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Stochastic Newton Equation 
with Reflecting Boundary Condition 

Shigeo Kusuoka 

§1. Introduction 

Let D be a bounded domain in Rd with a smooth boundary and 
n(x), x E aD, be an outer normal vector. Let aii : Rd ----> R, i,j = 
1, ... d, be smooth functions such that a ij ( x) = aii ( x), x E Rd. Also, 
let bi : R 2d ----> R, i = 1, ... d, be bounded measurable functions. We 
assume that there are positive constants C0 , C1 such that 

d 

Col~l 2 ::::; L aii(x)~i~j::::; C1l~l 2 , 
i,j=l 

Let L0 be a second order linear differential operator in R 2d given by 

d .a 1 d .. a2 d. a 
L 0 = "'""v'-a . +- "'""a'1 (x)-a ·a . + "'""b'(x,v)-a . L.J x' 2 L.J v' vJ L.J v' 

i=l i,j=l i=l 

Let Wd = C([O, oo); Rd)xD([O, oo); Rd). Now let <I>: RdxaD ____, Rd 
be a smooth map satisfying the following . 
(i) <I>(·,x): Rd----; Rd is linear for all X E an. 
(ii) <I>(v, x) = v for any x E aD and v E Tx(aD), i.e., <I>(v, x) = v if 
x E aM, v E Rd and v · n(x) = 0. 
(iii) <l>(<I>(v, x), x) = v for all v E Rd and x E aD. 
(iv) <l>(n(x), x) =J n(x) for any x E aD. 

The main theorem in the present paper is the following. 

Theorem 1. Let (x0 ,v0 ) E (.D)c X Rd. Then there exists a unique 
probability measure Jl over wd satisfying the following conditions. 
(1) Jl(w(O) = (xo, vo)) = 1. 
(2) Jl(w(t) E De x Rd, t E [0, oo)) = 1. 
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(3) For any f E C0 ((f>)c x Rd), {f(w(t))- J; Lof(w(s))ds; t 2 0} is 
a martingale under p,( dw). 
(4) p,(1an(x(t))(v(t)- ci>(v(t-),x(t))) = 0 for all t E [O,oo)) = 1. 
Here w(·) = (x(·), v(·)) E Wd. 

Now let us think of the following Stochastic Newton equation 

dXt V/'dt 

d~" a(Xt)dB(t) + (b(Xt, ~")- X\lU(Xt))dt 

X ,\_ 
0 - xo, v;,\-

0 - vo. 

Here B(t) is ad-dimensional Brownian motion, a E c=(Rd; Rd), 
b : R 2d ----> Rd is a bounded Lipschitz continuous function, and U E 
C0 (Rd). 

We assume the following also. 
(A-1) There are positive constants C0 , C1 such that 

(A-2) Let D = {x E Rd; U(x) > 0}. Then there are co > 0, U0 E 
c=(Rd; R) and a non-increasing C 1-function p: R----> R satisfying the 
following. 
(1) x E aD, if and only if U0 (x) = 0 and dis(x, aD) < c0 . 

(2) V'Uo(x) =/:- 0, x E an. 
(3) p(t) = 0, t 2 0, p(t) > 0, t < 0, and U(x) = p(U0 (x)) for x E Rd 
with dis(x, an) <co. 

. p'(t) 
(4) hm -( ) = -oo. 

tjO p t 
Now let dis be a metric function on Wd given by 

dis(wo,wl) 

= f: Tn(1/\ ((max lxo(t)- Xl(t)l) + ( r lvo(t)- vl(t)ln)lfn)), 
n=l tE[O,n] Jo 

- d . for wi(·) =(xi(·), vi(·)) E W , z = 0, 1. 
Then we will show the following. 

Theorem 2. Letv", A E [1,oo), be the probability law of(X[, ~"), 
t E [0, oo), on Wo, and p, be the probability measure given in Theorem 1 
in the case when ci>(v,x) = v- 2(v · n(x))n(x), v E Rd, x E an. Then 
v-' conveges top, weakly as A----> oo as probability measures on (W0 , dis). 
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§2. Basic lemmas 

Let (n, F, {FthE[O,oo), P) be a filtered probability space, and B(t) = 

(B1 (t), ... , Bd(t)) bead-dimensional Brownian motion. Let B 0 (t) = t, 
t E [O,oo). Let ai: RN ~ RN, i = 0,1, ... ,d, be Lipschitz continuous 
functions, and let X : [0, 00) X R N X n ~ RN be the solution to the 
following SDE 

d t 

X(t,x) = x + ~ 1 ai(X(s,x))dBi(s), 

We may assume that X(t, x) is continuous in (t, x) (cf. Kunita [2]). 
Then we have the following. 

