} ||_{L^{p_{k}}(\mathbf{R}^{N}, dx)}$$

for all $0 = t_0 < t_1 < \ldots < t_m \leq T$, and $f_k \in C_0^{\infty}(\mathbf{R}^N)$, $k = 0, 1, \ldots, m$.

Proof. From the assumption, there is a $C_0 > 0$ such that

$$|\sigma_i(x) - \sigma_i(y)| \le C_0 |x - y|, \qquad x, y \in \mathbf{R}^N.$$

Let $\varphi \in C_0^{\infty}(\mathbf{R}^N)$ such that $\int_{\mathbf{R}^N} \varphi(x) dx = 1$. Let $\varphi_n(x) = n^N \varphi(nx)$, $x \in \mathbf{R}^N$, for $n \ge 1$, and let $\sigma_i^{(n)} = \varphi_n * \sigma_i$, $i = 0, \ldots, d$. Then $\sigma_i^{(n)} \in C^{\infty}(\mathbf{R}^N; \mathbf{R}^N)$. Let

$$W_{i,k}^{(n),j}(x) = rac{\partial}{\partial x^k} \sigma_i^{(n),j}(x),$$

 $x \in \mathbf{R}^N, \ j,k = 1\dots, N, \ i = 0, 1, \dots, d, \ n \ge 1.$

Then we see that $|W_{i,k}^{(n),j}(x)| \leq C_0, x \in \mathbf{R}^N$. Let $X^{(n)}: [0,\infty) \times \mathbf{R}^N \times \Omega \to \mathbf{R}^N$ be the solution to the following SDE

$$X^{(n)}(t,x) = x + \sum_{i=0}^{d} \int_{0}^{t} \sigma_{i}^{(n)}(X^{(n)}(s,x)) dB^{i}(s), \qquad t \ge 0, \ x \in \mathbf{R}^{N}.$$

Then we may think that $X^{(n)}(t, \cdot) : \mathbf{R}^N \to \mathbf{R}^N$ is a diffeomorphism with probability one. Let $J^{(n),j}_k(t,x) = \frac{\partial}{\partial x^k} X^{(n),j}(t,x)$. Let $W^n_i(x) =$

 $(W_{i,k}^{(n),j}(x))_{k,j=1,\ldots,N}$ and $J^{(n)}(t,x) = (J_k^{(n),j}(t,x))_{k,j=1,\ldots,N}$. Then the $N \times N$ -matrix valued process $J^{(n)}(t,x)$ satisfies the following SDE

$$J^{(n)}(t,x) = I_N + \sum_{i=0}^d \int_0^t W_i^{(n)}(X^{(n)}(s,x)) J^{(n)}(s,x) dB_i(s).$$

Also, we see that

$$J^{(n)}(t,x)^{-1}$$

$$= I_N - \sum_{i=0}^d \int_0^t J^{(n)}(s,x)^{-1} W_i^{(n)}(X^{(n)}(s,x)) dB_i(s) + \frac{1}{2} \sum_{i=1}^d \int_0^t J^{(n)}(s,x)^{-1} W_i^{(n)}(X^{(n)}(s,x))^2 ds.$$

Then we see that

 $C_T = \sup\{E[\det J^{(n)}(t,x)^{-p_0+1}]; t \in [0,T], x \in \mathbf{R}^N, n \ge 1\} < \infty.$

So we have

$$E\left[\int_{\mathbf{R}^{N}} \prod_{k=0}^{n} |f_{k}(X^{(n)}(t_{k},x))|dx\right]$$

$$\leq E\left[\int_{\mathbf{R}^{N}} |f_{0}(x)|_{0}^{p} (\prod_{k=1}^{m} \det J^{(n)}(t_{k},x)^{-p_{0}/p_{k}})dx\right]^{1/p_{0}}$$

$$\times \prod_{k=1}^{m} E\left[\int_{\mathbf{R}^{N}} |f_{k}(X^{(n)}(t_{k},x))|^{p_{k}} \det J^{(n)}(t_{k},x)dx\right]^{1/p_{0}}$$

$$\leq C_{T} (\int_{\mathbf{R}^{N}} |f(x)|_{0}^{p} dx)^{1/p_{0}} \prod_{k=1}^{m} (\int_{\mathbf{R}^{N}} |f_{k}(x)|^{p_{k}} dx)^{1/p_{k}}$$

Letting $n \to \infty$, we have our assertion.

