The Capitulation Problem for certain Number Fields

Mohammed Ayadi, Abdelmalek Azizi and Moulay Chrif Ismaili

§1. Abstract

We study the capitulation problem for certain number fields of degree 3,4 , and 6 .
(I) Capitulation of the 2-ideal classes of $\mathbb{Q}(\sqrt{d}, i)$ (by A. AZIZI)

Let $d \in \mathbb{N}, i=\sqrt{-1}, \mathbf{k}=\mathbb{Q}(\sqrt{d}, i), \mathbf{k}_{1}^{(2)}$ be the Hilbert 2-class field of $\mathbf{k}, \mathbf{k}_{2}^{(2)}$ be the Hilbert 2-class field of $\mathbf{k}_{1}^{(2)}, C_{\mathbf{k}, 2}$ be the 2-component of the ideal class group of \mathbf{k} and G_{2} the Galois group of $\mathbf{k}_{2}^{(2)} / \mathbf{k}$. We suppose that $C_{\mathbf{k}, 2}$ is of type (2,2); then $\mathbf{k}_{1}^{(2)}$ contains three extensions $F_{i} / \mathbf{k}, i=1,2,3$. The aim of this section is to study the capitulation of the 2-ideal classes in $F_{i}, i=1,2,3$, and to determine the structure of G_{2}.
(II) On the capitulation of the 3-ideal classes of a cubic cyclic field (by M. AYADI)

Let k be a cubic cyclic field over \mathbb{Q}, and $\mathbf{k}_{1}^{(3)}$ the Hilbert 3-class field of \mathbf{k}. If the class number of \mathbf{k} is exactly divisible by 9 , then its 3 -ideal class group is of type $(3,3)$, and $\mathbf{k}_{1}^{(3)}$ contains four cubic extensions $\mathbf{K}_{i} / \mathbf{k}$ in which we study the capitulation problem for the 3 -ideal classes of \mathbf{k}.
(III) On the capitulation of the 3-ideal classes of the normal closure of a pure cubic field (by M. C. ISMAILI)

Let $\Gamma=\mathbb{Q}(\sqrt[3]{n})$ be a pure cubic field, $\mathbf{k}=\mathbb{Q}(\sqrt[3]{n}, j)$ its normal closure $\left(j=e^{\frac{2 i \pi}{3}}\right), \mathbf{k}_{1}^{(3)}$ the Hilbert 3 -class field of \mathbf{k}, and let $S_{\mathbf{k}}$ be the 3 -ideal class group of \mathbf{k}. When $S_{\mathbf{k}}$ is of type $(3,3)$, we study the

[^0]capitulation of the 3-ideal classes of $S_{\mathbf{k}}$ in the four intermediate extensions of $\mathbf{k}_{1}^{(3)} / \mathbf{k}$, and we show that if the class number of Γ is divisible by 9 , then we have some necessary conditions on n. We have also some informations about the unit group of \mathbf{k} in some cases.

§2. Intoduction

Let \mathbf{k} be a number field of finite degree over \mathbb{Q} and $C_{\mathbf{k}}$ be the class group of \mathbf{k}. Let \mathbf{F} be an unramified extension of \mathbf{k} of finite degree and let $O_{\mathbf{F}}$ be its ring of integers. We say that an ideal \mathcal{A} (or the ideal class of \mathcal{A}) of \mathbf{k} capitulates in \mathbf{F} if it becomes principal in \mathbf{F}, i.e., if $\mathcal{A} O_{\mathbf{F}}$ is principal in \mathbf{F}. The Hilbert class field \mathbf{k}_{1} of \mathbf{k} is the maximal abelian unramified extension of \mathbf{k}. Let p be a prime number; the Hilbert p-class field $\mathbf{k}_{1}^{(p)}$ of \mathbf{k} is the maximal abelian unramified extension of \mathbf{k} such that $\left[\mathbf{k}_{1}^{(p)}: \mathbf{k}\right]=p^{n}$ for some integer n. The first important result on capitulation was conjectured by D. Hilbert and proved by E. Artin and P. Furtwängler. It deals with the case $\mathbf{F}=\mathbf{k}_{1}$.

Theorem 2.1 (Principal ideal theorem). Let \mathbf{k}_{1} be the Hilbert class field of \mathbf{k}. Then every ideal of \mathbf{k} capitulates in \mathbf{k}_{1}.

The principal ideal theorem was generalized by Tannaka and Terada to the next one. Let \mathbf{k}_{0} be a subfield of \mathbf{k} such that $\mathbf{k} / \mathbf{k}_{0}$ is abelian and let $\left(\mathbf{k} / \mathbf{k}_{0}\right)^{*}$ be the relative genus field of $\mathbf{k} / \mathbf{k}_{0}$.

Theorem 2.2 (Tannaka-Terada). If $\mathbf{k} / \mathbf{k}_{0}$ is cyclic, then every ambiguous ideal class of $\mathbf{k} / \mathbf{k}_{0}$ is principal in $\left(\mathbf{k} / \mathbf{k}_{0}\right)^{*}$.

The case where \mathbf{F} / \mathbf{k} is a cyclic extension of prime degree was studied by D. Hilbert in his Theorem 94:

Theorem 2.3 (Theorem 94). Let \mathbf{F} / \mathbf{k} be a cyclic extension of prime degree. Then there exists at least one class (not trivial) in \mathbf{k} which capitulates in \mathbf{F}.

We find in the proof of Theorem 94 this result:
Let σ be a generator of the Galois group of \mathbf{F} / \mathbf{k} and $N_{\mathbf{F} / \mathbf{k}}$ be the norm of \mathbf{F} / \mathbf{k}. Let $E_{\mathbf{L}}$ be the unit group of the field \mathbf{L}. Let $E_{\mathbf{F}}^{*}$ be the group of units of norm 1 in \mathbf{F} / \mathbf{k}. Then the group of classes of \mathbf{k} which capitulates in \mathbf{F} is isomorphic to the quotient group $E_{\mathbf{F}}^{*} / E_{\mathbf{F}}^{1-\sigma}=H^{1}\left(E_{\mathbf{F}}\right)$, the cohomology group of $G=\langle\sigma\rangle$ acting on the group $E_{\mathbf{F}}$.