Lemma 3. For any T > 0 and po,Pl, ... ,pm E (1, oo), m ~ 1, with 
E;:'=0 pk"1 = 1, there is a constant C > 0 such that 

for all 0 =to< t1 < ... < tm :S: T, and fk E C<f(RN), k = 0, 1, ... ,m. 

Proof. From the assumption, there is a C0 > 0 such that 

Let <p E C<f(RN) such that JRN <p(x)dx = 1. Let VJn(x) = nN <p(nx), 

x E RN, for n ~ 1, and let a;n) = <{Jn * ai, i = 0, ... , d. Then a;n) E 

C""(RN; RN). Let 

xERN, j,k=l. .. ,N, i=0,1, ... ,d, n~l. 

Then we see that IWi(~),j(x)l:::; Co, X ERN. Let xCn): [O,oo) X RN X 

n ~ RN be the solution to the following SDE 

d t 

xCn)(t, x) =X+ L 1 a;n)(x(n)(s,x))dBi(s), 
i=O O 

Then we may think that xCnl(t, ·) : RN ~ RN is a diffeomorphism 

with probability one. Let Jkn),j(t,x) = a~kx(n),i(t,x). Let Wt(x) = 



236 S. Kusuoka 

(Wi(~),j(x))k,j=l, ... ,N and J(n)(t,x) = (Jln),j(t,x))k,j=l, ... ,N· Then the 

N ~ N-matrix valued process J(n)(t,x) satisfies the following SDE 

d t 
J(n)(t,x) =IN+ L 1 wi(n)(x(n)(s,x))J(n)(s,x)dBi(s). 

i=O O 

Also, we see that 
J(n)(t, x)-1 

d t 

=IN- L 1 J(n)(s,x)-1Wi(n)(X(n)(s,x))dBi(s) 
i=O O 

d t 
+! L [ J(n)(s,x)- 1Wi(n)(X(n)(s,x)) 2ds. 

2 i=l Jo 
Then we see that 

CT = sup{E[detJ(n)(t,x)-Po+l]; t E [0, T], x ERN, n ~ 1} < oo. 

So we have 

X!! E[LN ifk(X(n)(tk, x))iPto det J(n)(tk, x)dx] 11Pto 

~ CT( [ if(x)i~dx)lfpo IT ( [ ifk(x))iPtodx)lfp~o 
JRN k=l JRN 

Letting n--+ oo, we have our assertion. 1 
Now let D be a bounded domain in RN and pi : RN --+ R, j = 1, 2, 

be C2 functions satisfying the following assumptions (F1),(F2), further
more. 
(F1) For xED and i = 1, ... , d, 

N 
"'"' . a 1 L.Jaf(x) a iF (x) = 0. 
j=l X 

(F2) inf{det(VFi(x) · VFi(x))i,j=1,2i xED}> 0. 
Then we have the following 
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Lemma 4. For a.e.x, 

P(X(t,x) E D,F(X(t,x)) = 0 for some t > 0) = 0. 

Here F = (Fl,F2): RN ~ R2. 

Proof. Let 

r(s,x) = inf{t ~ s;X(t,x) E De} 1\ (s + 1), 

Also, let 

p(x,s) = P(F(X(t,x)) = 0 for some t E [s,r(s,x))), 

Then we see that 

P(X(t, x) ED, F(X(t, x)) = 0 for some t > 0) ~ L p(x, r), 
rEQ+ 

where Q+ is the set of positive rational numbers. Let V(m) = {x E 

RN; ixl ~ m}, m ~ 1. Let us define random variables Zr,m, T > 0, 
m ~ 1, and constant cl by 

Zr,m =sup{ it- si-1/ 3 IX(t, x)- X(s, x)l; 0 ~ s < t ~ T, x E V(m)}, 

and 

Then we see that P(Zr,m < oo) = 1 (cf. Kunita[2]). By the assumtion 
(F1), we see that 

So we see that 

t E [s,r(s,x)),s ~ O,x ERN, 

and 

t, s E [0, T], x E V(m). 



