Advanced Studies in Pure Mathematics 30, 2001 Class Field Theory – Its Centenary and Prospect pp. 467–482

The Capitulation Problem for certain Number Fields

Mohammed Ayadi, Abdelmalek Azizi and Moulay Chrif Ismaili

§1. Abstract

We study the capitulation problem for certain number fields of degree 3, 4, and 6.

(I) Capitulation of the 2-ideal classes of $\mathbb{Q}(\sqrt{d}, i)$ (by A. AZIZI)

Let $d \in \mathbb{N}$, $i = \sqrt{-1}$, $\mathbf{k} = \mathbb{Q}(\sqrt{d}, i)$, $\mathbf{k}_1^{(2)}$ be the Hilbert 2-class field of \mathbf{k} , $\mathbf{k}_2^{(2)}$ be the Hilbert 2-class field of $\mathbf{k}_1^{(2)}$, $C_{\mathbf{k},2}$ be the 2-component of the ideal class group of \mathbf{k} and G_2 the Galois group of $\mathbf{k}_2^{(2)}/\mathbf{k}$. We suppose that $C_{\mathbf{k},2}$ is of type (2,2); then $\mathbf{k}_1^{(2)}$ contains three extensions F_i/\mathbf{k} , i = 1, 2, 3. The aim of this section is to study the capitulation of the 2-ideal classes in F_i , i = 1, 2, 3, and to determine the structure of G_2 .

(II) On the capitulation of the 3-ideal classes of a cubic cyclic field (by M. AYADI)

Let k be a cubic cyclic field over \mathbb{Q} , and $\mathbf{k}_1^{(3)}$ the Hilbert 3-class field of **k**. If the class number of **k** is exactly divisible by 9, then its 3-ideal class group is of type (3,3), and $\mathbf{k}_1^{(3)}$ contains four cubic extensions \mathbf{K}_i/\mathbf{k} in which we study the capitulation problem for the 3-ideal classes of **k**.

(III) On the capitulation of the 3-ideal classes of the normal closure of a pure cubic field (by M. C. ISMAILI)

Let $\Gamma = \mathbb{Q}(\sqrt[3]{n})$ be a pure cubic field, $\mathbf{k} = \mathbb{Q}(\sqrt[3]{n}, j)$ its normal closure $(j = e^{\frac{2i\pi}{3}})$, $\mathbf{k}_1^{(3)}$ the Hilbert 3-class field of \mathbf{k} , and let $S_{\mathbf{k}}$ be the 3-ideal class group of \mathbf{k} . When $S_{\mathbf{k}}$ is of type (3,3), we study the

Received July 30, 1998.

Revised January 13, 1999.

capitulation of the 3-ideal classes of $S_{\mathbf{k}}$ in the four intermediate extensions of $\mathbf{k}_1^{(3)}/\mathbf{k}$, and we show that if the class number of Γ is divisible by 9, then we have some necessary conditions on *n*. We have also some informations about the unit group of \mathbf{k} in some cases.

$\S 2.$ Intoduction

Let **k** be a number field of finite degree over \mathbb{Q} and $C_{\mathbf{k}}$ be the class group of **k**. Let **F** be an unramified extension of **k** of finite degree and let $O_{\mathbf{F}}$ be its ring of integers. We say that an ideal \mathcal{A} (or the ideal class of \mathcal{A}) of **k** capitulates in **F** if it becomes principal in **F**, i.e., if $\mathcal{A}O_{\mathbf{F}}$ is principal in **F**. The Hilbert class field \mathbf{k}_1 of **k** is the maximal abelian unramified extension of **k**. Let p be a prime number; the Hilbert p-class field $\mathbf{k}_1^{(p)}$ of **k** is the maximal abelian unramified extension of **k** such that $[\mathbf{k}_1^{(p)} : \mathbf{k}] = p^n$ for some integer n. The first important result on capitulation was conjectured by D. Hilbert and proved by E. Artin and P. Furtwängler. It deals with the case $\mathbf{F} = \mathbf{k}_1$.

Theorem 2.1 (Principal ideal theorem). Let \mathbf{k}_1 be the Hilbert class field of \mathbf{k} . Then every ideal of \mathbf{k} capitulates in \mathbf{k}_1 .