With this result and other results on cohomology, we have:

Theorem 2.4. Let \mathbf{F} / \mathbf{k} be a cyclic extension of prime degree. Then the number of classes which capitulate in \mathbf{F} / \mathbf{k} is equal to $[\mathbf{F}$: $\mathbf{k}]\left[E_{\mathbf{k}}: N_{\mathbf{F} / \mathbf{k}}\left(E_{\mathbf{F}}\right)\right]$.

The case where \mathbf{F} / \mathbf{k} is an abelian extension was treated by H. Suzuki who has proved Miyake's conjecture: In an abelian extension \mathbf{F} / \mathbf{k} the number of classes of \mathbf{k} which capitulate in \mathbf{F} is a multiple of $[\mathbf{F}: \mathbf{k}]$.

Let p be a prime number and let $\mathbf{k}_{1}^{(p)}$ (resp. $\mathbf{k}_{2}^{(p)}$) be the Hilbert p-class field of \mathbf{k} (resp. of $\mathbf{k}_{1}^{(p)}$). If \mathbf{L} is a subfield of \mathbf{k}_{1} and \mathcal{A} is an ideal class of \mathbf{k} whose order is equal to p^{m} for some integer m. Then \mathcal{A} capitulates in \mathbf{L} if and only if \mathcal{A} capitulates in $\mathbf{L} \cap \mathbf{k}_{1}^{(p)}$. So we study only the capitulation of classes whose order is equal to p^{m} in the subfields of $\mathbf{k}_{1}^{(p)}$, and since the capitulation problem is solved when $\mathbf{k}_{1}^{(p)} / \mathbf{k}$ is cyclic, we study only the cases where $\mathbf{k}_{1}^{(p)} / \mathbf{k}$ is not cyclic.

For more details see [Mi-89], [Su-91], [CF-91], [Ism - 92], [Az 93], [Ay-95] and [Az-97].

§3. Capitulation of the 2-ideal classes of some biquadratic fields

Let \mathbf{k} be a number field such that the 2-component $C_{\mathbf{k}, 2}$ of $C_{\mathbf{k}}$ is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. Let G_{2} be the Galois group of $\mathbf{k}_{2}^{(2)} / \mathbf{k}$. By class field theory, $\operatorname{Gal}\left(\mathbf{k}_{1}^{(2)} / \mathbf{k}\right) \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. Then $\mathbf{k}_{1}^{(2)}$ contains three quadratic extensions of \mathbf{k} denoted by $\mathbf{F}_{1}, \mathbf{F}_{2}$ and \mathbf{F}_{3}. Under these conditions, Kisilevsky [Ki-76] proved the following.

Theorem 3.1. Let \mathbf{k} be such that $C_{\mathbf{k}, 2} \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. Then we have three types of capitulation:

Type 1: The four classes of $C_{\mathbf{k}, 2}$ capitulate in each extension $\mathbf{F}_{i}, i=1,2$, 3. This is possible if and only if $\mathbf{k}_{1}^{(2)}=$ $\mathbf{k}_{2}^{(2)}$.
Type 2: The four classes of $C_{\mathbf{k}, 2}$ capitulate only in one extension among the three extensions $\mathbf{F}_{i}, i=1,2,3$. In this case the group G_{2} is dihedral.
Type 3: Only two classes capitulate in each extension \mathbf{F}_{i}, $i=1,2,3$. In this case the group G_{2} is semidihedral or quaternionic.

In this section, we suppose that $\mathbf{k}=\mathbb{Q}(\sqrt{d}, i)$ where $d \in \mathbb{N}$ is such that $C_{\mathbf{k}, 2} \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$, and we study the capitulation problem in the extensions $\mathbf{F}_{i} / \mathbf{k}, i=1,2,3$.

Diagram 1
The first step is to study the structure of $C_{\mathbf{k}, 2}$. Using genus theory, the class number formula for biquadratic fields, Kaplan's results on the 2-part of the class number for quadratic number fields and other results, we can prove

Theorem 3.2. Let Q be the Hasse unit index of \mathbf{k} and let $C_{\mathbf{k}, 2}$ be the 2-component of the class group of \mathbf{k}. Let $\mathbf{k}^{(*)}$ be the genus field of \mathbf{k}. Then the group $C_{\mathbf{k}, 2}$ is of type $(2,2)$ if and only if one of the next cases occurs:
(1) $d=2 p q, p \equiv-q \equiv 1(\bmod 4)$, at least two of the three symbols $\left(\frac{p}{q}\right),\left(\frac{2}{p}\right),\left(\frac{2}{q}\right)$ are -1 and Q is 1 , in which case, $\mathbf{k}^{(*)}=\mathbf{k}_{1}^{(2)}=$ $\mathbb{Q}(\sqrt{p}, \sqrt{q}, \sqrt{2}, i)$;
(2) $d=2 q_{1} q_{2}, q_{1} \equiv q_{2} \equiv-1(\bmod 4),\left(\frac{q_{1}}{q_{2}}\right)=-\left(\frac{q_{2}}{q_{1}}\right)=1,\left(\frac{2}{q_{1}}\right)=$ $-\left(\frac{2}{q_{2}}\right)=1$ and $Q=1$, in which case, $\mathbf{k}^{(*)}=\mathbf{k}_{1}^{(2)}=\mathbb{Q}\left(\sqrt{q_{1}}, \sqrt{q_{2}}, \sqrt{2}, i\right)$; (3) $d=p_{1} p_{2}, p_{1} \equiv 1(\bmod 8), p_{2} \equiv 5(\bmod 8)$ and $\left(\frac{p_{1}}{p_{2}}\right)=-1$, in which case, $\mathbf{k}^{(*)}=\mathbf{k}\left(\sqrt{p_{1}}\right) \neq \mathbf{k}_{1}^{(2)}$;
(4) $d=p q, p \equiv 1(\bmod 8), q \equiv-1(\bmod 4),\left(\frac{p}{q}\right)=-1$ and $Q=2$, in which case, $\mathbf{k}^{(*)}=\mathbf{k}(\sqrt{p}) \neq \mathbf{k}_{1}^{(2)}$.

Remarks 3.1. If $\mathbf{k}^{(*)} \neq \mathbf{k}_{1}^{(2)}$, we set $\mathbf{F}_{1}=\mathbf{k}^{(*)}=\mathbf{k}(\sqrt{p})$ where $p \equiv 1(\bmod 8), \mathbf{F}_{2}=\mathbf{k}(\sqrt{a+b i})$ and $\mathbf{F}_{3}=\mathbf{k}(\sqrt{a-b i})$ where a and b are two integers such that $p=a^{2}+b^{2}, a \equiv 1(\bmod 4)$ and $b \equiv 0(\bmod 4)$.

