Stochastic Newton Equation with Reflecting Boundary Condition

Shigeo Kusuoka

§1. Introduction

Let D be a bounded domain in \mathbf{R}^{d} with a smooth boundary and $n(x), x \in \partial D$, be an outer normal vector. Let $a^{i j}: \mathbf{R}^{d} \rightarrow \mathbf{R}, i, j=$ $1, \ldots d$, be smooth functions such that $a^{i j}(x)=a^{j i}(x), x \in \mathbf{R}^{d}$. Also, let $b^{i}: \mathbf{R}^{2 d} \rightarrow \mathbf{R}, i=1, \ldots d$, be bounded measurable functions. We assume that there are positive constants C_{0}, C_{1} such that

$$
C_{0}|\xi|^{2} \leq \sum_{i, j=1}^{d} a^{i j}(x) \xi_{i} \xi_{j} \leq C_{1}|\xi|^{2}, \quad x, \xi \in \mathbf{R}^{d}
$$

Let L_{0} be a second order linear differential operator in $\mathbf{R}^{2 d}$ given by

$$
L_{0}=\sum_{i=1}^{d} v^{i} \frac{\partial}{\partial x^{i}}+\frac{1}{2} \sum_{i, j=1}^{d} a^{i j}(x) \frac{\partial^{2}}{\partial v^{i} \partial v^{j}}+\sum_{i=1}^{d} b^{i}(x, v) \frac{\partial}{\partial v^{i}}
$$

Let $\tilde{W}^{d}=C\left([0, \infty) ; \mathbf{R}^{d}\right) \times D\left([0, \infty) ; \mathbf{R}^{d}\right)$. Now let $\Phi: \mathbf{R}^{d} \times \partial D \rightarrow \mathbf{R}^{d}$ be a smooth map satisfying the following.
(i) $\Phi(\cdot, x): \mathbf{R}^{d} \rightarrow \mathbf{R}^{d}$ is linear for all $x \in \partial D$.
(ii) $\Phi(v, x)=v$ for any $x \in \partial D$ and $v \in T_{x}(\partial D)$, i.e., $\Phi(v, x)=v$ if $x \in \partial M, v \in \mathbf{R}^{d}$ and $v \cdot n(x)=0$.
(iii) $\Phi(\Phi(v, x), x)=v$ for all $v \in \mathbf{R}^{d}$ and $x \in \partial D$.
(iv) $\Phi(n(x), x) \neq n(x)$ for any $x \in \partial D$.

The main theorem in the present paper is the following.
Theorem 1. Let $\left(x_{0}, v_{0}\right) \in(\bar{D})^{c} \times \mathbf{R}^{d}$. Then there exists a unique probability measure μ over \tilde{W}^{d} satisfying the following conditions.
(1) $\mu\left(w(0)=\left(x_{0}, v_{0}\right)\right)=1$.
(2) $\mu\left(w(t) \in D^{c} \times \mathbf{R}^{d}, t \in[0, \infty)\right)=1$.

[^0](3) For any $f \in C_{0}^{\infty}\left((\bar{D})^{c} \times \mathbf{R}^{d}\right),\left\{f(w(t))-\int_{0}^{t} L_{0} f(w(s)) d s ; t \geq 0\right\}$ is a martingale under $\mu(d w)$.
(4) $\mu\left(1_{\partial D}(x(t))(v(t)-\Phi(v(t-), x(t)))=0\right.$ for all $\left.t \in[0, \infty)\right)=1$.

Here $w(\cdot)=(x(\cdot), v(\cdot)) \in \tilde{W}^{d}$.
Now let us think of the following Stochastic Newton equation

$$
\begin{gathered}
d X_{t}^{\lambda}=V_{t}^{\lambda} d t \\
d V_{t}^{\lambda}=\sigma\left(X_{t}^{\lambda}\right) d B(t)+\left(b\left(X_{t}^{\lambda}, V_{t}^{\lambda}\right)-\lambda \nabla U\left(X_{t}^{\lambda}\right)\right) d t \\
\quad X_{0}^{\lambda}=x_{0}, \quad V_{0}^{\lambda}=v_{0} .
\end{gathered}
$$

Here $B(t)$ is a d-dimensional Brownian motion, $\sigma \in C^{\infty}\left(\mathbf{R}^{d} ; \mathbf{R}^{d}\right)$, $b: \mathbf{R}^{2 d} \rightarrow \mathbf{R}^{d}$ is a bounded Lipschitz continuous function, and $U \in$ $C_{0}^{\infty}\left(\mathbf{R}^{d}\right)$.

We assume the following also.
(A-1) There are positive constants C_{0}, C_{1} such that

$$
C_{0}|\xi|^{2} \leq|\sigma(x) \xi|^{2} \leq C_{1}|\xi|^{2}, \quad x, \xi \in \mathbf{R}^{d}
$$

(A-2) Let $D=\left\{x \in \mathbf{R}^{d} ; U(x)>0\right\}$. Then there are $\varepsilon_{0}>0, U_{0} \in$ $C^{\infty}\left(\mathbf{R}^{d} ; \mathbf{R}\right)$ and a non-increasing C^{1}-function $\rho: \mathbf{R} \rightarrow \mathbf{R}$ satisfying the following.
(1) $x \in \partial D$, if and only if $U_{0}(x)=0$ and $\operatorname{dis}(x, \partial D)<\varepsilon_{0}$.
(2) $\nabla U_{0}(x) \neq 0, x \in \partial D$.
(3) $\dot{\rho}(t)=0, t \geq 0, \rho(t)>0, t<0$, and $U(x)=\rho\left(U_{0}(x)\right)$ for $x \in \mathbf{R}^{d}$ with $\operatorname{dis}(x, \partial D)<\varepsilon_{0}$.
(4) $\lim _{t \uparrow 0} \frac{\rho^{\prime}(t)}{\rho(t)}=-\infty$.