The principal ideal theorem was generalized by Tannaka and Terada to the next one. Let \mathbf{k}_0 be a subfield of \mathbf{k} such that \mathbf{k}/\mathbf{k}_0 is abelian and let $(\mathbf{k}/\mathbf{k}_0)^*$ be the relative genus field of \mathbf{k}/\mathbf{k}_0 .

Theorem 2.2 (Tannaka–Terada). If \mathbf{k}/\mathbf{k}_0 is cyclic, then every ambiguous ideal class of \mathbf{k}/\mathbf{k}_0 is principal in $(\mathbf{k}/\mathbf{k}_0)^*$.

The case where \mathbf{F}/\mathbf{k} is a cyclic extension of prime degree was studied by D. Hilbert in his Theorem 94:

Theorem 2.3 (Theorem 94). Let \mathbf{F}/\mathbf{k} be a cyclic extension of prime degree. Then there exists at least one class (not trivial) in \mathbf{k} which capitulates in \mathbf{F} .

We find in the proof of Theorem 94 this result:

Let σ be a generator of the Galois group of \mathbf{F}/\mathbf{k} and $N_{\mathbf{F}/\mathbf{k}}$ be the norm of \mathbf{F}/\mathbf{k} . Let $E_{\mathbf{L}}$ be the unit group of the field \mathbf{L} . Let $E_{\mathbf{F}}^*$ be the group of units of norm 1 in \mathbf{F}/\mathbf{k} . Then the group of classes of \mathbf{k} which capitulates in \mathbf{F} is isomorphic to the quotient group $E_{\mathbf{F}}^*/E_{\mathbf{F}}^{1-\sigma} = H^1(E_{\mathbf{F}})$, the cohomology group of $G = \langle \sigma \rangle$ acting on the group $E_{\mathbf{F}}$.

With this result and other results on cohomology, we have:

Theorem 2.4. Let \mathbf{F}/\mathbf{k} be a cyclic extension of prime degree. Then the number of classes which capitulate in \mathbf{F}/\mathbf{k} is equal to $[\mathbf{F} : \mathbf{k}][E_{\mathbf{k}} : N_{\mathbf{F}/\mathbf{k}}(E_{\mathbf{F}})]$.

The case where \mathbf{F}/\mathbf{k} is an abelian extension was treated by H. Suzuki who has proved Miyake's conjecture: In an abelian extension \mathbf{F}/\mathbf{k} the number of classes of \mathbf{k} which capitulate in \mathbf{F} is a multiple of $[\mathbf{F}:\mathbf{k}]$.

Let p be a prime number and let $\mathbf{k}_1^{(p)}$ (resp. $\mathbf{k}_2^{(p)}$) be the Hilbert p-class field of \mathbf{k} (resp. of $\mathbf{k}_1^{(p)}$). If \mathbf{L} is a subfield of \mathbf{k}_1 and \mathcal{A} is an ideal class of \mathbf{k} whose order is equal to p^m for some integer m. Then \mathcal{A} capitulates in \mathbf{L} if and only if \mathcal{A} capitulates in $\mathbf{L} \cap \mathbf{k}_1^{(p)}$. So we study only the capitulation of classes whose order is equal to p^m in the subfields of $\mathbf{k}_1^{(p)}$, and since the capitulation problem is solved when $\mathbf{k}_1^{(p)}/\mathbf{k}$ is cyclic, we study only the cases where $\mathbf{k}_1^{(p)}/\mathbf{k}$ is not cyclic.

For more details see [Mi - 89], [Su - 91], [CF - 91], [Ism - 92], [Az - 93], [Ay - 95] and [Az - 97].

§3. Capitulation of the 2-ideal classes of some biquadratic fields

Let **k** be a number field such that the 2-component $C_{\mathbf{k},2}$ of $C_{\mathbf{k}}$ is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Let G_2 be the Galois group of $\mathbf{k}_2^{(2)}/\mathbf{k}$. By class field theory, $Gal(\mathbf{k}_1^{(2)}/\mathbf{k}) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Then $\mathbf{k}_1^{(2)}$ contains three quadratic extensions of **k** denoted by \mathbf{F}_1 , \mathbf{F}_2 and \mathbf{F}_3 . Under these conditions, Kisilevsky [Ki-76] proved the following.