Now let D be a bounded domain in \mathbb{R}^N and $F^j : \mathbb{R}^N \to \mathbb{R}$, j = 1, 2, be C^2 functions satisfying the following assumptions (F1),(F2), furthermore.

(F1) For $x \in D$ and $i = 1, \ldots, d$,

$$\sum_{j=1}^N \sigma_i^j(x) \frac{\partial}{\partial x^j} F^1(x) = 0.$$

(F2) $\inf \{\det(\nabla F^i(x) \cdot \nabla F^j(x))_{i,j=1,2}; x \in D\} > 0.$ Then we have the following

Lemma 4. For a.e.x,

$$P(X(t,x) \in D, F(X(t,x)) = 0 \text{ for some } t > 0) = 0.$$

Here $F = (F^1, F^2) : \mathbf{R}^N \to \mathbf{R}^2$.

Proof. Let

$$au(s,x) = \inf\{t \geq s; X(t,x) \in D^c\} \land (s+1), \qquad x \in \mathbf{R}^N, s > 0.$$

Also, let

$$p(x,s)=P(F(X(t,x))=0 ext{ for some } t\in [s, au(s,x))), \qquad x\in \mathbf{R}^N, s>0.$$

Then we see that

$$P(X(t,x)\in D,F(X(t,x))=0 ext{ for some }t>0)\leq \sum_{r\in \mathbf{Q}_+}p(x,r),$$

where \mathbf{Q}_+ is the set of positive rational numbers. Let $V(m) = \{x \in \mathbf{R}^N; |x| \leq m\}, m \geq 1$. Let us define random variables $Z_{T,m}, T > 0, m \geq 1$, and constant C_1 by

$$Z_{T,m} = \sup\{|t-s|^{-1/3}|X(t,x) - X(s,x)|; \ 0 \le s < t \le T, \ x \in V(m)\},\$$

 and

$$C_1 = \sup\{|\sigma_0(x)||\nabla F^1(x)| + \frac{1}{2}\sum_{i=1}^d |\nabla^2 F^1(x)||\sigma_i(x)|^2 + |\nabla F^2(x)|; \ x \in \bar{D}\}.$$

Then we see that $P(Z_{T,m} < \infty) = 1$ (cf. Kunita[2]). By the assumption (F1), we see that

$$\begin{split} F^{1}(X(t,x)) &= F^{1}(x) + \int_{0}^{t} (\sigma_{0}(X(s,x)) \nabla F^{1}(X(s,x)) \\ &+ \sum_{i=1}^{d} \frac{1}{2} \nabla^{2} F^{1}(X(s,x)) (\sigma_{i}(X(s,x)), \sigma_{i}(X(s,x))) ds. \end{split}$$

So we see that

$$|F^{1}(X(t,x)) - F^{1}(X(s,x))| \le C_{1}|t-s|, \quad t \in [s,\tau(s,x)), s \ge 0, x \in \mathbf{R}^{N},$$

and

$$|F^2(X(t,x)) - F^2(X(s,x))| \le C_1 Z_{T,m} |t-s|^{1/3}$$
 $t,s \in [0,T], x \in V(m).$

Also, by the assumption (F2), we see that there is a constant $C_2 > 0$ such that

$$\int_D 1_A(F(x)) dx \leq C_2 |A|$$

for any Borel set A in \mathbb{R}^2 , where |A| denotes the area of A.