In order to determine the number of ideal classes which capitulate in $\mathbf{F}_{i} / \mathbf{k}, i=1,2,3$, we have to determine the unit group of each $\mathbf{F}_{i}, i=1,2,3$, where \mathbf{F}_{i} is a composite of three quadratic fields. So using the previous results and others, we obtain the next solution of the capitulation problem.

Theorem 3.3. Let $C_{\mathbf{F}_{i}, 2}$ be the 2-component of the class group of \mathbf{F}_{i} and let $j_{i}: C_{\mathbf{k}, 2} \longrightarrow C_{\mathbf{F}_{i}, 2}$ be the canonical homomorphism.
(1) If $\mathbf{k}^{(*)}=\mathbf{k}_{1}^{(2)}$, then $\mathbf{k}_{1}^{(2)} \neq \mathbf{k}_{2}^{(2)}, G_{2} \simeq Q_{m}$ or $S_{m}(m>3)$ and \mid ker $j_{i} \mid=2$ for $i=1,2,3$ (capitulation type 3), where Q_{m} and S_{m} are respectively the group of quaternions and the semi-dihedral group of order 2^{m}.
(2) Let $\mathbf{k}^{(*)} \neq \mathbf{k}_{1}^{(2)}$. Then \mid ker $j_{1} \mid=4$. Moreover,
(a) If d is divisible by a prime $q \equiv-1(\bmod 4)$ and $p \neq x^{2}+32 y^{2}$, then $\mathbf{k}_{2}^{(2)}=\mathbf{k}_{1}^{(2)}, G_{2} \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ and \mid ker $j_{i} \mid=4$ for $i=1,2,3$ (capitulation type 1);
(b) If d is not divisible by a prime $q \equiv-1(\bmod 4)$ or if $p=x^{2}+32 y^{2}$, then $\mathbf{k}_{2}^{(2)} \neq \mathbf{k}_{1}^{(2)}, G_{2} \simeq D_{m}(m \geq 3)$, the dihedral group of order 2^{m}, and $\left|\operatorname{ker} j_{i}\right|=2$ for $i=2,3$ (capitulation type 2).

For more details see $[\mathrm{Az}-93]$ and $[\mathrm{Az}-97]$.

Numerical Examples.

Values of d	Capitulation types
$17 \cdot 7,17 \cdot 5,73 \cdot 7$	type 1
$41 \cdot 13,41 \cdot 7$	type 2
$2 \cdot 3 \cdot 7,2 \cdot 3 \cdot 5,2 \cdot 5 \cdot 7,2 \cdot 13 \cdot 3,2 \cdot 5 \cdot 11$	type 3

Table 1

§4. On the capitulation of the 3-ideal classes of a cubic cyclic field

Let \mathbf{k} be a cubic cyclic field over \mathbb{Q} whose class number is exactly divisible by 9 . Let $\mathbf{k}_{1}^{(3)}$ be its Hilbert 3-class field and let $\mathbf{k}^{(*)}$ be its absolute genus field. Then the 3-ideal class group of \mathbf{k} is of type (3,3), and $\mathbf{k}_{1}^{(3)} / \mathbf{k}$ contains four subfields $\mathbf{K}_{1}, \mathbf{K}_{2}, \mathbf{K}_{3}$ and \mathbf{K}_{4}. We want to study the capitulation problem of the 3 -ideal classe of \mathbf{k}.

For the details of all the proofs and results given in this section see [Ay-95].

Diagram 2
We have to distinguish two cases.
First case: $\left[\mathbf{k}^{(*)}: \mathbf{k}\right]=3$. It turns out that this is equivalent to each of the following conditions:

- $\operatorname{Gal}\left(\mathbf{k}_{1}^{(3)} / \mathbb{Q}\right)$ is not abelian;
- $\mathbf{k}^{(*)}=\mathbf{K}_{i}$ for some $i \in\{1,2,3,4\}$;
- Exactly two distinct prime numbers p and q are ramified in \mathbf{k}.

Second case: $\left[\mathbf{k}^{(*)}: \mathbf{k}\right]=9$. This is equivalent to each of the following conditions:

- $\operatorname{Gal}\left(\mathbf{k}_{1}^{(3)} / \mathbb{Q}\right)$ is abelian;
$-\mathbf{k}^{(*)}=\mathbf{k}_{1}^{(3)}$;
- Exactly three distinct prime numbers p, q and r are ramified in \mathbf{k}.
(A) Case where $\left[\mathbf{k}^{(*)}: \mathbf{k}\right]=3$

In this case, exactly two prime numbers p and q are ramified in \mathbf{k}, and there exists another unique cubic cyclic field denoted by $\tilde{\mathbf{k}}$ having the same conductor as \mathbf{k}. Denote by $h_{\mathbf{k}}$ (resp. by $h_{\tilde{\mathbf{k}}}$) the class number of \mathbf{k} (resp. of $\tilde{\mathbf{k}}$).

Theorem 4.1. Let \mathbf{k} be a cubic cyclic field of conductor divisible only by p and q. Then

$$
9\left\|h_{\mathbf{k}} \Leftrightarrow 9\right\| h_{\tilde{\mathbf{k}}} .
$$

If $9 \| h_{\mathbf{k}}$, then \mathbf{k} and $\tilde{\mathbf{k}}$ have the same Hilbert 3 -class field.

Let σ be a generator of $\operatorname{Gal}(\mathbf{k} / \mathbb{Q})$ and let $\delta=\sigma-1$. From class field theory we know that $\tilde{\mathbf{k}}_{1}^{(3)}$ corresponds to $S^{\delta^{2}}$ and that $S^{\delta^{2}}$ is trivial, where $S=\operatorname{Gal}\left(\mathbf{k}_{1}^{(3)} / \mathbf{k}\right)$. Moreover the group of ambiguous classes is of order 3 , and generated by the classes $[\mathcal{P}]$ and $[\mathcal{Q}]$, where \mathcal{P} and \mathcal{Q} are the prime ideals of \mathbf{k} lying above p and q. We have of course $[\mathcal{P}]^{n}[\mathcal{Q}]^{m}=1$ for some $n, m \in\{0,1,2\}$ and $(n, m) \neq(0,0)$; the nontrivial relation $[\mathcal{P}]^{n}[\mathcal{Q}]^{m}=1$ is obtained by calculating a constant of Parry denoted $b_{\mathbf{k}}$. Here $b_{\mathbf{k}}=p^{n} q^{m}$ is caculated from a fundamental unit of \mathbf{k} (generating over $\mathbb{Z}[\sigma]$ the unit group of \mathbf{k}) and its irreducible polynomial (see [Pa 90]).