Theorem 3.1. Let **k** be such that $C_{\mathbf{k},2} \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Then we have three types of capitulation:

- Type 1: The four classes of $C_{\mathbf{k},2}$ capitulate in each extension $\mathbf{F}_i, i = 1, 2, 3$. This is possible if and only if $\mathbf{k}_1^{(2)} = \mathbf{k}_2^{(2)}$.
- Type 2: The four classes of $C_{\mathbf{k},2}$ capitulate only in one extension among the three extensions \mathbf{F}_i , i = 1, 2, 3. In this case the group G_2 is dihedral.
- Type 3: Only two classes capitulate in each extension \mathbf{F}_i , i = 1, 2, 3. In this case the group G_2 is semidihedral or quaternionic.

In this section, we suppose that $\mathbf{k} = \mathbb{Q}(\sqrt{d}, i)$ where $d \in \mathbb{N}$ is such that $C_{\mathbf{k},2} \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, and we study the capitulation problem in the extensions $\mathbf{F}_i/\mathbf{k}, i = 1, 2, 3$.

Diagram 1

The first step is to study the structure of $C_{\mathbf{k},2}$. Using genus theory, the class number formula for biquadratic fields, Kaplan's results on the 2-part of the class number for quadratic number fields and other results, we can prove

Theorem 3.2. Let Q be the Hasse unit index of \mathbf{k} and let $C_{\mathbf{k},2}$ be the 2-component of the class group of \mathbf{k} . Let $\mathbf{k}^{(*)}$ be the genus field of \mathbf{k} . Then the group $C_{\mathbf{k},2}$ is of type (2, 2) if and only if one of the next cases occurs:

(1) $d = 2pq, p \equiv -q \equiv 1 \pmod{4}$, at least two of the three symbols $\left(\frac{p}{q}\right), \left(\frac{2}{p}\right), \left(\frac{2}{q}\right)$ are -1 and Q is 1, in which case, $\mathbf{k}^{(*)} = \mathbf{k}_{1}^{(2)} = \mathbb{Q}(\sqrt{p}, \sqrt{q}, \sqrt{2}, i);$ (2) $d = 2q_{1}q_{2}, q_{1} \equiv q_{2} \equiv -1 \pmod{4}, \left(\frac{q_{1}}{q_{2}}\right) = -\left(\frac{q_{2}}{q_{1}}\right) = 1, \left(\frac{2}{q_{1}}\right) = -\left(\frac{2}{q_{2}}\right) = 1$ and Q = 1, in which case, $\mathbf{k}^{(*)} = \mathbf{k}_{1}^{(2)} = \mathbb{Q}(\sqrt{q_{1}}, \sqrt{q_{2}}, \sqrt{2}, i);$ (3) $d = p_{1}p_{2}, p_{1} \equiv 1 \pmod{8}, p_{2} \equiv 5 \pmod{8}$ and $\left(\frac{p_{1}}{p_{2}}\right) = -1$, in which case, $\mathbf{k}^{(*)} = \mathbf{k}(\sqrt{p_{1}}) \neq \mathbf{k}_{1}^{(2)};$ (4) $d = pq, p \equiv 1 \pmod{8}, q \equiv -1 \pmod{4}, \left(\frac{p}{q}\right) = -1$ and Q = 2, in which case, $\mathbf{k}^{(*)} = \mathbf{k}(\sqrt{p}) \neq \mathbf{k}_{1}^{(2)}.$

Remarks 3.1. If $\mathbf{k}^{(*)} \neq \mathbf{k}_1^{(2)}$, we set $\mathbf{F}_1 = \mathbf{k}^{(*)} = \mathbf{k}(\sqrt{p})$ where $p \equiv 1 \pmod{8}$, $\mathbf{F}_2 = \mathbf{k}(\sqrt{a+bi})$ and $\mathbf{F}_3 = \mathbf{k}(\sqrt{a-bi})$ where *a* and *b* are two integers such that $p = a^2 + b^2$, $a \equiv 1 \pmod{4}$ and $b \equiv 0 \pmod{4}$.

In order to determine the number of ideal classes which capitulate in \mathbf{F}_i/\mathbf{k} , i = 1, 2, 3, we have to determine the unit group of each $\mathbf{F}_i, i = 1, 2, 3$, where \mathbf{F}_i is a composite of three quadratic fields. So using the previous results and others, we obtain the next solution of the capitulation problem.