Let $\Delta_{\ell,n,k} = [-C_1 n^{-1}, C_1 n^{-1}] \times [-\ell C_1 n^{-1/3}, \ell C_1 n^{-1/3}], \ \ell, n \ge 1, k = 1, \dots, n$. Then we have for any $\ell \ge 1$,

$$\int_{V(m)} dx P(F(X(t,x)) = 0 \text{ for some } t \in [s,\tau(s,x)), Z_{s+1,m} \le \ell)$$

$$\le \sum_{k=1}^{n} \int_{V(m)} dx \ P(X(s,x) \in D, X(s+(k-1)/n,x) \in D, K(s+(k-1)/n,x)) \le \Delta_{\ell,n,k})$$

$$\begin{split} &= \sum_{k=1}^{n} E[\int_{\mathbf{R}^{N}} dx \mathbf{1}_{V(m)}(x) \mathbf{1}_{D}(X(s,x)) \\ &\qquad \mathbf{1}_{D}(X(s+(k-1)/n,x)) \mathbf{1}_{\Delta_{\ell,n,k}}(F(X(s+(k-1)/n,x)))] \\ &\leq C \sum_{k=1}^{n} |V(m)|^{1/10} |D|^{1/10} (\int_{D} \mathbf{1}_{\Delta_{\ell,n,k}}(F(x)) dx)^{4/5} \\ &\leq C C_{2} n |V(m)|^{1/10} |D|^{1/10} (4C_{1}^{2} \ell n^{-4/3})^{4/5}. \end{split}$$

Here C is the constant in Lemma 3 for T = s + 1, $p_0 = p_1 = 10$ and $p_3 = 5/4$. Since $n \ge 1$ is arbitrary, we see that

$$\int_{V(m)} dx P(F(X(t,x)) = 0 \text{ for some } t \in [s, \tau(s,x)), Z_{s+1,m} \le \ell) = 0,$$
$$\ell \ge 1.$$

This implies that $\int_{\mathbf{R}^N} p(x,s) = 0, \ s > 0.$

Therefore we have our assertion.

Corollary 5. Suppose moreover that $x_0 \in (\overline{D})^c$, σ_i , i = 0, ..., d, are smooth around x_0 and that dim $Lie[\frac{\partial}{\partial t} - V_0, V_1, ..., V_d](0, x_0) = N + 1$. Here

$$V_i(x) = \sum_{j=1}^d \sigma_i^j(x) rac{\partial}{\partial x^j}, \qquad i = 1, \dots, d,$$

and

$$V_0(x) = \sum_{j=1}^d (\sigma_0^j(x) - \frac{1}{2} \sum_{i=1}^d \sum_{k=1}^N \sigma_i^k(x) \frac{\partial \sigma_i^j}{\partial x^k}(x)) \frac{\partial}{\partial x^j}.$$

Then

$$P(X(t, x_0) \in D, F(X(t, x_0)) = 0 \text{ for some } t > 0) = 0.$$

Proof. Let U be an open neighborhood of x_0 such that σ_i , $i = 0, \ldots, d$, are smooth around \overline{U} and that $\overline{U} \cap \overline{D} = \emptyset$. Let $\tau = \inf\{t > 0; X(t, x_0) \in U^c\}$. Then we see that

However, by [3], we see that $P(X(\frac{1}{n}, x_0) \in dx, \tau > \frac{1}{n})$ is absolutely continuous. So by Lemma 4, we have our assertion.

$\S 3.$ Proof of Theorem 1

Since the proof is similar, we prove Theorem 1 in the case that $D = \{x = (x^1, \ldots, x^d) \in \mathbf{R}^d; x^1 < 0\} \subset \mathbf{R}^d$, and $\Phi(v, x) = (-v^1, v^2, \ldots, v^d)$ for $v = (v^1, v^2, \ldots, v^d)$ and $x \in \partial D$. In general, if we take a double cover of D^c and change the coordinate functions, we can apply a similar proof. Let $a^{ij} : \mathbf{R}^d \to \mathbf{R}, i, j = 1, \ldots d$, be bounded Lipschitz continuous function such that $a^{ij}(x) = a^{ji}(x), x \in \mathbf{R}^d$ and that there are positive constants C_0, C_1 such that

$$C_0|\xi|^2\leq \sum_{i,j}^d a^{ij}(x)\xi_i\xi_j\leq C_1|\xi|^2,\qquad x,\xi\in {f R}^d.$$

Let $b: \mathbf{R}^{2d} \to \mathbf{R}^d$ be a bounded measurable function.