Theorem 4.2. Let $\mathcal{P}, \mathcal{Q}($ resp. $\tilde{\mathcal{P}}, \tilde{\mathcal{Q}})$ be the prime ideals of \mathbf{k} (resp. of $\tilde{\mathbf{k}}$) lying above p and q. Then the following assertions are true: (1) $\forall n, m \in \mathbb{N} ;[\mathcal{P}]^{n}[\mathcal{Q}]^{m}=1 \Leftrightarrow[\tilde{\mathcal{P}}]^{n}[\tilde{\mathcal{Q}}]^{m}=1$.
(2) $[\mathcal{P}]=1$ or $[\mathcal{Q}]=1 \Leftrightarrow 9 \| h_{\mathbf{k}^{(*)}}$. Saying this, is equivalent to: $[\mathcal{P}] \neq 1$ and $[\mathcal{Q}] \neq 1 \Leftrightarrow 3 \| h_{\mathbf{k}^{(*)}}$.

The fact that the prime \mathcal{P} (resp. $\tilde{\mathcal{P}}$) is inert in $\mathbf{k}^{(*)} / \mathbf{k}$ (resp. in $\left.\mathbf{k}^{(*)} / \tilde{\mathbf{k}}\right)$ and that $\mathbf{k}_{1}^{(3)}=\tilde{\mathbf{k}}_{1}^{(3)}$, we get that the Artin maps $\left(\mathbf{k}_{1}^{(3)} / \mathbf{k}, \mathcal{P}\right)$, $\left(\tilde{\mathbf{k}}_{1}^{(3)} / \tilde{\mathbf{k}}, \tilde{\mathcal{P}}\right)$, and $\left(\mathbf{k}_{1}^{(3)} / \mathbf{k}^{*}, \mathcal{P}^{*}\right)$ are equal, where \mathcal{P}^{*} is a prime in $\mathbf{k}^{(*)}$ lying above p; so we obtain (1). The fact that the 3-class number of $\mathbf{k}^{(*)}$ is equal to 3 or 9 is obtained by using a formula giving $h_{\mathbf{k}^{(*)}}$ where $\mathbf{k}^{(*)}$ is considered as the composite of cubic cyclic fields, so the assertion (2) is proved by calculating some unit index involving Parry's constant (see [Pa-90]).

Theorem 4.3. (1) All the 3-ideal classes capitulate in each of the four intermediate fields of $\mathbf{k}_{1}^{(3)} / \mathbf{k}$ if and only if $3 \| h_{\mathbf{k}^{(*)}}$. In this case, $\mathbf{k}_{1}^{(3)}=\mathbf{k}_{n}^{(3)}$ for each $n \geq 2$.
(2) Let \mathbf{L} be a subextension of $\mathbf{k}_{1}^{(3)}$ which is cubic over \mathbf{k}. Then only the ambiguous ideal classes capitulate in \mathbf{L} if and only if $9 \| h_{\mathbf{k}^{(*)}}$. In this case, $\mathbf{k}_{2}^{(3)}=\mathbf{k}_{n}^{(3)}$ for each $n \geq 3$.

The first assertion is obvious. For the second, the unit index in the extension $\mathbf{k}^{(*)} / \mathbf{k}$ is 1 , so only the three ambiguous classes capitulate in $\mathbf{k}^{(*)}$ (see [Fr-93] and [Ja-88]); we use the fact that the group $\operatorname{Gal}\left(\mathbf{k}_{2}^{(3)} / \mathbf{k}\right)$ has two generators and we prove that $\operatorname{Gal}\left(\mathbf{k}_{2}^{(3)} / \mathbf{k}\right)$ is metacyclic of order 27 (see [Bl-58]); so the conclusion is obtained via the transfer for groups of order 27. See [Mi-89] for more information on transfer and [$\mathrm{Ne}-67$] for all the different groups of order 27.

Numerical Examples.

$f_{\mathbf{k}}$	$b_{\mathbf{k}}$
$657=9 \cdot 73$	$(3)^{2}(73)$
$1267=7 \cdot 181$	$(7)(181)$
$2439=9 \cdot 271$	(271)
$5971=7 \cdot 853$	(853)

(B) Case where $\left[\mathbf{k}^{(*)}: \mathbf{k}\right]=9$

In this case, $\mathbf{k}_{1}^{(3)}=\mathbf{k}^{(*)}$ and exactly three prime numbers p, q and r are ramified in \mathbf{k}; there are exactly three other cubic cyclic fields having the same conductor as \mathbf{k}. Using the cubic symbol, G. Gras distinguished 13 different situations (see [Gr-73]). We solved the capitulation problem for four of them, namely under the following equivalent conditions:
Let p, q, r be distinct prime numbers $\equiv 1(\bmod 3)$, and allow p to be equal to 3; the Hilbert 3-class field of each cubic cyclic field of conductor dividing $(p q r)^{2}$ is equal to its absolute genus field.

Under these conditions we have:
Theorem 4.4. If \mathbf{k} is a cubic cyclic field of conductor pqr (or $9 q r$ if $p=3$) and if $9 \| h_{\mathbf{k}}$, then all the 3-ideal classes capitulate in each of the four intermediate fields of $\mathbf{k}_{1}^{(3)} / \mathbf{k}$.

By using Parry's constant and some unit index (see [Pa-90]), we prove that the 3-class number of each bicubic bicyclic field in $\mathbf{k}_{1}^{(3)} / \mathbf{k}$ is equal to 3 .

Numerical examples. Suppose that \mathbf{k} is a cubic cyclic field with conductor $f_{\mathbf{k}} \leq 16000$. Then \mathbf{k} satisfies the last theorem if and only if $f_{\mathbf{k}} \in\{819,1197,1729,1953,2223,2331,2709,2821,2843,3627,3913$, 4221, 4329, 5031, 5301, 5551, 5719\}.