Now let $\tilde{i} s$ be a metric function on \tilde{W}^{d} given by

$$
\begin{aligned}
& \tilde{\operatorname{dis}}\left(w_{0}, w_{1}\right) \\
& =\sum_{n=1}^{\infty} 2^{-n}\left(1 \wedge\left(\left(\max _{t \in[0, n]}\left|x_{0}(t)-x_{1}(t)\right|\right)+\left(\int_{0}^{n}\left|v_{0}(t)-v_{1}(t)\right|^{n}\right)^{1 / n}\right)\right)
\end{aligned}
$$

for $w_{i}(\cdot)=\left(x_{i}(\cdot), v_{i}(\cdot)\right) \in \tilde{W}^{d}, i=0,1$.
Then we will show the following.
Theorem 2. Let $\nu^{\lambda}, \lambda \in[1, \infty)$, be the probability law of $\left(X_{t}^{\lambda}, V_{t}^{\lambda}\right)$, $t \in[0, \infty)$, on \tilde{W}_{0}, and μ be the probability measure given in Theorem 1 in the case when $\Phi(v, x)=v-2(v \cdot n(x)) n(x), v \in \mathbf{R}^{d}, x \in \partial D$. Then ν^{λ} conveges to μ weakly as $\lambda \rightarrow \infty$ as probability measures on ($\tilde{W}_{0}, \tilde{d i s}$).

§2. Basic lemmas

Let $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}\right\}_{t \in[0, \infty)}, P\right)$ be a filtered probability space, and $B(t)=$ ($\left.B^{1}(t), \ldots, B^{d}(t)\right)$ be a d-dimensional Brownian motion. Let $B^{0}(t)=t$, $t \in[0, \infty)$. Let $\sigma_{i}: \mathbf{R}^{N} \rightarrow \mathbf{R}^{N}, i=0,1, \ldots, d$, be Lipschitz continuous functions, and let $X:[0, \infty) \times \mathbf{R}^{N} \times \Omega \rightarrow \mathbf{R}^{N}$ be the solution to the following SDE

$$
X(t, x)=x+\sum_{i=0}^{d} \int_{0}^{t} \sigma_{i}(X(s, x)) d B^{i}(s), \quad t \geq 0, x \in \mathbf{R}^{N} .
$$

We may assume that $X(t, x)$ is continuous in (t, x) (cf. Kunita [2]).
Then we have the following.
Lemma 3. For any $T>0$ and $p_{0}, p_{1}, \ldots, p_{m} \in(1, \infty), m \geq 1$, with $\sum_{k=0}^{m} p_{k}^{-1}=1$, there is a constant $C>0$ such that

$$
E\left[\int_{\mathbf{R}^{N}} \prod_{k=0}^{m}\left|f_{k}\left(X\left(t_{k}, x\right)\right)\right| d x\right] \leq C \prod_{k=0}^{m}\left\|f_{k}\right\|_{L^{p_{k}}\left(\mathbf{R}^{N}, d x\right)}
$$

for all $0=t_{0}<t_{1}<\ldots<t_{m} \leq T$, and $f_{k} \in C_{0}^{\infty}\left(\mathbf{R}^{N}\right), k=0,1, \ldots, m$.
Proof. From the assumption, there is a $C_{0}>0$ such that

$$
\left|\sigma_{i}(x)-\sigma_{i}(y)\right| \leq C_{0}|x-y|, \quad x, y \in \mathbf{R}^{N} .
$$

Let $\varphi \in C_{0}^{\infty}\left(\mathbf{R}^{N}\right)$ such that $\int_{\mathbf{R}^{N}} \varphi(x) d x=1$. Let $\varphi_{n}(x)=n^{N} \varphi(n x)$, $x \in \mathbf{R}^{N}$, for $n \geq 1$, and let $\sigma_{i}^{(n)}=\varphi_{n} * \sigma_{i}, i=0, \ldots, d$. Then $\sigma_{i}^{(n)} \in$ $C^{\infty}\left(\mathbf{R}^{N} ; \mathbf{R}^{N}\right)$. Let

$$
\begin{aligned}
& W_{i, k}^{(n), j}(x)=\frac{\partial}{\partial x^{k}} \sigma_{i}^{(n), j}(x), \\
& x \in \mathbf{R}^{N}, j, k=1 \ldots, N, i=0,1, \ldots, d, n \geq 1 .
\end{aligned}
$$

Then we see that $\left|W_{i, k}^{(n), j}(x)\right| \leq C_{0}, x \in \mathbf{R}^{N}$. Let $X^{(n)}:[0, \infty) \times \mathbf{R}^{N} \times$ $\Omega \rightarrow \mathbf{R}^{N}$ be the solution to the following SDE

$$
X^{(n)}(t, x)=x+\sum_{i=0}^{d} \int_{0}^{t} \sigma_{i}^{(n)}\left(X^{(n)}(s, x)\right) d B^{i}(s), \quad t \geq 0, x \in \mathbf{R}^{N} .
$$

Then we may think that $X^{(n)}(t, \cdot): \mathbf{R}^{N} \rightarrow \mathbf{R}^{N}$ is a diffeomorphism with probability one. Let $J_{k}^{(n), j}(t, x)=\frac{\partial}{\partial x^{k}} X^{(n), j}(t, x)$. Let $W_{i}^{n}(x)=$
$\left(W_{i, k}^{(n), j}(x)\right)_{k, j=1, \ldots, N}$ and $J^{(n)}(t, x)=\left(J_{k}^{(n), j}(t, x)\right)_{k, j=1, \ldots, N}$. Then the $N \times N$-matrix valued process $J^{(n)}(t, x)$ satisfies the following SDE

$$
J^{(n)}(t, x)=I_{N}+\sum_{i=0}^{d} \int_{0}^{t} W_{i}^{(n)}\left(X^{(n)}(s, x)\right) J^{(n)}(s, x) d B_{i}(s)
$$

Also, we see that

$$
\begin{gathered}
J^{(n)}(t, x)^{-1} \\
=I_{N}-\sum_{i=0}^{d} \int_{0}^{t} J^{(n)}(s, x)^{-1} W_{i}^{(n)}\left(X^{(n)}(s, x)\right) d B_{i}(s) \\
+\frac{1}{2} \sum_{i=1}^{d} \int_{0}^{t} J^{(n)}(s, x)^{-1} W_{i}^{(n)}\left(X^{(n)}(s, x)\right)^{2} d s
\end{gathered}
$$