Theorem 3.3. Let $C_{\mathbf{F}_i,2}$ be the 2-component of the class group of \mathbf{F}_i and let $j_i: C_{\mathbf{k},2} \longrightarrow C_{\mathbf{F}_i,2}$ be the canonical homomorphism. (1) If $\mathbf{k}^{(*)} = \mathbf{k}_1^{(2)}$, then $\mathbf{k}_1^{(2)} \neq \mathbf{k}_2^{(2)}$, $G_2 \simeq Q_m$ or $S_m (m > 3)$ and $|ker j_i| = 2$ for i = 1, 2, 3 (capitulation type 3), where Q_m and S_m are respectively the group of quaternions and the semi-dihedral group of order 2^m .

(2) Let $\mathbf{k}^{(*)} \neq \mathbf{k}_1^{(2)}$. Then $|\ker j_1| = 4$. Moreover, (a) If d is divisible by a prime $q \equiv -1 \pmod{4}$ and $p \neq x^2 + 32y^2$, then $\mathbf{k}_{2}^{(2)} = \mathbf{k}_{1}^{(2)}, \ G_{2} \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and $|ker j_{i}| = 4$ for i = 1, 2, 3(capitulation type 1);

(b) If d is not divisible by a prime $q \equiv -1 \pmod{4}$ or if $p = x^2 + 32y^2$, then $\mathbf{k}_2^{(2)} \neq \mathbf{k}_1^{(2)}$, $G_2 \simeq D_m (m \ge 3)$, the dihedral group of order 2^m , and $|\ker j_i| = 2$ for i = 2, 3 (capitulation type 2).

For more details see [Az - 93] and [Az - 97].

Numerical Examples.

Values of d	Capitulation types
$17 \cdot 7, \ 17 \cdot 5, \ 73 \cdot 7$	type 1
$41\cdot 13, \hspace{0.2cm} 41\cdot 7$	type 2
$2 \cdot 3 \cdot 7, \ 2 \cdot 3 \cdot 5, \ 2 \cdot 5 \cdot 7, \ 2 \cdot 13 \cdot 3, \ 2 \cdot 5 \cdot 11$	type 3

Table 1

$\S4$. On the capitulation of the 3-ideal classes of a cubic cyclic field

Let k be a cubic cyclic field over ${\mathbb Q}$ whose class number is exactly divisible by 9. Let $\mathbf{k}_1^{(3)}$ be its Hilbert 3-class field and let $\mathbf{k}^{(*)}$ be its absolute genus field. Then the 3-ideal class group of \mathbf{k} is of type (3,3), and $\mathbf{k}_1^{(3)}/\mathbf{k}$ contains four subfields $\mathbf{K}_1, \mathbf{K}_2, \mathbf{K}_3$ and \mathbf{K}_4 . We want to study the capitulation problem of the 3-ideal classe of \mathbf{k} .

For the details of all the proofs and results given in this section see [Ay-95].

Diagram 2

We have to distinguish two cases.

First case: $[\mathbf{k}^{(*)} : \mathbf{k}] = 3$. It turns out that this is equivalent to each of the following conditions:

- $Gal(\mathbf{k}_1^{(3)}/\mathbb{Q})$ is not abelian; - $\mathbf{k}^{(*)} = \mathbf{K}_i$ for some $i \in \{1, 2, 3, 4\}$;

- Exactly two distinct prime numbers p and q are ramified in \mathbf{k} .

Second case: $[\mathbf{k}^{(*)}: \mathbf{k}] = 9$. This is equivalent to each of the following conditions:

- $Gal(\mathbf{k}_1^{(3)}/\mathbb{Q})$ is abelian;

$$-\mathbf{k}^{(*)} = \mathbf{k}_1^{(3)};$$

- Exactly three distinct prime numbers p, q and r are ramified in \mathbf{k} .

(A) Case where $[k^{(*)}:k] = 3$

In this case, exactly two prime numbers p and q are ramified in \mathbf{k} , and there exists another unique cubic cyclic field denoted by $\hat{\mathbf{k}}$ having the same conductor as **k**. Denote by $h_{\mathbf{k}}$ (resp. by $h_{\tilde{\mathbf{k}}}$) the class number of **k** (resp. of $\tilde{\mathbf{k}}$).