Let L_0 be a second order linear differential operator in \mathbb{R}^{2d} given by

$$L_0 = \sum_{i=1}^d v^i \frac{\partial}{\partial x^i} + \frac{1}{2} \sum_{i,j=1}^d a^{ij}(x) \frac{\partial^2}{\partial v^i \partial v^j} + \sum_{i=1}^d b^i(x,v) \frac{\partial}{\partial v^i}$$

Then Theorem 1 is somehow equivalent to the following Theorem. So we prove this Theorem.

Theorem 6. Let $(x_0, v_0) \in (\overline{D})^c \times \mathbf{R}^d$, and suppose that a^{ij} , $i, j = 1, \ldots, d$, are smooth around x_0 . Then there exists a unique probability measure μ over \tilde{W}^d satisfying the following conditions.

(1) $\mu(w(0) = (x_0, v_0)) = 1.$

(2) $\mu(w(t) \in D^c \times \mathbf{R}^d, t \in [0, \infty)) = 1.$

(3) For any $f \in C_0^{\infty}((\bar{D})^c \times \mathbf{R}^d)$, $\{f(w(t)) - \int_0^t L_0 f(w(s)) ds; t \ge 0\}$ is a martingale under $\mu(dw)$. (4) $\mu(1_{\{0\}}(x^1(t))(v^1(t) + v^1(t-)) = 0, t \in [0,\infty)) = 1$ and

 $\mu(v^i(t) \text{ is continuous in } t \in [0, \infty), i = 2, \dots, d) = 1.$

Proof. Let $\tilde{a}^{ij}: \mathbf{R}^d \to \mathbf{R}, i, j = 1, \dots d$, be given by

$$ilde{a}^{ij}(x)=a^{ij}(|x^1|,x^2,\ldots,x^d),\qquad x=(x^1,x^2,\ldots,x^d)\in \mathbf{R}^d.$$

Let $\tilde{b}^i : \mathbf{R}^{2d} \to \mathbf{R}, i = 1, \dots d$, be given by

$$\tilde{b}^1(x) = sgn(x^1)b^1(|x^1|, x^2, \dots, x^d),$$

 and

$$ilde{b}^{i}(x) = b^{i}(|x^{1}|, x^{2}, \dots, x^{d}), \ i = 2, \dots, d$$

for $x = (x^1, x^2, \ldots, x^d) \in \mathbf{R}^d$. Let \tilde{L}_0 be second order linear differential operators in \mathbf{R}^{2d} given by

$$\tilde{L}_0 = \sum_{i=1}^d v^i \frac{\partial}{\partial x^i} + \frac{1}{2} \sum_{i,j=1}^d \tilde{a}^{ij}(x) \frac{\partial^2}{\partial v^i \partial v^j} + \sum_{i=1}^d \tilde{b}^i(x,v) \frac{\partial}{\partial v^i}.$$

Then by transformation of drift (cf. Ikeda-Watanabe[1]), we see that there is a unique probability measure ν on $C([0,\infty); \mathbf{R}^{2d})$ such that $\nu(w(0) = (x_0, v_0)) = 1$ and that $\{f(w(t)) - \int_0^t \tilde{L}_0 f(w(s)) ds; t \ge 0\}$ is a martingale under $\nu(dw)$ for any $f \in C_0^{\infty}(\mathbf{R}^{2d})$.

Let $\tilde{\xi}(w) = \inf\{t > 0; x^1(t) = 0, v^1(t-) = 0\}$. Then by Corollary 5 and Girsanov's transformation, we see that $\nu(\tilde{\xi}(w) = \infty) = 1$. Let

$$X(t,w) = (|x^1(t)|, x^2(t), \dots, x^d(t)), \qquad t \in [0,\infty),$$

and

$$V(t,w) = rac{d^+}{dt}X(t,w), \qquad t\in [0,\infty).$$

Let μ is the probability law of $(X(\cdot, w), V(\cdot, w))$ under ν . Then we see that μ satisfies the conditions (1)-(4). So we see the existence.