Then we see that

$$
C_{T}=\sup \left\{E\left[\operatorname{det} J^{(n)}(t, x)^{-p_{0}+1}\right] ; t \in[0, T], x \in \mathbf{R}^{N}, n \geq 1\right\}<\infty
$$

So we have

$$
\begin{gathered}
E\left[\int_{\mathbf{R}^{N}} \prod_{k=0}^{n}\left|f_{k}\left(X^{(n)}\left(t_{k}, x\right)\right)\right| d x\right] \\
\leq E\left[\int_{\mathbf{R}^{N}}\left|f_{0}(x)\right|_{0}^{p}\left(\prod_{k=1}^{m} \operatorname{det} J^{(n)}\left(t_{k}, x\right)^{-p_{0} / p_{k}}\right) d x\right]^{1 / p_{0}} \\
\times \prod_{k=1}^{m} E\left[\int_{\mathbf{R}^{N}}\left|f_{k}\left(X^{(n)}\left(t_{k}, x\right)\right)\right|^{p_{k}} \operatorname{det} J^{(n)}\left(t_{k}, x\right) d x\right]^{1 / p_{k}} \\
\left.\leq\left. C_{T}\left(\int_{\mathbf{R}^{N}}|f(x)|_{0}^{p} d x\right)^{1 / p_{0}} \prod_{k=1}^{m}\left(\int_{\mathbf{R}^{N}} \mid f_{k}(x)\right)\right|^{p_{k}} d x\right)^{1 / p_{k}}
\end{gathered}
$$

Letting $n \rightarrow \infty$, we have our assertion.
Now let D be a bounded domain in \mathbf{R}^{N} and $F^{j}: \mathbf{R}^{N} \rightarrow \mathbf{R}, j=1,2$, be C^{2} functions satisfying the following assumptions (F1),(F2), furthermore.
(F1) For $x \in D$ and $i=1, \ldots, d$,

$$
\sum_{j=1}^{N} \sigma_{i}^{j}(x) \frac{\partial}{\partial x^{j}} F^{1}(x)=0
$$

(F2) $\inf \left\{\operatorname{det}\left(\nabla F^{i}(x) \cdot \nabla F^{j}(x)\right)_{i, j=1,2} ; x \in D\right\}>0$.
Then we have the following

Lemma 4. For a.e.x,

$$
P(X(t, x) \in D, F(X(t, x))=0 \text { for some } t>0)=0 .
$$

Here $F=\left(F^{1}, F^{2}\right): \mathbf{R}^{N} \rightarrow \mathbf{R}^{2}$.
Proof. Let

$$
\tau(s, x)=\inf \left\{t \geq s ; X(t, x) \in D^{c}\right\} \wedge(s+1), \quad x \in \mathbf{R}^{N}, s>0
$$

Also, let
$p(x, s)=P(F(X(t, x))=0$ for some $t \in[s, \tau(s, x))), \quad x \in \mathbf{R}^{N}, s>0$.
Then we see that

$$
P(X(t, x) \in D, F(X(t, x))=0 \text { for some } t>0) \leq \sum_{r \in \mathbf{Q}_{+}} p(x, r)
$$

where \mathbf{Q}_{+}is the set of positive rational numbers. Let $V(m)=\{x \in$ $\left.\mathbf{R}^{N} ;|x| \leq m\right\}, m \geq 1$. Let us define random variables $Z_{T, m}, T>0$, $m \geq 1$, and constant C_{1} by

$$
Z_{T, m}=\sup \left\{|t-s|^{-1 / 3}|X(t, x)-X(s, x)| ; 0 \leq s<t \leq T, x \in V(m)\right\}
$$

and
$C_{1}=\sup \left\{\left|\sigma_{0}(x)\right|\left|\nabla F^{1}(x)\right|+\frac{1}{2} \sum_{i=1}^{d}\left|\nabla^{2} F^{1}(x)\right|\left|\sigma_{i}(x)\right|^{2}+\left|\nabla F^{2}(x)\right| ; x \in \bar{D}\right\}$.
Then we see that $P\left(Z_{T, m}<\infty\right)=1$ (cf. Kunita[2]). By the assumtion (F1), we see that

$$
\begin{aligned}
F^{1}(X(t, x))= & F^{1}(x)+\int_{0}^{t}\left(\sigma_{0}(X(s, x)) \nabla F^{1}(X(s, x))\right. \\
& +\sum_{i=1}^{d} \frac{1}{2} \nabla^{2} F^{1}(X(s, x))\left(\sigma_{i}(X(s, x)), \sigma_{i}(X(s, x))\right) d s
\end{aligned}
$$

So we see that
$\left|F^{1}(X(t, x))-F^{1}(X(s, x))\right| \leq C_{1}|t-s|, \quad t \in[s, \tau(s, x)), s \geq 0, x \in \mathbf{R}^{N}$,
and

$$
\left|F^{2}(X(t, x))-F^{2}(X(s, x))\right| \leq C_{1} Z_{T, m}|t-s|^{1 / 3} \quad t, s \in[0, T], x \in V(m)
$$

Also, by the assumption (F2), we see that there is a constant $C_{2}>0$ such that

$$
\int_{D} 1_{A}(F(x)) d x \leq C_{2}|A|
$$

for any Borel set A in \mathbf{R}^{2}, where $|A|$ denotes the area of A.
Let $\Delta_{\ell, n, k}=\left[-C_{1} n^{-1}, C_{1} n^{-1}\right] \times\left[-\ell C_{1} n^{-1 / 3}, \ell C_{1} n^{-1 / 3}\right], \ell, n \geq 1$, $k=1, \ldots, n$. Then we have for any $\ell \geq 1$,

$$
\begin{aligned}
& \int_{V(m)} d x P\left(F(X(t, x))=0 \text { for some } t \in[s, \tau(s, x)), Z_{s+1, m} \leq \ell\right) \\
& \leq \sum_{k=1}^{n} \int_{V(m)} d x P(X(s, x) \in D, X(s+(k-1) / n, x) \in D \\
& \left.\qquad F(X(s+(k-1) / n, x)) \in \Delta_{\ell, n, k}\right) \\
& =\sum_{k=1}^{n} E\left[\int_{\mathbf{R}^{N}} d x 1_{V(m)}(x) 1_{D}(X(s, x))\right. \\
& \left.1_{D}(X(s+(k-1) / n, x)) 1_{\Delta_{\ell, n, k}}(F(X(s+(k-1) / n, x)))\right] \\
& \leq C \sum_{k=1}^{n}|V(m)|^{1 / 10}|D|^{1 / 10}\left(\int_{D} 1_{\Delta_{\ell, n, k}}(F(x)) d x\right)^{4 / 5} \\
& \leq C C_{2} n|V(m)|^{1 / 10}|D|^{1 / 10}\left(4 C_{1}^{2} \ell n^{-4 / 3}\right)^{4 / 5} .
\end{aligned}
$$