238 S. Kusuoka 

Also, by the assumption (F2), we see that there is a constant C2 > 0 
such that 

l1A(F(x))dx :5 C2 JAJ 

for any Borel set A in R 2 , where JAI denotes the area of A. 
Let !.lt,n,k = [-C1n-1,C1n-1] x [-£C1n-113 ,£C1n-113], f,n 2: 1, 

k = 1, ... , n. Then we have for any f 2: 1, 

[ dxP(F(X(t, x)) = 0 for some t E [s, T(s, x)), Zs+l,m :5 £) 
Jv(m) 

:5 t { dx P(X(s, x) ED, X(s + (k- 1)/n, x) ED, 
k=l Jv(m) 

F(X(s + (k- 1)/n, x)) E !.lt,n,k) 

= tE[i dx1v(m)(x)1v(X(s,x)) 
k=l RN 

1v(X(s + (k -1)/n,x))1f}.l,n,k(F(X(s + (k -1)/n,x)))] 

:5 C ~ JV(m)JlflOJDJlflO(l1f}.l,n,k (F(x))dx)4f5 

::; CC2nJV( mW/10 JDJlfl0(4C?£n -4/3)4/5. 

Here C is the constant in Lemma 3 for T = s + 1, p0 = p1 = 10 and 
p3 = 5/4. Since n 2: 1 is arbitrary, we see that 

{ dxP(F(X(t,x)) = 0 for some t E [s,T(s,x)),Zs+l,m :5 f)= 0, 
Jv(m) 

f 2: 1. 

This implies that JRN p(x, s) = 0, s > 0. 
Therefore we have our assertion. I 

Corollary 5. Suppose moreover that x 0 E (D)c, O"i, i = 0, ... , d, are 
smooth around x 0 and that dimLie[%t- V0 , Vi, ... , Vd](O,xo) = N + 1. 
Here 

and 

d . 8 
Vi(x) = LO"f(x) 8xi' 

j=l 
i = 1, ... ,d, 

d 1 d N 8 j 8 
'"' . '"''"' k (}". Vo(x) = L.)~(x)- 2 ~ ~ O"i (x) 8x~ (x)) 8xi' 
j=l i=lk=l 
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Then 

P(X(t, x 0 ) ED, F(X(t, x0 )) = 0 for some t > 0) = 0. 

Proof. Let U be an open neighborhood of x0 such that O"i, i 
0, ... , d, are smooth around [J and that [J n tJ = 0. Let r = inf{ t > 
0; X(t, x 0 ) E uc}. Then we see that 

P(X(t, x 0 ) ED, F(X(t, x 0 )) = 0 for some t > 0) 

00 1 1 ::; L P(X(t, xo) ED, F(X(t, xo)) = 0 for some t > -, r > -) 
n=l n n 

00 1 1 1 ::; L P(X( -, xo) E dx, r > - )P(X(t, x) ED, F(X(t, x)) = 0 
n=l u n n 

for some t > 0). 

However, by [3], we see that P(X(~, x0 ) E dx, T > ~) is absolutely 
continuous. So by Lemma 4, we have our assertion. 1 

§3. Proof of Theorem 1 

Since the proof is similar, we prove Theorem 1 in the case that D = 

{x = (x 1 , ... ,xd) E Rd; x 1 < 0} C Rd, and <I>(v,x) = (-v 1 ,v2 , ..• ,vd) 
for v = ( vl, v2 , •.. , vd) and x E aD. In general, if we take a double 
cover of De and change the coordinate functions, we can apply a similar 
proof. Let aij : Rd ---> R, i, j = 1, ... d, be bounded Lipschitz continuous 
function such that aij(x) = aji(x), x E Rd and that there are positive 
constants C0 , C1 such that 

d 

Col~l 2 ::; L:aij(x)~i~j::; C1l~l 2 , 
i,j 

Let b: R 2d---> Rd be a bounded measurable function. 
Let L 0 be a second order linear differential operator in R 2d given by 