Let \mathbf{k} be a cubic cyclic field of conductor divisible Theorem 4.1. only by p and q. Then

$$9||h_{\mathbf{k}} \Leftrightarrow 9||h_{\tilde{\mathbf{k}}}|$$

If $9||h_{\mathbf{k}}$, then \mathbf{k} and $\tilde{\mathbf{k}}$ have the same Hilbert 3-class field.

Let σ be a generator of $Gal(\mathbf{k}/\mathbb{Q})$ and let $\delta = \sigma - 1$. From class field theory we know that $\tilde{\mathbf{k}}_1^{(3)}$ corresponds to S^{δ^2} and that S^{δ^2} is trivial, where $S = Gal(\mathbf{k}_1^{(3)}/\mathbf{k})$. Moreover the group of ambiguous classes is of order 3, and generated by the classes $[\mathcal{P}]$ and $[\mathcal{Q}]$, where \mathcal{P} and \mathcal{Q} are the prime ideals of \mathbf{k} lying above p and q. We have of course $[\mathcal{P}]^n[\mathcal{Q}]^m = 1$ for some $n, m \in \{0, 1, 2\}$ and $(n, m) \neq (0, 0)$; the nontrivial relation $[\mathcal{P}]^n[\mathcal{Q}]^m = 1$ is obtained by calculating a constant of Parry denoted $b_{\mathbf{k}}$. Here $b_{\mathbf{k}} = p^n q^m$ is caculated from a fundamental unit of \mathbf{k} (generating over $\mathbb{Z}[\sigma]$ the unit group of \mathbf{k}) and its irreducible polynomial (see [Pa-90]).

Theorem 4.2. Let \mathcal{P}, \mathcal{Q} (resp. $\tilde{\mathcal{P}}, \tilde{\mathcal{Q}}$) be the prime ideals of \mathbf{k} (resp. of $\tilde{\mathbf{k}}$) lying above p and q. Then the following assertions are true: (1) $\forall n, m \in \mathbb{N}; \ [\mathcal{P}]^n [\mathcal{Q}]^m = 1 \Leftrightarrow [\tilde{\mathcal{P}}]^n [\tilde{\mathcal{Q}}]^m = 1.$ (2) $[\mathcal{P}] = 1$ or $[\mathcal{Q}] = 1 \Leftrightarrow 9 || h_{\mathbf{k}^{(*)}}$. Saying this, is equivalent to: $[\mathcal{P}] \neq 1$ and $[\mathcal{Q}] \neq 1 \Leftrightarrow 3 || h_{\mathbf{k}^{(*)}}$.

The fact that the prime \mathcal{P} (resp. $\tilde{\mathcal{P}}$) is inert in $\mathbf{k}^{(*)}/\mathbf{k}$ (resp. in $\mathbf{k}^{(*)}/\tilde{\mathbf{k}}$) and that $\mathbf{k}_1^{(3)} = \tilde{\mathbf{k}}_1^{(3)}$, we get that the Artin maps $(\mathbf{k}_1^{(3)}/\mathbf{k}, \mathcal{P})$, $(\tilde{\mathbf{k}}_1^{(3)}/\tilde{\mathbf{k}}, \tilde{\mathcal{P}})$, and $(\mathbf{k}_1^{(3)}/\mathbf{k}^*, \mathcal{P}^*)$ are equal, where \mathcal{P}^* is a prime in $\mathbf{k}^{(*)}$ lying above p; so we obtain (1). The fact that the 3-class number of $\mathbf{k}^{(*)}$ is equal to 3 or 9 is obtained by using a formula giving $h_{\mathbf{k}^{(*)}}$ where $\mathbf{k}^{(*)}$ is considered as the composite of cubic cyclic fields, so the assertion (2) is proved by calculating some unit index involving Parry's constant (see [Pa-90]).

Theorem 4.3. (1) All the 3-ideal classes capitulate in each of the four intermediate fields of $\mathbf{k}_1^{(3)}/\mathbf{k}$ if and only if $3||h_{\mathbf{k}^{(*)}}$. In this case, $\mathbf{k}_1^{(3)} = \mathbf{k}_n^{(3)}$ for each $n \geq 2$.