Here C is the constant in Lemma 3 for $T=s+1, p_{0}=p_{1}=10$ and $p_{3}=5 / 4$. Since $n \geq 1$ is arbitrary, we see that

$$
\int_{V(m)} d x P\left(F(X(t, x))=0 \text { for some } t \in[s,, \tau(s, x)), Z_{s+1, m} \leq \ell\right)=0
$$ $\ell \geq 1$.

This implies that $\int_{\mathbf{R}^{N}} p(x, s)=0, s>0$.
Therefore we have our assertion.
Corollary 5. Suppose moreover that $x_{0} \in(\bar{D})^{c}, \sigma_{i}, i=0, \ldots, d$, are smooth around x_{0} and that $\operatorname{dim} \operatorname{Lie}\left[\frac{\partial}{\partial t}-V_{0}, V_{1}, \ldots, V_{d}\right]\left(0, x_{0}\right)=N+1$. Here

$$
V_{i}(x)=\sum_{j=1}^{d} \sigma_{i}^{j}(x) \frac{\partial}{\partial x^{j}}, \quad i=1, \ldots, d
$$

and

$$
V_{0}(x)=\sum_{j=1}^{d}\left(\sigma_{0}^{j}(x)-\frac{1}{2} \sum_{i=1}^{d} \sum_{k=1}^{N} \sigma_{i}^{k}(x) \frac{\partial \sigma_{i}^{j}}{\partial x^{k}}(x)\right) \frac{\partial}{\partial x^{j}}
$$

Then

$$
P\left(X\left(t, x_{0}\right) \in D, F\left(X\left(t, x_{0}\right)\right)=0 \text { for some } t>0\right)=0
$$

Proof. Let U be an open neighborhood of x_{0} such that $\sigma_{i}, i=$ $0, \ldots, d$, are smooth around \bar{U} and that $\bar{U} \cap \bar{D}=\emptyset$. Let $\tau=\inf \{t>$ $\left.0 ; X\left(t, x_{0}\right) \in U^{c}\right\}$. Then we see that

$$
\begin{aligned}
& P\left(X\left(t, x_{0}\right) \in D, F\left(X\left(t, x_{0}\right)\right)=0 \text { for some } t>0\right) \\
\leq & \sum_{n=1}^{\infty} P\left(X\left(t, x_{0}\right) \in D, F\left(X\left(t, x_{0}\right)\right)=0 \text { for some } t>\frac{1}{n}, \tau>\frac{1}{n}\right) \\
\leq & \sum_{n=1}^{\infty} \int_{U} P\left(X\left(\frac{1}{n}, x_{0}\right) \in d x, \tau>\frac{1}{n}\right) P(X(t, x) \in D, F(X(t, x))=0
\end{aligned}
$$

$$
\text { for some } t>0) \text {. }
$$

However, by [3], we see that $P\left(X\left(\frac{1}{n}, x_{0}\right) \in d x, \tau>\frac{1}{n}\right)$ is absolutely continuous. So by Lemma 4, we have our assertion.

§3. Proof of Theorem 1

Since the proof is similar, we prove Theorem 1 in the case that $D=$ $\left\{x=\left(x^{1}, \ldots, x^{d}\right) \in \mathbf{R}^{d} ; x^{1}<0\right\} \subset \mathbf{R}^{d}$, and $\Phi(v, x)=\left(-v^{1}, v^{2}, \ldots, v^{d}\right)$ for $v=\left(v^{1}, v^{2}, \ldots, v^{d}\right)$ and $x \in \partial D$. In general, if we take a double cover of D^{c} and change the coordinate functions, we can apply a similar proof. Let $a^{i j}: \mathbf{R}^{d} \rightarrow \mathbf{R}, i, j=1, \ldots d$, be bounded Lipschitz continuous function such that $a^{i j}(x)=a^{j i}(x), x \in \mathbf{R}^{d}$ and that there are positive constants C_{0}, C_{1} such that

$$
C_{0}|\xi|^{2} \leq \sum_{i, j}^{d} a^{i j}(x) \xi_{i} \xi_{j} \leq C_{1}|\xi|^{2}, \quad x, \xi \in \mathbf{R}^{d}
$$

Let $b: \mathbf{R}^{2 d} \rightarrow \mathbf{R}^{d}$ be a bounded measurable function.
Let L_{0} be a second order linear differential operator in $\mathbf{R}^{2 d}$ given by

$$
L_{0}=\sum_{i=1}^{d} v^{i} \frac{\partial}{\partial x^{i}}+\frac{1}{2} \sum_{i, j=1}^{d} a^{i j}(x) \frac{\partial^{2}}{\partial v^{i} \partial v^{j}}+\sum_{i=1}^{d} b^{i}(x, v) \frac{\partial}{\partial v^{i}}
$$

Then Theorem 1 is somehow equivalent to the following Theorem. So we prove this Theorem.