d .a 1 d .. a2 d. a 
L0 = ~v'-a . +- ~ a'1 (x)-a ·a . + ~b'(x,v)-a . L...J x• 2 L...J v• vJ L...J v• 

i=l i,j=l i=l 

Then Theorem 1 is somehow equivalent to the following Theorem. 
So we prove this Theorem. 
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Theorem 6. Let (x0 ,v0 ) E (.fJ)c x Rd, and suppose that aii, i,j = 
1, ... , d, are smooth around x 0 . Then there exists a unique probability 
measure J.L over wd satisfying the following conditions. 
(1) J.L(w(O) = (xo, vo)) = 1. 
(2) J.L(w(t) E De x Rd, t E [0, oo)) = 1. 

(3) For any f E C(f((.tJ)c X Rd), {f(w(t)) - J; Lof(w(s))ds; t ~ 0} is 
a martingale under J.L(dw). 
(4) J.L(1{o}(x1 (t))(v1(t) +v1 (t-)) = 0, t E [O,oo)) = 1 and 

J.L(vi(t) is continuous in t E [0, oo), i = 2, ... , d)= 1. 

Proof. Let a,ii: Rd-+ R, i,j = 1, ... d, be given by 

( 1 2 d) Rd x=x,x, ... ,x E . 

Let Ji : R 2d-+ R, i = 1, ... d, be given by 

and 
-i i 1 2 d . b (x) = b (lx I, x , ... , x ), t = 2, ... , d 

for x = (x1 , x2 , ... , xd) E Rd. Let Lo be second order linear differential 
operators in R 2d given by 

- L:d . a 1 I:d .. a2 L:d -· a 
L0 = v'-a . +- a'3(x)-a ·a . + b'(x,v)-a .. 

x' 2 v' vJ v' 
i=1 i,j=1 i=1 

Then by transformation of drift (cf. Ikeda-Watanabe[1]), we see that 
there is a unique probability measure v on C([O, oo ); R 2d) such that 

v(w(O) = (xo, vo)) = 1 and that {f(w(t))- J; L0 f(w(s))ds; t ~ 0} is a 
martingale under v(dw) for any f E C(f(R2d). 

Let t(w) = inf{t > 0; x 1 (t) = O,v1(t-) = 0}. Then by Corollary 5 
and Girsanov's transformation, we see that v(t(w) = oo) = 1. Let 

t E [O,oo), 

and 
d+ 

V(t,w) = dtX(t,w), t E [0, oo). 

Let J.L is the probability law of (X(·,w), V(·,w)) under v. Then we see 
that J.L satisfies the conditions (1)-(4). So we see the existence. 

Now let us prove the uniqueness. Let J.L be a probability measure as 
in Theorem. Let ~(w) = inf{t > 0; x 1 (t) = O,v1 (t-) = 0}. Also, let us 
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define stopping times Tk : W0 ---. [0, oo], k = 0, 1, 2, ... , inductively by 
To(w) = 0 and 

- d w E W , k = 0, 1, .... 

Then we see from the assumption ( 4) that if Tk ( w) < ~ ( w), then Tk ( w) < 
Tk+t(w) for J.L-a.s.w. Also, it is easy to see that ~(w) :::; supkTk(w), 
wEWd. 

For any c > 0 and k = 0, 1, 2, ... , let 

and 

al(w) = inf{t > aZ(w); x 1 (t) < c/2}, 

Then we see from the assumption (3) that 

- d w E W , k = 0, 1, .... 

t/\u 1 

f(x(t 1\ aD, v(t 1\ at))- f(x(t 1\ aZ), v(t 1\ aZ)) -1 k Lof(x(s ), v(s) )ds 
tACT~ 

is a bounded continuous martingale for any f E C[f (R 2d). 
Now let 

X(t,w) 

{ x(t), 
= (-x1 (t), x2 (t), ... , xd(t)), 

V(t,w) 

{ v(t), 
= (-v1(t),v2(t), ... ,vd(t)), 

t E [Tk(w), Tk+ 1(w)), if k is even, 
t E [Tk(w),Tk+t(w)), if k is odd, 

t E [Tk(w), Tk+t(w)), if k is even, 
t E [Tk(w), 7"k+1 (w)), if k is odd. 