§5. On the capitulation of the 3-ideal classes of the normal closure of a pure cubic field

Let $\Gamma=\mathbb{Q}(\sqrt[3]{n})$ be a pure cubic field with class number $h_{\Gamma}, \mathbf{k}=$ $\mathbb{Q}(\sqrt[3]{n}, j)$ its normal closure $\left(j=e^{\frac{2 i \pi}{3}}\right), \mathbf{k}_{1}^{(3)}$ the Hilbert 3-class field of \mathbf{k}, and $S_{\mathbf{k}}$ the 3-ideal class group of \mathbf{k}. Suppose that $E_{\mathbf{k}}$ is the group of units of \mathbf{k}, E_{0} the subgroup of $E_{\mathbf{k}}$ generated by the units of all proper subfields of \mathbf{k}, and $u=\left[E_{\mathbf{k}}: E_{0}\right]$. Let $\operatorname{Gal}(\mathbf{k} / \mathbb{Q})=\langle\sigma, \tau\rangle, \operatorname{Gal}\left(\mathbf{k} / \mathbf{k}_{0}\right)=$ $\langle\sigma\rangle, \operatorname{Gal}(\mathbf{k} / \Gamma)=\langle\tau\rangle$, where $\sigma^{3}=\tau^{2}=1, \sigma \tau=\tau \sigma^{2}$ and $\sigma^{2} \tau=\tau \sigma$.

The relation between the class number $h_{\mathbf{k}}$ of \mathbf{k} and the class number h_{Γ} of Γ is given by $h_{\mathbf{k}}=h_{\Gamma}^{2} \frac{u}{3}$ (see [B-C-71]).

Proposition 5.1. (1) $S_{\mathbf{k}} \cong \mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z} \Leftrightarrow 3$ divides exactly h_{Γ} and $u=3$.
(2) If $S_{\mathbf{k}}$ is of rank 2 and if 3 exactly divides h_{Γ}, then $u=3$, whereupon $S_{\mathbf{k}} \cong \mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$.

The study of the structure of $S_{\mathbf{k}}$ and its rank is based on Gerth's results in [Ge-75], [Ge-76] and [Ger-76].

The action of the Galois group of \mathbf{k} / \mathbb{Q} on $S_{\mathbf{k}}$ and genus theory allow us to distinguish three different cases (see [Ism-92]). We let $k_{0}=\mathbb{Q}(j)$ and we define $\left(\mathbf{k} / \mathbf{k}_{0}\right)^{*}$ to be the relative genus field of \mathbf{k} over \mathbf{k}_{0}. Then (1) \mathbf{k} is of type I if $\left(\mathbf{k} / \mathbf{k}_{0}\right)^{*}=\mathbf{k} \Gamma_{1}$, where Γ_{1} is the Hilbert 3-class field of Γ;
(2) \mathbf{k} is of type II if $\left(\mathbf{k} / \mathbf{k}_{0}\right)^{*} \neq \mathbf{k} \Gamma_{1}$ and $\left(\mathbf{k} / \mathbf{k}_{0}\right)^{*}$ is a proper subfield of $\mathbf{k}_{1}^{(3)}$;
(3) \mathbf{k} is of type III if $\left(\mathbf{k} / \mathbf{k}_{0}\right)^{*}=\mathbf{k}_{1}^{(3)}$.

When the 3 -group $S_{\mathbf{k}}$ is of type (3,3), it has 4 subgroups of order 3 , denoted by $H_{j}, 1 \leq j \leq 4$. Let \mathbf{K}_{j} be the intermediate extension of $\mathbf{k}_{1} / \mathbf{k}$, corresponding by class field theory to H_{j}. As each \mathbf{K}_{j} is cyclic of order 3 over \mathbf{k}, there is at least one subgroup of order 3 of $S_{\mathbf{k}}$, i.e., at least one H_{l} for some $l \in\{1,2,3,4\}$, which capitulates in \mathbf{K}_{j} (by Hilbert's theorem 94).

Definition 5.1. Let S_{j} be a generator of $H_{j}(1 \leq j \leq 4)$ corresponding to \mathbf{K}_{j}. For $1 \leq j \leq 4$, let $i_{j} \in\{0,1,2,3,4\}$. We say that the capitulation is of type $\left(i_{1}, i_{2}, i_{3}, i_{4}\right)$ to mean the following:
(1) when $i_{j} \in\{1,2,3,4\}$, then only the class $S_{i_{j}}$ and its powers capitulate in \mathbf{K}_{j};
(2) when $i_{j}=0$, then all the 3 -classes capitulate in \mathbf{K}_{j}.

Suppose that \mathbf{k} is of type I; we show (see [Ism-92]) that $S_{\mathbf{k}}=$ $\left\{\mathcal{A}^{r+s \sigma} \mid 0 \leq r, s \leq 2\right\}$ where \mathcal{A} is such that $\mathcal{A}^{\tau}=\mathcal{A}$. The four subgroups of $S_{\mathbf{k}}$ are given by: $H_{1}=\langle\mathcal{A}\rangle, H_{2}=\left\langle\mathcal{A}^{\sigma}\right\rangle, H_{3}=\left\langle\mathcal{A}^{1+\sigma}\right\rangle$, and $H_{4}=\left\langle\mathcal{A}^{\sigma-1}\right\rangle$ which corresponds to $\mathbf{K}_{4}=\left(\mathbf{k} / \mathbf{k}_{0}\right)^{*}$.

Theorem 5.1. Let p and q be prime numbers and let $u=\left[E_{\mathbf{k}}\right.$: $\left.E_{0}\right]$.
(1) If \mathbf{k} is of type I, then the possible forms of $n($ where $\Gamma=\mathbb{Q}(\sqrt[3]{n}))$ are

- (i) $n=p^{e_{1}}, p \equiv 1(\bmod 3)$ with $e_{1} \in\{1,2\}$;
- (ii) $n=3^{e} p^{e_{1}}, p \equiv 4$ or $7(\bmod 9)$ with $e, e_{1} \in\{1,2\}$;
- (iii) $n=p^{e} q^{e_{1}} \equiv \pm 1(\bmod 9), p$ or $-q \equiv 4$ or $7(\bmod 9)$ and $e, e_{1} \in\{1,2\}$.
(2) Let $n \in \mathbb{N}$ be as in (ii) (resp. (iii)), let $\left.\left(\frac{3}{p}\right)_{3} \neq 1\left(\operatorname{resp} .\left(\frac{q}{p}\right)_{3} \neq 1\right)\right)$ and assume $3 \| h_{\Gamma}$. Then $u=1, S_{\mathbf{k}}$ is cyclic of order 3 and $E_{\mathbf{k}}=$ $\left\langle\varepsilon, \varepsilon^{\sigma},-j\right\rangle$, where ε is the fundamental unit of Γ.