Now let us prove the uniqueness. Let μ be a probability measure as in Theorem. Let $\xi(w) = \inf\{t > 0; x^1(t) = 0, v^1(t-) = 0\}$. Also, let us define stopping times $\tau_k : \tilde{W}_0 \to [0,\infty], \ k = 0, 1, 2, \ldots$, inductively by $\tau_0(w) = 0$ and

$$au_{k+1}(w) = \inf\{t > au_k(w); \; x^1(t) = 0\}, \qquad w \in ilde{W}^d, \; k = 0, 1, \dots$$

Then we see from the assumption (4) that if $\tau_k(w) < \xi(w)$, then $\tau_k(w) < \tau_{k+1}(w)$ for μ -a.s.w. Also, it is easy to see that $\xi(w) \leq \sup_k \tau_k(w)$, $w \in \tilde{W}^d$.

For any $\varepsilon > 0$ and $k = 0, 1, 2, \ldots$, let

$$\sigma_k^0(w) = \inf\{t > \tau_k(w); \ x^1(t) > \varepsilon\},\$$

and

$$\sigma_k^1(w)=\inf\{t>\sigma_k^0(w);\ x^1(t)$$

Then we see from the assumption (3) that

$$f(x(t\wedge\sigma_k^1),v(t\wedge\sigma_k^1))-f(x(t\wedge\sigma_k^0),v(t\wedge\sigma_k^0))-\int_{t\wedge\sigma_k^0}^{t\wedge\sigma_k^1}L_0f(x(s),v(s))ds$$

is a bounded continuous martingale for any $f \in C_0^{\infty}(\mathbf{R}^{2d})$.

Now let

$$\begin{split} \tilde{X}(t,w) \\ &= \left\{ \begin{array}{ll} x(t), & t \in [\tau_k(w), \tau_{k+1}(w)), \text{ if } k \text{ is even}, \\ (-x^1(t), x^2(t), \dots, x^d(t)), & t \in [\tau_k(w), \tau_{k+1}(w)), \text{ if } k \text{ is odd}, \end{array} \right. \end{split}$$

$$\begin{split} \tilde{V}(t,w) \\ &= \begin{cases} v(t), & t \in [\tau_k(w), \tau_{k+1}(w)), \text{ if } k \text{ is even}, \\ (-v^1(t), v^2(t), \dots, v^d(t)), & t \in [\tau_k(w), \tau_{k+1}(w)), \text{ if } k \text{ is odd}. \end{cases} \end{split}$$

Then we can see that $(\tilde{X}(t \wedge \xi), \tilde{V}(t \wedge \xi))$ is continuous in t for μ -a.s.w. Also, we see that

$$f(\tilde{X}(t \wedge \sigma_k^1), \tilde{V}(t \wedge \sigma_k^1)) - f(\tilde{X}(t \wedge \sigma_k^0), \tilde{V}(t \wedge \sigma_k^0)) - \int_{t \wedge \sigma_k^0}^{t \wedge \sigma_k^1} \tilde{L}_0 f(\tilde{X}(s), \tilde{V}(s)) ds$$

is a continuous martingale for any $f \in C_0^{\infty}(\mathbf{R}^{2d})$.

Therefore we see that

$$egin{aligned} f(ilde{X}(t\wedge au_{k+1}), ilde{V}(t\wedge au_{k+1})) &- f(ilde{X}(t\wedge au_k), ilde{V}(t\wedge au_k)) \ &- \int_{t\wedge au_k}^{t\wedge au_{k+1}} ilde{L}_0f(ilde{X}(s), ilde{V}(s))ds \end{aligned}$$

is a continuous martingale for any $f \in C_0^{\infty}(\mathbf{R}^{2d})$. So we can conclude that

$$f(ilde{X}(t\wedge\xi), ilde{V}(t\wedge\xi)) = \int_{0}^{t\wedge\xi} ilde{L}_{0}f(ilde{X}(s), ilde{V}(s))ds$$

is a continuous martingale for any $f \in C_0^{\infty}(\mathbf{R}^{2d})$.

Therefore we see that the probability law of $(\tilde{X}(\cdot \wedge \xi), \tilde{V}(\cdot \wedge \xi))$ under μ is the same of $w(\cdot \wedge \tilde{\xi})$ under ν , by the argument of shift of drift and the fact that a strong solution of stochastic differential equation with Lipschitz continuous coefficients is unique. So we see that $\mu(\xi(w) = \infty) = 1$. Since we see that

$$x(t) = (|\tilde{X}^{1}(t)|, \tilde{X}^{2}(t), \dots, \tilde{X}^{d}(t)), \qquad t \in [0, \xi),$$

and

$$v(t) = (\frac{d^+}{dt} | \tilde{X}^1(t) |, \tilde{V}^2(t), \dots, \tilde{V}^d(t)), \qquad t \in [0, \xi),$$

we see the uniqueness.