Then we can see that (X(t 1\ ~), V(t 1\ ~)) is continuous in t for J.L-a.s.w. 
Also, we see that 

ti\CT 1 

J(X(tAaD, V(tAaD)- J(X(tAa2), V(tAa2))-1 k Lof(X(s), V(s))ds 
ti\CT~ 

is a continuous martingale for any f E C[f (R 2d). 
Therefore we see that 
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is a continuous martingale for any f E C0 (R2d). So we can conclude 
that 

f(X(t "~), V(t "~)) -1t"~ Lof(X(s), V(s))ds 

is a continuous martingale for any f E 00 (R 2d). 
Therefore we see that the probability law of (X(·/\~), V(·/\~)) under 

J-L is the same of w(· 1\ {) under v, by the argument of shift of drift and 
the fact that a strong solution of stochastic differential equation with 
Lipschitz continuous coefficients is unique. So we see that J-L(~(w) 
oo) = 1. Since we see that 

and 
d+-1 -2 -d 

v(t) = ( dt IX (t)j, V (t), ... , V (t)), t E [0, ~), 

we see the uniqueness. 
This completes the proof. 

§4. Proof of Theorem 2 

We will make some preparations to prove Theorem 2. 

Proposition 7. LetT > 0. Let A0 be the set of w E D([O, T); R) 
for which w(O) = 0, w(T-) ~ 1, and w(t) is non-decreasing in t. Then 
A0 is compact in V'((O, T), dt), p E (1, oo), and its cluster points are in 
D([O, T); R). 

Proof. Suppose that Wn E A0 , n = 1, 2, .... Then we see that 
wn(t) E [0, 1], t E [0, T), n ~ 1. So taking subsequence if necessary, we 
may assume that {wn(r)}~=l is convergent for any r E [O,T) n Q. Let 
w(r) = limn-+oo wn(r), r E Q, and let w(t) = limr!t w(r), t E [0, T), and 
w(T) be arbitrary such that suptE[O,T) w(t) ~ w(T) ~ 1. Then we see 
that w E D([O, T); R) and w is non-decreasing, and that wn(t) --+ w(t), 
t E [0, T), if tis a continuous point of w. So we see that Wn --+ w, n --+ oo, 
in V'((O, T), dt). 

This completes the proof. 1 
We have the following as an easy consequence of Proposition 7. 

Corollary 8. LetT > 0. Let A be the set of w E D([O, T); Rd) for 
which w(O) = 0 and the total variation of w is less than 1. Then A is 
compact in V'((O,T);Rd,dt), p E (1,oo), and its cluster points are in 
D([O, T); Rd). 
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Now let us prove Theorem 2. Let 

Then we have 

Hf = ~lvol 2 + {tV/'· a(x;)dBs + tV:.>.· b(X;, Vs>.)ds 
2 lo lo 11t +- trace(a(x;)*a(x;))ds. 

2 0 

So we see that for any p E [2, oo) there is a constant C independent 
of >. such that 

~ C(lvoi 2P + 1 + 2PI2TE[ sup (Hf)P] 112). 
tE[O,T] 

So we see that 

(1) sup E[ sup (Ht>.)P] < oo, 
A>O tE[O,T] 

Therefore we see that 

supE[ sup IV/IPJ < oo, 
>->O tE[O,T] 

p E [1, oo). 

p E [1, oo). 

So we see that {Hf}tE[O,oo), and {Xf}tE[O,oo)' >. ~ 0, are tight in C. 
Moreover, we see that 

(2) E[ sup U(Xf)P] .....,. 0, >......,. oo, 
tE[O,T] 

Let us take an c E (0, co) such that 

p E [1, oo). 

Co= sup{IV'"Uo(x)l- 1 ; dis(x,8D) ~ c} < oo. 

Let r.p E C0 (Rd), such that 0 ~ r.p ~ 1, r.p(x) = 1, if dis(x, 8D) < c/3, 
and r.p(x) = 0, if dis(x; 8D) > c/2. Let Do= {xED; dis(x, 8D) > c/4}, 
and letT= T>. = inf{t > 0; Xf E D 0 }. Then we see by Equation (2) 
that 
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for any T > 0. Let A;, t 2:: 0 be a non-decreasing continuous process 
given by 

t/\T). 