Theorem 6. Let $\left(x_{0}, v_{0}\right) \in(\bar{D})^{c} \times \mathbf{R}^{d}$, and suppose that $a^{i j}, i, j=$ $1, \ldots, d$, are smooth around x_{0}. Then there exists a unique probability measure μ over \tilde{W}^{d} satisfying the following conditions.
(1) $\mu\left(w(0)=\left(x_{0}, v_{0}\right)\right)=1$.
(2) $\mu\left(w(t) \in D^{c} \times \mathbf{R}^{d}, t \in[0, \infty)\right)=1$.
(3) For any $f \in C_{0}^{\infty}\left((\bar{D})^{c} \times \mathbf{R}^{d}\right),\left\{f(w(t))-\int_{0}^{t} L_{0} f(w(s)) d s ; t \geq 0\right\}$ is a martingale under $\mu(d w)$.
(4) $\mu\left(1_{\{0\}}\left(x^{1}(t)\right)\left(v^{1}(t)+v^{1}(t-)\right)=0, t \in[0, \infty)\right)=1$ and

$$
\mu\left(v^{i}(t) \text { is continuous in } t \in[0, \infty), i=2, \ldots, d\right)=1
$$

Proof. Let $\tilde{a}^{i j}: \mathbf{R}^{d} \rightarrow \mathbf{R}, i, j=1, \ldots d$, be given by

$$
\tilde{a}^{i j}(x)=a^{i j}\left(\left|x^{1}\right|, x^{2}, \ldots, x^{d}\right), \quad x=\left(x^{1}, x^{2}, \ldots, x^{d}\right) \in \mathbf{R}^{d}
$$

Let $\tilde{b}^{i}: \mathbf{R}^{2 d} \rightarrow \mathbf{R}, i=1, \ldots d$, be given by

$$
\tilde{b}^{1}(x)=\operatorname{sgn}\left(x^{1}\right) b^{1}\left(\left|x^{1}\right|, x^{2}, \ldots, x^{d}\right)
$$

and

$$
\tilde{b}^{i}(x)=b^{i}\left(\left|x^{1}\right|, x^{2}, \ldots, x^{d}\right), i=2, \ldots, d
$$

for $x=\left(x^{1}, x^{2}, \ldots, x^{d}\right) \in \mathbf{R}^{d}$. Let \tilde{L}_{0} be second order linear differential operators in $\mathbf{R}^{2 d}$ given by

$$
\tilde{L}_{0}=\sum_{i=1}^{d} v^{i} \frac{\partial}{\partial x^{i}}+\frac{1}{2} \sum_{i, j=1}^{d} \tilde{a}^{i j}(x) \frac{\partial^{2}}{\partial v^{i} \partial v^{j}}+\sum_{i=1}^{d} \tilde{b}^{i}(x, v) \frac{\partial}{\partial v^{i}} .
$$

Then by transformation of drift (cf. Ikeda-Watanabe[1]), we see that there is a unique probability measure ν on $C\left([0, \infty) ; \mathbf{R}^{2 d}\right)$ such that $\nu\left(w(0)=\left(x_{0}, v_{0}\right)\right)=1$ and that $\left\{f(w(t))-\int_{0}^{t} \tilde{L}_{0} f(w(s)) d s ; t \geq 0\right\}$ is a martingale under $\nu(d w)$ for any $f \in C_{0}^{\infty}\left(\mathbf{R}^{2 d}\right)$.

Let $\tilde{\xi}(w)=\inf \left\{t>0 ; x^{1}(t)=0, v^{1}(t-)=0\right\}$. Then by Corollary 5 and Girsanov's transformation, we see that $\nu(\tilde{\xi}(w)=\infty)=1$. Let

$$
X(t, w)=\left(\left|x^{1}(t)\right|, x^{2}(t), \ldots, x^{d}(t)\right), \quad t \in[0, \infty)
$$

and

$$
V(t, w)=\frac{d^{+}}{d t} X(t, w), \quad t \in[0, \infty)
$$

Let μ is the probability law of $(X(\cdot, w), V(\cdot, w))$ under ν. Then we see that μ satisfies the conditions (1)-(4). So we see the existence.

Now let us prove the uniqueness. Let μ be a probability measure as in Theorem. Let $\xi(w)=\inf \left\{t>0 ; x^{1}(t)=0, v^{1}(t-)=0\right\}$. Also, let us
define stopping times $\tau_{k}: \tilde{W}_{0} \rightarrow[0, \infty], k=0,1,2, \ldots$, inductively by $\tau_{0}(w)=0$ and

$$
\tau_{k+1}(w)=\inf \left\{t>\tau_{k}(w) ; x^{1}(t)=0\right\}, \quad w \in \tilde{W}^{d}, k=0,1, \ldots
$$

Then we see from the assumption (4) that if $\tau_{k}(w)<\xi(w)$, then $\tau_{k}(w)<$ $\tau_{k+1}(w)$ for μ-a.s. w. Also, it is easy to see that $\xi(w) \leq \sup _{k} \tau_{k}(w)$, $w \in \tilde{W}^{d}$.

For any $\varepsilon>0$ and $k=0,1,2, \ldots$, let

$$
\sigma_{k}^{0}(w)=\inf \left\{t>\tau_{k}(w) ; x^{1}(t)>\varepsilon\right\}
$$

and

$$
\sigma_{k}^{1}(w)=\inf \left\{t>\sigma_{k}^{0}(w) ; x^{1}(t)<\varepsilon / 2\right\}, \quad w \in \tilde{W}^{d}, k=0,1, \ldots
$$

Then we see from the assumption (3) that

$$
f\left(x\left(t \wedge \sigma_{k}^{1}\right), v\left(t \wedge \sigma_{k}^{1}\right)\right)-f\left(x\left(t \wedge \sigma_{k}^{0}\right), v\left(t \wedge \sigma_{k}^{0}\right)\right)-\int_{t \wedge \sigma_{k}^{0}}^{t \wedge \sigma_{k}^{1}} L_{0} f(x(s), v(s)) d s
$$

is a bounded continuous martingale for any $f \in C_{0}^{\infty}\left(\mathbf{R}^{2 d}\right)$.
Now let

$$
\begin{aligned}
& \tilde{X}(t, w) \\
& =\left\{\begin{array}{cl}
x(t), & t \in\left[\tau_{k}(w), \tau_{k+1}(w)\right), \text { if } k \text { is even }, \\
\left(-x^{1}(t), x^{2}(t), \ldots, x^{d}(t)\right), & t \in\left[\tau_{k}(w), \tau_{k+1}(w)\right), \text { if } k \text { is odd }
\end{array}\right. \\
& \tilde{V}(t, w) \\
& =\left\{\begin{array}{cl}
v(t), & t \in\left[\tau_{k}(w), \tau_{k+1}(w)\right), \text { if } k \text { is even } \\
\left(-v^{1}(t), v^{2}(t), \ldots, v^{d}(t)\right), & t \in\left[\tau_{k}(w), \tau_{k+1}(w)\right), \text { if } k \text { is odd }
\end{array}\right.
\end{aligned}
$$