Theorem 5.2. (1) All the 3 -classes capitulate in $\mathbf{K}_{4}=\mathbf{k} \Gamma_{1}=$ $\left(\mathbf{k} / \mathbf{k}_{0}\right)^{*}$.
(2) The numbers of 3 -classes capitulating in $\mathbf{K}_{1}, \mathbf{K}_{2}$ and \mathbf{K}_{3} are the same. More precisely, the possible capitulation types are $(0,0,0,0)$, $(1,2,3,0)$ or $(4,4,4,0)$.

Diagram 3

Suppose that \mathbf{k} is of type II; we show (see [Ism-92]) that the four cubic fields \mathbf{K}_{i} are given as follows: $\mathbf{K}_{1}=\left(\mathbf{k} / \mathbf{k}_{0}\right)^{*}$ which corresponds by class field theory to $H_{1}=S_{\mathbf{k}}^{(\sigma)}=<\mathcal{A}>, \mathbf{K}_{2}=\mathbf{k} \Gamma_{1}^{\prime \prime}, \mathbf{K}_{3}=\mathbf{k} \Gamma_{1}^{\prime}$ and $\mathbf{K}_{4}=\mathbf{k} \Gamma_{1}$, where Γ_{1} (resp. $\left.\Gamma_{1}^{\prime}, \Gamma_{1}^{\prime \prime}\right)$ is the Hilbert 3-class field of Γ (resp. of the two other cubic fields $\Gamma^{\prime}, \Gamma^{\prime \prime}$ contained in \mathbf{k}).

Diagram 4

Theorem 5.3. (1) The class \mathcal{A} capitulates in the four cubic extensions $\mathbf{K}_{i}, 1 \leq i \leq 4$.
(2) The numbers of 3 -classes capitulating in $\mathbf{K}_{2}, \mathbf{K}_{3}$ and \mathbf{K}_{4} are the same. More precisely, the possible capitulation types are ($0,0,0,0$), $(0,1,1,1),(1,0,0,0)$ or $(1,1,1,1)$.

Theorem 5.4. Let q_{i} be prime numbers $\equiv-1(\bmod 3)$.
(1) If the field \mathbf{k} is of type II, then the possible forms of n (where $\Gamma=$ $\mathbb{Q}(\sqrt[3]{n}))$ are

- (i) $n=3^{e} q_{1}^{e_{1}}$ with $q_{1} \equiv-1(\bmod 9)$ and $e, e_{1} \in\{1,2\}$;
- (ii) $n=q_{1}^{e_{1}} q_{2}^{e_{2}}$ with $q_{1} \equiv q_{2} \equiv-1(\bmod 9)$ and $e_{1}, e_{2} \in\{1,2\}$;
- (iii) $n=3^{e} q_{1}^{e_{1}} q_{2}^{e_{2}}$ with q_{1} or $q_{2} \equiv 2$ or $5(\bmod 9), e_{1}, e_{2} \in\{1,2\}$, $e \in\{0,1,2\}$ and $n \not \equiv \pm 1(\bmod 9)$;
- (iv) $n=q_{1}^{e_{1}} q_{2}^{e_{2}} q_{3}^{e_{3}}$ with q_{1} or q_{2} or $q_{3} \equiv 2$ or $5(\bmod 9), n \equiv \pm 1$ $(\bmod 9)$ and $e_{1}, e_{2}, e_{3} \in\{1,2\}$.
(2) If the integer n has one of the four forms of (1) and if $3 \| h_{\Gamma}$, then the index $u=3$, whereupon \mathbf{k} is of type II.
(3) The normal closure \mathbf{k} of $\Gamma=\mathbb{Q}(\sqrt[3]{n})$ is of type II if and only if n has one of the four forms of (1) and $3 \| h_{\Gamma}$.

Suppose finally that \mathbf{k} is of type III. Then we have the following.
Theorem 5.5. Let p, q, q_{1} and q_{2} be prime numbers such that $p \equiv-q \equiv-q_{1} \equiv-q_{2} \equiv 1(\bmod 3)$. The normal closure $\mathbf{k}=\mathbb{Q}(j, \sqrt[3]{n})$ of $\Gamma=\mathbb{Q}(\sqrt[3]{n})$ is of type III if and only if $3 \| h_{\Gamma}$, and n has one of the following forms:
(i) $n=3^{e} p^{e_{1}}$ with $p \equiv 1(\bmod 9)$ and $e, e_{1} \in\{1,2\}$;
(ii) $n=q^{e} p^{e_{1}}$ with $-q \equiv p \equiv 1(\bmod 9)$ and $e, e_{1} \in\{1,2\}$;
(iii) $n=p^{e} q_{1}^{e_{1}} q_{2}^{e_{2}}$ with p or $-q_{1}$ or $-q_{2} \equiv 4$ or $7(\bmod 9), n \equiv \pm 1$ $(\bmod 9)$ and $e, e_{1}, e_{2} \in\{1,2\}$;
(iv) $n=3^{e} p^{e_{1}} q^{e_{2}}$ with p or $-q \equiv 4$ or $7(\bmod 9), e \in\{0,1,2\}, e_{1}, e_{2} \in$ $\{1,2\}$ and $n \not \equiv \pm 1(\bmod 9)$.

Let us remark that \mathbf{k} is of type III means that $\left(\mathbf{k} / \mathbf{k}_{0}\right)^{*}=\mathbf{k}_{1}^{(3)}$; in this case for $\forall \mathcal{A} \in S_{\mathbf{k}}$ we have $\mathcal{A}^{\sigma}=\mathcal{A}$, i.e., all the 3-classes are ambiguous classes.