A;= -.X 1 cp(X;')p'(Uo(X;'))IVUo(X_;)I2ds, t:;::: 0. 

Note that AS = 0. Since we have 

t/\T). 

=A;+ 1 cp(X;)V2U0 (X_;)(V/, V/)ds 

ti\T>. 

+ 1 cp(X;)(VU0 (X;') · b(X;', V/))ds 

t/\T). 

+ 1 cp(X;)(VU0 (X;))*a(X;)dB8 

t/\T). 

+ 1 (Vcp(X;) · ~A)(VU0 (X;) · V/)ds, 

we see that 
supE[(A~)PJ < oo, p E [1, oo). 
).>0 

Since we have 

TI\T). TI\T). ( ( A)) 
[ .XU(XA)dt = [ p Uo xt IVU. (XA)I-2dAA 

lo t lo IP'(Uo(Xr))l 0 t t' 

we see that 
TI\T). P(1 .XU(XtA)dt > 8) 

:::; P( sup U(Xf) > TJ) + P(C5A~ sup I ~((s))l > 8) 
tE[O,TJ p-1(7J):5s<O P S 

for any 8, TJ > 0. So we see that 

(3) 

for any 8 > 0. 
Also, we see that 

TTA + trA,O + trA,l 
vti\T). = Vo Vt Vt ' 
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where 

and 
[tAT~ [tAT 

~A,l = lo a-(x;)dBs + lo b(x;, V..A)ds. 

So we see that the total variation of ~A,O, t E [0, T], is dominated by 

GoA~. Also, {~A'0 }tE[O,oo) is tight in C. 
Then by Corollary 8 it is easy to see that {~A hE[O,T) is tight in 

LP((O, T); Rd) and its limit process is in D([O, T); Rd) with probability 
one for any T > 0 and p E (1, oo). 

Let FE C""(Rd x Rd; Rd) be given by 

F(x,v) = cp(x)(v-IV'Uo(x)I-2 (V'Uo(x)·v)V'Uo(x)), 

Then by Ito's lemma it is easy to see that {F(Xf, ~A)}tE[O,oo), >. E 

(O,oo), is tight inC, and that {!(Xf, ~A) - J~ L0 f(X;, V/)ds} is a 
continuous martingale for any>. E (0, oo) and f E C0 ((lJ)c x Rd). 

So we see that there are stochastic processes {(Xt, V't)}tE[O,oo) and 
{Ht}tE[O,oo) and a subsequence {.An}~= 1 , An ~ oo, n ~ oo, such that 

{((X;'n, ~An),H;'n)}tE[O,oo) converges in law to {((Xt, Vi),Ht)}tE[O,oo) 
in Wd X C with respect the metric function dis + disc. 

Then we see that {!(Xt, Vi) - J~ Lof(Xs, V,)ds hE[O,oo) is a continu
ous martingale for any f E C0 ((.D)c X Rd), and that {F(Xt, V't)}tE[O,oo) 
is a continuous process. Also, we see by Equation (3) that 

a.s. 

for any T > 0. So we see that {IVil 2 hE[O,oo) is a continuous process. 
Therefore we have 

P(lav(Xt)(vt- Vi-- 2(n(Xt) · Vi-)n(Xt)) = 0, t E [O,oo)) = 1. 

So we see that the probability law of {(Xt, V't)}tE[O,oo) in W is J1, in 
Theorem 1. 

This complets the proof of Theorem 2 



246 S. Kusuoka 

References 

(1) Ikeda, S., and S. Watanabe, Stochstic Differential Equations and Diffusion 
processes, 2nd Edition, North-Holland/Kodansha, 1989. 

(2) Kunita, H., Stochastic flows and stochastic differential equations, Cam
bridge University Press, 1990. 

(3) Kusuoka, S., and D.W. Stroock, Applications of Malliavin Calculus II, J. 
Fac. Sci. Univ. Tokyo Sect. lA Math. 32(1985), 1-76. 

Gmduate School of Mathematical Sciences 
The University of Tokyo 
Komaba 3-8-1, Meguro-ku 
Tokyo 153-8914, Japan 