Then we can see that $(\tilde{X}(t \wedge \xi), \tilde{V}(t \wedge \xi))$ is continuous in t for μ-a.s. w. Also, we see that
$f\left(\tilde{X}\left(t \wedge \sigma_{k}^{1}\right), \tilde{V}\left(t \wedge \sigma_{k}^{1}\right)\right)-f\left(\tilde{X}\left(t \wedge \sigma_{k}^{0}\right), \tilde{V}\left(t \wedge \sigma_{k}^{0}\right)\right)-\int_{t \wedge \sigma_{k}^{0}}^{t \wedge \sigma_{k}^{1}} \tilde{L}_{0} f(\tilde{X}(s), \tilde{V}(s)) d s$
is a continuous martingale for any $f \in C_{0}^{\infty}\left(\mathbf{R}^{2 d}\right)$.
Therefore we see that

$$
\begin{aligned}
f\left(\tilde{X}\left(t \wedge \tau_{k+1}\right), \tilde{V}\left(t \wedge \tau_{k+1}\right)\right)-f(\tilde{X}(t & \left.\left.\wedge \tau_{k}\right), \tilde{V}\left(t \wedge \tau_{k}\right)\right) \\
& -\int_{t \wedge \tau_{k}}^{t \wedge \tau_{k+1}} \tilde{L}_{0} f(\tilde{X}(s), \tilde{V}(s)) d s
\end{aligned}
$$

is a continuous martingale for any $f \in C_{0}^{\infty}\left(\mathbf{R}^{2 d}\right)$. So we can conclude that

$$
f(\tilde{X}(t \wedge \xi), \tilde{V}(t \wedge \xi))-\int_{0}^{t \wedge \xi} \tilde{L}_{0} f(\tilde{X}(s), \tilde{V}(s)) d s
$$

is a continuous martingale for any $f \in C_{0}^{\infty}\left(\mathbf{R}^{2 d}\right)$.
Therefore we see that the probability law of $(\tilde{X}(\cdot \wedge \xi), \tilde{V}(\cdot \wedge \xi))$ under μ is the same of $w(\cdot \wedge \tilde{\xi})$ under ν, by the argument of shift of drift and the fact that a strong solution of stochastic differential equation with Lipschitz continuous coefficients is unique. So we see that $\mu(\xi(w)=$ $\infty)=1$. Since we see that

$$
x(t)=\left(\left|\tilde{X}^{1}(t)\right|, \tilde{X}^{2}(t), \ldots, \tilde{X}^{d}(t)\right), \quad t \in[0, \xi)
$$

and

$$
v(t)=\left(\frac{d^{+}}{d t}\left|\tilde{X}^{1}(t)\right|, \tilde{V}^{2}(t), \ldots, \tilde{V}^{d}(t)\right), \quad t \in[0, \xi)
$$

we see the uniqueness.
This completes the proof.

§4. Proof of Theorem 2

We will make some preparations to prove Theorem 2.
Proposition 7. Let $T>0$. Let A_{0} be the set of $w \in D([0, T) ; \mathbf{R})$ for which $w(0)=0, w(T-) \leq 1$, and $w(t)$ is non-decreasing in t. Then A_{0} is compact in $L^{p}((0, T), d t), p \in(1, \infty)$, and its cluster points are in $D([0, T) ; \mathbf{R})$.

Proof. Suppose that $w_{n} \in A_{0}, n=1,2, \ldots$ Then we see that $w_{n}(t) \in[0,1], t \in[0, T), n \geq 1$. So taking subsequence if necessary, we may assume that $\left\{w_{n}(r)\right\}_{n=1}^{\infty}$ is convergent for any $r \in[0, T) \cap \mathbf{Q}$. Let $\tilde{w}(r)=\lim _{n \rightarrow \infty} w_{n}(r), r \in \mathbf{Q}$, and let $w(t)=\lim _{r \downarrow t} \tilde{w}(r), t \in[0, T)$, and $w(T)$ be arbitrary such that $\sup _{t \in[0, T)} w(t) \leq w(T) \leq 1$. Then we see that $w \in D([0, T) ; \mathbf{R})$ and w is non-decreasing, and that $w_{n}(t) \rightarrow w(t)$, $t \in[0, T)$, if t is a continuous point of w. So we see that $w_{n} \rightarrow w, n \rightarrow \infty$, in $L^{p}((0, T), d t)$.

This completes the proof.
We have the following as an easy consequence of Proposition 7.
Corollary 8. Let $T>0$. Let A be the set of $w \in D\left([0, T) ; \mathbf{R}^{d}\right)$ for which $w(0)=0$ and the total variation of w is less than 1 . Then A is compact in $L^{p}\left((0, T) ; \mathbf{R}^{d}, d t\right), p \in(1, \infty)$, and its cluster points are in $D\left([0, T) ; \mathbf{R}^{d}\right)$.