This completes the proof.

$\S4.$ Proof of Theorem 2

We will make some preparations to prove Theorem 2.

Proposition 7. Let T > 0. Let A_0 be the set of $w \in D([0,T); \mathbf{R})$ for which w(0) = 0, $w(T-) \leq 1$, and w(t) is non-decreasing in t. Then A_0 is compact in $L^p((0,T), dt)$, $p \in (1, \infty)$, and its cluster points are in $D([0,T); \mathbf{R})$.

Proof. Suppose that $w_n \in A_0$, n = 1, 2, ... Then we see that $w_n(t) \in [0, 1], t \in [0, T), n \ge 1$. So taking subsequence if necessary, we may assume that $\{w_n(r)\}_{n=1}^{\infty}$ is convergent for any $r \in [0, T) \cap \mathbf{Q}$. Let $\tilde{w}(r) = \lim_{n \to \infty} w_n(r), r \in \mathbf{Q}$, and let $w(t) = \lim_{r \downarrow t} \tilde{w}(r), t \in [0, T)$, and w(T) be arbitrary such that $\sup_{t \in [0,T)} w(t) \le w(T) \le 1$. Then we see that $w \in D([0,T); \mathbf{R})$ and w is non-decreasing, and that $w_n(t) \to w(t), t \in [0,T)$, if t is a continuous point of w. So we see that $w_n \to w, n \to \infty$, in $L^p((0,T), dt)$.

This completes the proof.

We have the following as an easy consequence of Proposition 7.

Corollary 8. Let T > 0. Let A be the set of $w \in D([0,T); \mathbb{R}^d)$ for which w(0) = 0 and the total variation of w is less than 1. Then A is compact in $L^p((0,T); \mathbb{R}^d, dt)$, $p \in (1,\infty)$, and its cluster points are in $D([0,T); \mathbb{R}^d)$.

 $\mathbf{242}$

Now let us prove Theorem 2. Let

$$H_t^{\lambda} = \lambda U(X_t^{\lambda}) + \frac{1}{2} |V_t^{\lambda}|^2, \qquad t \ge 0.$$

Then we have

$$egin{aligned} H^{\lambda}_t &= rac{1}{2} |v_0|^2 + \int_0^t V^{\lambda}_s \cdot \sigma(X^{\lambda}_s) dB_s + \int_0^t V^{\lambda}_s \cdot b(X^{\lambda}_s,V^{\lambda}_s) ds \ &\quad + rac{1}{2} \int_0^t trace(\sigma(X^{\lambda}_s)^* \sigma(X^{\lambda}_s)) ds. \end{aligned}$$

So we see that for any $p\in [2,\infty)$ there is a constant C independent of λ such that

$$E[\sup_{t\in[0,T]} (H_t^{\lambda})^p] \le C(|v_0|^{2p} + 1 + E[\int_0^T |V_t^{\lambda}|^p dt])$$
$$\le C(|v_0|^{2p} + 1 + 2^{p/2}TE[\sup_{t\in[0,T]} (H_t^{\lambda})^p]^{1/2}).$$

So we see that

(1)
$$\sup_{\lambda>0} E[\sup_{t\in[0,T]} (H_t^{\lambda})^p] < \infty, \qquad p\in[1,\infty).$$

Therefore we see that

$$\sup_{\lambda>0} E[\sup_{t\in[0,T]} |V_t^\lambda|^p] < \infty, \qquad p\in[1,\infty).$$

So we see that $\{H_t^{\lambda}\}_{t \in [0,\infty)}$, and $\{X_t^{\lambda}\}_{t \in [0,\infty)}$, $\lambda \geq 0$, are tight in C. Moreover, we see that

(2)
$$E[\sup_{t\in[0,T]}U(X_t^{\lambda})^p]\to 0, \quad \lambda\to\infty, \qquad p\in[1,\infty).$$