When n has one of the four forms of the last theorem, and if $p \equiv-q \equiv-q_{1} \equiv-q_{2} \equiv 1(\bmod 3)$, we have $p=\pi_{1} \pi_{2},-q=\pi,-q_{1}=$ π_{3} and $-q_{2}=\pi_{4}$, where $\pi, \pi_{i}(1 \leq i \leq 4)$ are prime integers of \mathbf{k}_{0}; we also have $3 \mathcal{O}_{\mathbf{k}_{0}}=(\lambda)^{2}$ with $\lambda=1-j$. We denote respectively by $P_{1}, P_{2}, Q, Q_{1}, Q_{2}$ and I the prime ideal of \mathbf{k} lying above $\pi_{1}, \pi_{2}, \pi, \pi_{3}, \pi_{4}$ and λ. We summarize in the next theorem most of the results concerning the capitulation problem when \mathbf{k} is of type III.

Theorem 5.6. \quad Suppose that the normal closure $\mathbf{k}=\mathbb{Q}(\sqrt[3]{n}, j)$ of $\Gamma=\mathbb{Q}(\sqrt[3]{n})$ is of type III.
(A) If n has one of the four forms of last theorem with the property that the prime number $p=\pi_{1} \pi_{2}$ dividing n satisfies $p \equiv 1(\bmod 9)$, or if n has the fourth form with $p \not \equiv 1(\bmod 9)$ and $(n, 3)=1$, then we have the following:
(1) $\mathbf{k}_{1}^{(3)}=\mathbf{k}\left(\sqrt[3]{\pi_{1}}, \sqrt[3]{\pi_{2}}\right), P_{1} P_{2}$ is not a principal ideal in \mathbf{k} and $S_{\mathbf{k}}=$ $\left\langle\left[P_{1} P_{2}\right],\left[P_{1}\right]\right\rangle$.
(2) $\mathbf{K}_{1}=\mathbf{k}\left(\sqrt[3]{\pi_{1} \pi_{2}}\right), \mathbf{K}_{2}=\mathbf{k}\left(\sqrt[3]{\pi_{2}}\right), \mathbf{K}_{3}=\mathbf{k}\left(\sqrt[3]{\pi_{1}}\right)$ and $\mathbf{K}_{4}=\mathbf{k} \Gamma_{1}=$ $\mathbf{k}\left(\sqrt[3]{\pi_{1} \pi_{2}^{2}}\right)$.
(3) $\left[P_{1} P_{2}\right]$ capitulates in $\mathbf{K}_{1},\left[P_{2}\right]$ capitulates in $\mathbf{K}_{2},\left[P_{1}\right]$ capitules in \mathbf{K}_{3} and all the 3 -classes capitulate in \mathbf{K}_{4}.
(4) The possible capitulation types are $(0,0,0,0),(1,3,2,0),(0,3,2,0)$ or ($1,0,0,0$).
(B) If n has the form of (iii) with $p \not \equiv 1(\bmod 9)$ or n has the form of
(iv) with $3 \mid n$, then all the 3 -classes capitulate in \mathbf{K}_{4} and we have the following capitulation types depending on some conditions on the ideals Q, I, Q_{1} and Q_{2} :
(a) $(0,4,4,0),(1,4,4,0),(4,4,4,0),(1,0,0,0)$ or $(4,0,0,0)$;
(b) $(0,0,0,0)$;
$(0,3,2,0)$ or $(0,2,3,0)$;
$(1,0,0,0)$;
$(1,3,2,0)$ or $(1,2,3,0)$.

Theorem 5.7. Let h_{Γ} be the class number of the pure cubic field $\Gamma=\mathbb{Q}(\sqrt[3]{n})$. If $n=c^{e} p^{e_{1}}$, where $c=3$ or q, and p, q are prime numbers such that $p \equiv-q \equiv 1(\bmod 9)$ and $e, e_{1} \in\{1,2\}$, then

$$
\left.\left(\frac{c}{p}\right)_{3}=1 \Rightarrow 3^{2} \right\rvert\, h_{\Gamma}
$$

When n has the form (iii) or the form (iv), we prove seven other similar results. Each time, we construct, under certain conditions, a natural integer c such that:

$$
\left.\left(\frac{c}{p}\right)_{3}=1 \Rightarrow 3^{2} \right\rvert\, h_{\Gamma}
$$

The proof of all the results given in this section can be found in [Ism-92]. In this work we used also the arithmetic properties of a pure cubic field (see [De-00]), Kummer theory and the cubic symbol (see [I-R-82]). For the following numerical examples we used the tables given in [B-87] and [B-W-Z-71].

Numerical Examples.

(1) For $p \in\{61,67,103,151\}$ we have $\mathbf{k}=\mathbb{Q}(j, \sqrt[3]{p})$ is of type I . (2)

n	h_{Γ}	$\mathbf{k}=\mathbb{Q}(j, \sqrt[3]{n})$
$3 \cdot 17=51$	3	type II
$3^{2} \cdot 17=153$	$9=3^{2}$	$S_{\mathbf{k}} \cong C_{9} \times C_{9}$
$3 \cdot 53=159$	3	type II
$3^{2} \cdot 53=477$	$9=3^{2}$	$S_{\mathbf{k}} \cong C_{9} \times C_{9}$
$3 \cdot 71=213$	$21=7 \cdot 3$	type II
$3^{2} \cdot 71=639$	$18=2 \cdot 3^{2}$	$S_{\mathbf{k}} \cong C_{9} \times C_{9}$
$3 \cdot 89=267$	$15=5 \cdot 3$	type II
$3^{2} \cdot 89=801$	$6=3 \cdot 2$	type II
$3 \cdot 107=321$	$9=3^{2}$	$S_{\mathbf{k}} \cong C_{9} \times C_{9}$
$3^{2} \cdot 107=963$	3	type II

Table 2
(3) For each integer n in the next table, $\mathbf{k}=\mathbb{Q}(j, \sqrt[3]{n})$ is of type III.

n	h_{Γ}	n	h_{Γ}
$3 \cdot 19=57$	6	$3^{2} \cdot 19=171$	6
$3 \cdot 37=111$	3	$3^{2} \cdot 37=333$	3
$3 \cdot 109=327$	12	$3^{2} \cdot 109=981$	3
$3 \cdot 127=381$	12	$3 \cdot 163=489$	3
$3 \cdot 181=543$	3	$3 \cdot 199=597$	3