Now let us prove Theorem 2. Let

$$
H_{t}^{\lambda}=\lambda U\left(X_{t}^{\lambda}\right)+\frac{1}{2}\left|V_{t}^{\lambda}\right|^{2}, \quad t \geq 0
$$

Then we have

$$
\begin{aligned}
H_{t}^{\lambda}=\frac{1}{2}\left|v_{0}\right|^{2}+\int_{0}^{t} V_{s}^{\lambda} \cdot \sigma\left(X_{s}^{\lambda}\right) d B_{s} & +\int_{0}^{t} V_{s}^{\lambda} \cdot b\left(X_{s}^{\lambda}, V_{s}^{\lambda}\right) d s \\
& +\frac{1}{2} \int_{0}^{t} \operatorname{trace}\left(\sigma\left(X_{s}^{\lambda}\right)^{*} \sigma\left(X_{s}^{\lambda}\right)\right) d s
\end{aligned}
$$

So we see that for any $p \in[2, \infty)$ there is a constant C independent of λ such that

$$
\begin{aligned}
& E\left[\sup _{t \in[0, T]}\left(H_{t}^{\lambda}\right)^{p}\right] \leq C\left(\left|v_{0}\right|^{2 p}+1+E\left[\int_{0}^{T}\left|V_{t}^{\lambda}\right|^{p} d t\right]\right) \\
& \quad \leq C\left(\left|v_{0}\right|^{2 p}+1+2^{p / 2} T E\left[\sup _{t \in[0, T]}\left(H_{t}^{\lambda}\right)^{p}\right]^{1 / 2}\right)
\end{aligned}
$$

So we see that

$$
\begin{equation*}
\sup _{\lambda>0} E\left[\sup _{t \in[0, T]}\left(H_{t}^{\lambda}\right)^{p}\right]<\infty, \quad p \in[1, \infty) \tag{1}
\end{equation*}
$$

Therefore we see that

$$
\sup _{\lambda>0} E\left[\sup _{t \in[0, T]}\left|V_{t}^{\lambda}\right|^{p}\right]<\infty, \quad p \in[1, \infty)
$$

So we see that $\left\{H_{t}^{\lambda}\right\}_{t \in[0, \infty)}$, and $\left\{X_{t}^{\lambda}\right\}_{t \in[0, \infty)}, \lambda \geq 0$, are tight in C. Moreover, we see that

$$
\begin{equation*}
E\left[\sup _{t \in[0, T]} U\left(X_{t}^{\lambda}\right)^{p}\right] \rightarrow 0, \quad \lambda \rightarrow \infty, \quad p \in[1, \infty) \tag{2}
\end{equation*}
$$

Let us take an $\varepsilon \in\left(0, \varepsilon_{0}\right)$ such that

$$
C_{0}=\sup \left\{\left|\nabla U_{0}(x)\right|^{-1} ; \operatorname{dis}(x, \partial D) \leq \varepsilon\right\}<\infty
$$

Let $\varphi \in C_{0}^{\infty}\left(\mathbf{R}^{d}\right)$, such that $0 \leq \varphi \leq 1, \varphi(x)=1$, if $\operatorname{dis}(x, \partial D)<\varepsilon / 3$, and $\varphi(x)=0$, if $\operatorname{dis}(x ; \partial D)>\varepsilon / 2$. Let $D_{0}=\{x \in D ; \operatorname{dis}(x, \partial D)>\varepsilon / 4\}$, and let $\tau=\tau^{\lambda}=\inf \left\{t>0 ; X_{t}^{\lambda} \in D_{0}\right\}$. Then we see by Equation (2) that

$$
P\left(\tau^{\lambda}<T\right) \rightarrow 0, \quad \lambda \rightarrow \infty
$$

for any $T>0$. Let $A_{t}^{\lambda}, t \geq 0$ be a non-decreasing continuous process given by

$$
A_{t}^{\lambda}=-\lambda \int_{0}^{t \wedge \tau^{\lambda}} \varphi\left(X_{s}^{\lambda}\right) \rho^{\prime}\left(U_{0}\left(X_{s}^{\lambda}\right)\right)\left|\nabla U_{0}\left(X_{s}^{\lambda}\right)\right|^{2} d s, \quad t \geq 0
$$

Note that $A_{0}^{\lambda}=0$. Since we have

$$
\begin{aligned}
& \varphi\left(X_{t \wedge \tau^{\lambda}}^{\lambda}\right)\left(\nabla U_{0}\left(X_{t \wedge \tau^{\lambda}}^{\lambda}\right) \cdot V_{t \wedge \tau^{\lambda}}^{\lambda}\right)-\varphi\left(X_{0}^{\lambda}\right)\left(\nabla U_{0}\left(X_{0}^{\lambda}\right) \cdot V_{0}^{\lambda}\right) \\
&=A_{t}^{\lambda}+\int_{0}^{t \wedge \tau^{\lambda}} \varphi\left(X_{s}^{\lambda}\right) \nabla^{2} U_{0}\left(X_{s}^{\lambda}\right)\left(V_{s}^{\lambda}, V_{s}^{\lambda}\right) d s \\
&+\int_{0}^{t \wedge \tau^{\lambda}} \varphi\left(X_{s}^{\lambda}\right)\left(\nabla U_{0}\left(X_{s}^{\lambda}\right) \cdot b\left(X_{s}^{\lambda}, V_{s}^{\lambda}\right)\right) d s \\
&+\int_{0}^{t \wedge \tau^{\lambda}} \varphi\left(X_{s}^{\lambda}\right)\left(\nabla U_{0}\left(X_{s}^{\lambda}\right)\right)^{*} \sigma\left(X_{s}^{\lambda}\right) d B_{s} \\
&+\int_{0}^{t \wedge \tau^{\lambda}}\left(\nabla \varphi\left(X_{s}^{\lambda}\right) \cdot V_{s}^{\lambda}\right)\left(\nabla U_{0}\left(X_{s}^{\lambda}\right) \cdot V_{s}^{\lambda}\right) d s
\end{aligned}
$$

we see that

$$
\sup _{\lambda>0} E\left[\left(A_{T}^{\lambda}\right)^{p}\right]<\infty, \quad p \in[1, \infty)
$$