Let us take an $\varepsilon \in (0, \varepsilon_0)$ such that

$$C_0=\sup\{|
abla U_0(x)|^{-1};\ dis(x,\partial D)\leq arepsilon\}<\infty.$$

Let $\varphi \in C_0^{\infty}(\mathbf{R}^d)$, such that $0 \leq \varphi \leq 1$, $\varphi(x) = 1$, if $dis(x, \partial D) < \varepsilon/3$, and $\varphi(x) = 0$, if $dis(x; \partial D) > \varepsilon/2$. Let $D_0 = \{x \in D; dis(x, \partial D) > \varepsilon/4\}$, and let $\tau = \tau^{\lambda} = \inf\{t > 0; X_t^{\lambda} \in D_0\}$. Then we see by Equation (2) that

$$P(\tau^{\lambda} < T) \rightarrow 0, \quad \lambda \rightarrow \infty,$$

for any T > 0. Let $A_t^{\lambda}, t \ge 0$ be a non-decreasing continuous process given by

$$A_t^\lambda = -\lambda \int_0^{t\wedge au^\lambda} arphi(X_s^\lambda)
ho'(U_0(X_s^\lambda)) |
abla U_0(X_s^\lambda)|^2 ds, \qquad t\geq 0.$$

Note that $A_0^{\lambda} = 0$. Since we have

$$\begin{split} \varphi(X_{t\wedge\tau^{\lambda}}^{\lambda})(\nabla U_{0}(X_{t\wedge\tau^{\lambda}}^{\lambda})\cdot V_{t\wedge\tau^{\lambda}}^{\lambda}) - \varphi(X_{0}^{\lambda})(\nabla U_{0}(X_{0}^{\lambda})\cdot V_{0}^{\lambda}) \\ = A_{t}^{\lambda} + \int_{0}^{t\wedge\tau^{\lambda}} \varphi(X_{s}^{\lambda})\nabla^{2}U_{0}(X_{s}^{\lambda})(V_{s}^{\lambda}, V_{s}^{\lambda})ds \\ &+ \int_{0}^{t\wedge\tau^{\lambda}} \varphi(X_{s}^{\lambda})(\nabla U_{0}(X_{s}^{\lambda})\cdot b(X_{s}^{\lambda}, V_{s}^{\lambda}))ds \\ &+ \int_{0}^{t\wedge\tau^{\lambda}} \varphi(X_{s}^{\lambda})(\nabla U_{0}(X_{s}^{\lambda}))^{*}\sigma(X_{s}^{\lambda})dB_{s} \\ &+ \int_{0}^{t\wedge\tau^{\lambda}} (\nabla \varphi(X_{s}^{\lambda})\cdot V_{s}^{\lambda})(\nabla U_{0}(X_{s}^{\lambda})\cdot V_{s}^{\lambda})ds, \end{split}$$

we see that

$$\sup_{\lambda>0} E[(A_T^{\lambda})^p] < \infty, \qquad p \in [1,\infty).$$

Since we have

$$\int_0^{T\wedge\tau^\lambda} \lambda U(X_t^\lambda) dt = \int_0^{T\wedge\tau^\lambda} \frac{\rho(U_0(X_t^\lambda))}{|\rho'(U_0(X_t^\lambda))|} |\nabla U_0(X_t^\lambda)|^{-2} dA_t^\lambda,$$

we see that

$$P(\int_0^{T\wedge\tau^\lambda}\lambda U(X_t^\lambda)dt>\delta)$$

$$\leq P(\sup_{t\in[0,T]}U(X_t^{\lambda})>\eta)+P(C_0^2A_T^{\lambda}\sup_{\rho^{-1}(\eta)\leq s<0}\frac{\rho(s)}{|\rho'(s)|}>\delta)$$

for any $\delta, \eta > 0$. So we see that

(3)
$$P(\int_0^{T\wedge\tau^\lambda} |H_t^\lambda - \frac{1}{2}|V_t^\lambda|^2 |dt > \delta) \to 0, \quad \lambda \to \infty$$

for any $\delta > 0$.