Table 3

References

[Ay-95] M. Ayadi, Sur la capitulation des 3-classes d'idéaux d'un corps cubique cyclique. Thèse de doctorat. Université Laval - Québec - Canada. (1995).
[Aya-95] M. Ayadi, Table d'Ennola de corps cubiques cycliques de conducteurs ≤ 15993. Prépublication. Département de Mathématiques et de Statistique U. Laval, 95-21.
[Az-93] A. Azizi, Capitulation des 2-classes d'idéaux de $\mathbb{Q}(\sqrt{d}, i)$. Thèse de doctorat. Université Laval - Québec - Canada. (1993).
[Az-97] A. Azizi, Capitulation des 2-classes d'idéaux de $\mathbb{Q}(\sqrt{d}, i)$. C. R. Acad. Sci. Paris, t. 325, Série I, 127-130, (1997).
[B-87] W. H. Beyer, Standard Mathematical Tables, $28{ }^{\text {th }}$ edition, (1987), by CRC. Press Inc.
[B-C-70] P. Barrucand and H. Cohn, A Rational Genus, Class Number Divisibility, and Unit Theory for Pure Cubic Fields. J. Number Theory, 2 (1970), 7-21.
[B-C-71] P. Barrucand and H. Cohn, Remarks on Principal Factors in a Relative Cubic Field. J. Number Theory, 3 (1971), 226-239.
[Bl-58] N. Blackburn, On Prime Power Groups with two Generators. Proc. Cambridge Phil. Soc., 54 (1958), 327-337.
[B-W-Z-71] B. D. Beach, H. C. Williams, C. R. Zarnke, Some Computer Results on Units in Quadratic and Cubic Fields. Proceedings of the Twenty-Fifth Summer Meeting of the Canadian Mathematical Congress (Lakehead Univ., Thunder Bay, Ont. 1971), 609-648.
[De-00] R. Dedekind, Über die Anzahl der Idealklassen in reinen kubischen Zahlkörpern. J. reine angewandte Mathematik, Bd., 121 (1900), 40-123.
[Fr-93] G. Frei, Théorie des corps de classes. Notes de cours, U. Laval 1992-1993.
[Ge-75] F. Gerth III, On 3-Class Groups of Pure Cubic Fields. J. reine angew. Math., 278/279 (1975), 52-62.
[Ge-76] F. Gerth III, On 3-Class Groups of Cyclic Cubic Extensions of Certain Number Fields. J. Number Theory, 8 (1976), 84-98.
[Ger-76] F. Gerth III, Ranks of 3-Class Groups of non-Galois Cubic Fields. Acta Arithmetica, 30 (1976), 307-322.
[Gr-73] G. Gras, Sur les l-classes d'idéaux dans les extensions cycliques relatives de degré premier l. I,II, Ann. Inst. Fourier (Grenoble), v. 23, no. 3 (1973), pp. 1-48; ibid. v. 23, no 4, (1973), pp. 1-44.
[H-S- 82] F. P. Heider und B. Schmithals, Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen. J. reine angew. Math., 336 (1982), 1-25.
[I-R-82] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory. Graduate Texts in Mathematics, 84, SpringerVerlag (1982).
[Ish-76] M. Ishida, The Genus Fields of Algebraic Number Fields. Lecture Notes in Mathematics Vol. 555, Springer-Verlag (1976).
[Ism-92] M. C. Ismaili, Sur la capitulation des 3-classes d'idéaux de la clôture normale d'un corps cubique pur. Thèse de doctorat. Université Laval - Québec - Canada. (1992).
[Ja-88] J. F. Jaulent, L'état actuel du problème de la capitulation. Séminaire de théorie des nombres de Bordeaux, 1987-1988, exposé no. 17.
[Ki-76] H. Kisilevsky, Number Fields with Class Number Congruent to 4 mod 8 and Hilbert's Theorem 94. J. Number Theory, 8, (1976), 271-279.
[Ka-73] P. Kaplan, Divisibilité par 8 du nombre de classes des corps quadratiques dont le 2-groupe des classes est cyclique et réciprocité biquadratique. J. Math. Soc. Japan. vol. 25, No 4, (1973).
[Ka-76] P. Kaplan, Sur le 2-groupe des classes d'idéaux des corps quadratiques. J. reine angew. Math., 283/284, (1976), 313-363.
[Kub-53] T. Kubota, Über die Beziehung der Klassenzahlen der Unterkörper des bizyklischen Zahlkörpers. Nagoya Math. J., 6, (1953), 119-127.
[Kub-56] T. Kubota, Über den bizyklischen biquadratischen Zahlkörper. Nagoya Math. J., 10, (1956), 65-85.
[Kur-43] S. Kuroda, Über den Dirichletschen Zahlkörper. J. Fac. Sci. Imp. Univ. Tokyo, Sec. I, vol. IV, part 5, (1943), 383-406.
[Mi-89] K. Miyake, Algebraic Investigations of Hilbert's Theorem 94, the Principal Ideal Theorem and Capitulation Problem. Expos. Math., 7, (1989), 289-346.
[Ne-67] J. Neubüser, Die Untergruppenverbände der Gruppen der Ordnungen ≤ 100 mit Ausnahme der Ordnugen 64 und 96. Publications de l'U. Kiel, (1967).
[Pa-90] C. J. Parry, Bicyclic Bicubic Fields. Can. J. Math., vol. XLII, no. 3, (1990), 491-507.
[S-T-34] A. Scholz und O. Taussky, Die Hauptideale der kubischen Klassenkörper imaginär-quadratischer Zahlkörper: ihre rechnerische Bestimmung und ihr Einflu β auf den Klassenkörperturm. J. reine angew. Math., 171 (1934), 19-41.
[Su- 91] H. Suzuki, A Generalization of Hilbert's Theorem 94. Nagoya Math. J., vol. 121, (1991).
[Te-71] F. Terada, A Principal Ideal Theorem in the Genus Fields, Tôhoku Math. J., Second Series, vol. 23, (4), (1971), 697-718.
[Wa-66] H. Wada, On the Class Number and the Unit Group of Certain Algebraic Number Fields. Tokyo U., Fac. of Sc. J., Series I, 13, (1966), 201-209.

Department of Mathematics, Faculty of Sciences, University Mohamed I, Oujda, MOROCCO.

[^0]: Received July 30, 1998.
 Revised January 13, 1999.