Since we have

$$
\int_{0}^{T \wedge \tau^{\lambda}} \lambda U\left(X_{t}^{\lambda}\right) d t=\int_{0}^{T \wedge \tau^{\lambda}} \frac{\rho\left(U_{0}\left(X_{t}^{\lambda}\right)\right)}{\left|\rho^{\prime}\left(U_{0}\left(X_{t}^{\lambda}\right)\right)\right|}\left|\nabla U_{0}\left(X_{t}^{\lambda}\right)\right|^{-2} d A_{t}^{\lambda}
$$

we see that

$$
\begin{gathered}
P\left(\int_{0}^{T \wedge \tau^{\lambda}} \lambda U\left(X_{t}^{\lambda}\right) d t>\delta\right) \\
\leq P\left(\sup _{t \in[0, T]} U\left(X_{t}^{\lambda}\right)>\eta\right)+P\left(C_{0}^{2} A_{T}^{\lambda} \sup _{\rho^{-1}(\eta) \leq s<0} \frac{\rho(s)}{\left|\rho^{\prime}(s)\right|}>\delta\right)
\end{gathered}
$$

for any $\delta, \eta>0$. So we see that

$$
\begin{equation*}
P\left(\left.\left.\int_{0}^{T \wedge \tau^{\lambda}}\left|H_{t}^{\lambda}-\frac{1}{2}\right| V_{t}^{\lambda}\right|^{2} \right\rvert\, d t>\delta\right) \rightarrow 0, \quad \lambda \rightarrow \infty \tag{3}
\end{equation*}
$$

for any $\delta>0$.
Also, we see that

$$
V_{t \wedge \tau^{\lambda}}^{\lambda}=v_{0}+V_{t}^{\lambda, 0}+V_{t}^{\lambda, 1}
$$

where

$$
\left.V_{t}^{\lambda, 0}=+\int_{0}^{t \wedge \tau^{\lambda}} \mid \nabla U_{0}\left(X_{s}^{\lambda}\right)\right)\left.\right|^{-2} \nabla U_{0}\left(X_{s}^{\lambda}\right) d A_{s}^{\lambda}
$$

and

$$
V_{t}^{\lambda, 1}=\int_{0}^{t \wedge \tau^{\lambda}} \sigma\left(X_{s}^{\lambda}\right) d B_{s}+\int_{0}^{t \wedge \tau} b\left(X_{s}^{\lambda}, V_{s}^{\lambda}\right) d s
$$

So we see that the total variation of $V_{t}^{\lambda, 0}, t \in[0, T]$, is dominated by $C_{0} A_{T}^{\lambda}$. Also, $\left\{V_{t}^{\lambda, 0}\right\}_{t \in[0, \infty)}$ is tight in C.

Then by Corollary 8 it is easy to see that $\left\{V_{t}^{\lambda}\right\}_{t \in[0, T)}$ is tight in $L^{p}\left((0, T) ; \mathbf{R}^{d}\right)$ and its limit process is in $D\left([0, T) ; \mathbf{R}^{d}\right)$ with probability one for any $T>0$ and $p \in(1, \infty)$.

Let $F \in C^{\infty}\left(\mathbf{R}^{d} \times \mathbf{R}^{d} ; \mathbf{R}^{d}\right)$ be given by
$F(x, v)=\varphi(x)\left(v-\left|\nabla U_{0}(x)\right|^{-2}\left(\nabla U_{0}(x) \cdot v\right) \nabla U_{0}(x)\right), \quad(x, v) \in \mathbf{R}^{d} \times \mathbf{R}^{d}$.
Then by Itô's lemma it is easy to see that $\left\{F\left(X_{t}^{\lambda}, V_{t}^{\lambda}\right)\right\}_{t \in[0, \infty)}, \lambda \in$ $(0, \infty)$, is tight in C, and that $\left\{f\left(X_{t}^{\lambda}, V_{t}^{\lambda}\right)-\int_{0}^{t} L_{0} f\left(X_{s}^{\lambda}, V_{s}^{\lambda}\right) d s\right\}$ is a continuous martingale for any $\lambda \in(0, \infty)$ and $f \in C_{0}^{\infty}\left((\bar{D})^{c} \times \mathbf{R}^{d}\right)$.

So we see that there are stochastic processes $\left\{\left(X_{t}, V_{t}\right)\right\}_{t \in[0, \infty)}$ and $\left\{H_{t}\right\}_{t \in[0, \infty)}$ and a subsequence $\left\{\lambda_{n}\right\}_{n=1}^{\infty}, \lambda_{n} \rightarrow \infty, n \rightarrow \infty$, such that $\left\{\left(\left(X_{t}^{\lambda_{n}}, V_{t}^{\lambda_{n}}\right), H_{t}^{\lambda_{n}}\right)\right\}_{t \in[0, \infty)}$ converges in law to $\left\{\left(\left(X_{t}, V_{t}\right), H_{t}\right)\right\}_{t \in[0, \infty)}$ in $\tilde{W}^{d} \times C$ with respect the metric function dis $+d i s_{C}$.

Then we see that $\left\{f\left(X_{t}, V_{t}\right)-\int_{0}^{t} L_{0} f\left(X_{s}, V_{s}\right) d s\right\}_{t \in[0, \infty)}$ is a continuous martingale for any $f \in C_{0}^{\infty}\left((\bar{D})^{c} \times \mathbf{R}^{d}\right)$, and that $\left\{F\left(X_{t}, V_{t}\right)\right\}_{t \in[0, \infty)}$ is a continuous process. Also, we see by Equation (3) that

$$
\left.\left.\int_{0}^{T}\left|H_{t}-\frac{1}{2}\right| V_{t}\right|^{2} \right\rvert\, d t=0 \quad \text { a.s. }
$$

for any $T>0$. So we see that $\left\{\left|V_{t}\right|^{2}\right\}_{t \in[0, \infty)}$ is a continuous process. Therefore we have

$$
P\left(1_{\partial D}\left(X_{t}\right)\left(V_{t}-V_{t-}-2\left(n\left(X_{t}\right) \cdot V_{t-}\right) n\left(X_{t}\right)\right)=0, t \in[0, \infty)\right)=1
$$

So we see that the probability law of $\left\{\left(X_{t}, V_{t}\right)\right\}_{t \in[0, \infty)}$ in \tilde{W} is μ in Theorem 1.

This complets the proof of Theorem 2

References

[1] Ikeda, S., and S. Watanabe, Stochstic Differential Equations and Diffusion processes, 2nd Edition, North-Holland/Kodansha, 1989.
[2] Kunita, H., Stochastic flows and stochastic differential equations, Cambridge University Press, 1990.
[3] Kusuoka, S., and D.W. Stroock, Applications of Malliavin Calculus II, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 32(1985), 1-76.

Graduate School of Mathematical Sciences
The University of Tokyo
Komaba 3-8-1, Meguro-ku
Tokyo 153-8914, Japan

[^0]: Received April 4, 2003.