Also, we see that

$$V_{t\wedge\tau^{\lambda}}^{\lambda} = v_0 + V_t^{\lambda,0} + V_t^{\lambda,1},$$

where

$$V_t^{\lambda,0} = + \int_0^{t\wedge au^\lambda} |
abla U_0(X_s^\lambda))|^{-2}
abla U_0(X_s^\lambda) dA_s^\lambda,$$

 and

$$V_t^{\lambda,1} = \int_0^{t\wedge\tau^{\lambda}} \sigma(X_s^{\lambda}) dB_s + \int_0^{t\wedge\tau} b(X_s^{\lambda}, V_s^{\lambda}) ds.$$

So we see that the total variation of $V_t^{\lambda,0}$, $t \in [0,T]$, is dominated by $C_0 A_T^{\lambda}$. Also, $\{V_t^{\lambda,0}\}_{t \in [0,\infty)}$ is tight in C.

Then by Corollary 8 it is easy to see that $\{V_t^{\lambda}\}_{t\in[0,T)}$ is tight in $L^p((0,T); \mathbf{R}^d)$ and its limit process is in $D([0,T); \mathbf{R}^d)$ with probability one for any T > 0 and $p \in (1, \infty)$.

Let $F \in C^{\infty}(\mathbf{R}^d \times \mathbf{R}^d; \mathbf{R}^d)$ be given by

$$F(x,v) = \varphi(x)(v - |\nabla U_0(x)|^{-2} (\nabla U_0(x) \cdot v) \nabla U_0(x)), \qquad (x,v) \in \mathbf{R}^d \times \mathbf{R}^d.$$

Then by Itô's lemma it is easy to see that $\{F(X_t^{\lambda}, V_t^{\lambda})\}_{t \in [0,\infty)}, \lambda \in (0,\infty)$, is tight in *C*, and that $\{f(X_t^{\lambda}, V_t^{\lambda}) - \int_0^t L_0 f(X_s^{\lambda}, V_s^{\lambda}) ds\}$ is a continuous martingale for any $\lambda \in (0,\infty)$ and $f \in C_0^{\infty}((\bar{D})^c \times \mathbf{R}^d)$.

So we see that there are stochastic processes $\{(X_t, V_t)\}_{t \in [0,\infty)}$ and $\{H_t\}_{t \in [0,\infty)}$ and a subsequence $\{\lambda_n\}_{n=1}^{\infty}, \lambda_n \to \infty, n \to \infty$, such that $\{((X_t^{\lambda_n}, V_t^{\lambda_n}), H_t^{\lambda_n})\}_{t \in [0,\infty)}$ converges in law to $\{((X_t, V_t), H_t)\}_{t \in [0,\infty)}$ in $\tilde{W}^d \times C$ with respect the metric function $d\tilde{i}s + dis_C$.

Then we see that $\{f(X_t, V_t) - \int_0^t L_0 f(X_s, V_s) ds\}_{t \in [0,\infty)}$ is a continuous martingale for any $f \in C_0^{\infty}((\bar{D})^c \times \mathbf{R}^d)$, and that $\{F(X_t, V_t)\}_{t \in [0,\infty)}$ is a continuous process. Also, we see by Equation (3) that

$$\int_0^T |H_t - \frac{1}{2}|V_t|^2 |dt = 0 \qquad a.s.$$

for any T > 0. So we see that $\{|V_t|^2\}_{t \in [0,\infty)}$ is a continuous process. Therefore we have

$$P(1_{\partial D}(X_t)(V_t - V_{t-} - 2(n(X_t) \cdot V_{t-})n(X_t)) = 0, \ t \in [0, \infty)) = 1.$$

So we see that the probability law of $\{(X_t, V_t)\}_{t \in [0,\infty)}$ in \tilde{W} is μ in Theorem 1.

This complets the proof of Theorem 2

References

- [1] Ikeda, S., and S. Watanabe, Stochstic Differential Equations and Diffusion processes, 2nd Edition, North-Holland/Kodansha, 1989.
- [2] Kunita, H., Stochastic flows and stochastic differential equations, Cambridge University Press, 1990.
- [3] Kusuoka, S., and D.W. Stroock, Applications of Malliavin Calculus II, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 32(1985), 1-76.

Graduate School of Mathematical Sciences The University of Tokyo Komaba 3-8-1, Meguro-ku Tokyo 153-8914, Japan