(2) Let **L** be a subextension of $\mathbf{k}_1^{(3)}$ which is cubic over **k**. Then only the ambiguous ideal classes capitulate in **L** if and only if $9||h_{\mathbf{k}^{(*)}}|$. In this case, $\mathbf{k}_2^{(3)} = \mathbf{k}_n^{(3)}$ for each $n \geq 3$.

The first assertion is obvious. For the second, the unit index in the extension $\mathbf{k}^{(*)}/\mathbf{k}$ is 1, so only the three ambiguous classes capitulate in $\mathbf{k}^{(*)}$ (see [Fr-93] and [Ja-88]); we use the fact that the group $Gal(\mathbf{k}_2^{(3)}/\mathbf{k})$ has two generators and we prove that $Gal(\mathbf{k}_2^{(3)}/\mathbf{k})$ is metacyclic of order 27 (see [Bl-58]); so the conclusion is obtained via the transfer for groups of order 27. See [Mi-89] for more information on transfer and [Ne-67] for all the different groups of order 27.

Numerical Examples.

$f_{\mathbf{k}}$	$b_{\mathbf{k}}$
$657 = 9 \cdot 73$	$(3)^2(73)$
$1267 = 7 \cdot 181$	(7)(181)
$2439 = 9 \cdot 271$	(271)
$5971 = 7 \cdot 853$	(853)

(B) Case where $[k^{(*)} : k] = 9$

In this case, $\mathbf{k}_1^{(3)} = \mathbf{k}^{(*)}$ and exactly three prime numbers p, q and r are ramified in \mathbf{k} ; there are exactly three other cubic cyclic fields having the same conductor as \mathbf{k} . Using the cubic symbol, G. Gras distinguished 13 different situations (see [Gr-73]). We solved the capitulation problem for four of them, namely under the following equivalent conditions:

Let p, q, r be distinct prime numbers $\equiv 1 \pmod{3}$, and allow p to be equal to 3; the Hilbert 3-class field of each cubic cyclic field of conductor dividing $(pqr)^2$ is equal to its absolute genus field.

Under these conditions we have:

Theorem 4.4. If **k** is a cubic cyclic field of conductor pqr (or 9qr if p = 3) and if $9||h_{\mathbf{k}}$, then all the 3-ideal classes capitulate in each of the four intermediate fields of $\mathbf{k}_{1}^{(3)}/\mathbf{k}$.

By using Parry's constant and some unit index (see [Pa-90]), we prove that the 3-class number of each bicubic bicyclic field in $\mathbf{k}_1^{(3)}/\mathbf{k}$ is equal to 3.

Numerical examples. Suppose that **k** is a cubic cyclic field with conductor $f_{\mathbf{k}} \leq 16000$. Then **k** satisfies the last theorem if and only if $f_{\mathbf{k}} \in \{819, 1197, 1729, 1953, 2223, 2331, 2709, 2821, 2843, 3627, 3913, 4221, 4329, 5031, 5301, 5551, 5719\}.$

§5. On the capitulation of the 3-ideal classes of the normal closure of a pure cubic field

Let $\Gamma = \mathbb{Q}(\sqrt[3]{n})$ be a pure cubic field with class number h_{Γ} , $\mathbf{k} = \mathbb{Q}(\sqrt[3]{n}, j)$ its normal closure $(j = e^{\frac{2i\pi}{3}})$, $\mathbf{k}_1^{(3)}$ the Hilbert 3-class field of \mathbf{k} , and $S_{\mathbf{k}}$ the 3-ideal class group of \mathbf{k} . Suppose that $E_{\mathbf{k}}$ is the group of units of \mathbf{k} , E_0 the subgroup of $E_{\mathbf{k}}$ generated by the units of all proper subfields of \mathbf{k} , and $u = [E_{\mathbf{k}} : E_0]$. Let $\operatorname{Gal}(\mathbf{k}/\mathbb{Q}) = \langle \sigma, \tau \rangle$, $\operatorname{Gal}(\mathbf{k}/\mathbf{k}_0) = \langle \sigma \rangle$, $\operatorname{Gal}(\mathbf{k}/\Gamma) = \langle \tau \rangle$, where $\sigma^3 = \tau^2 = 1$, $\sigma\tau = \tau\sigma^2$ and $\sigma^2\tau = \tau\sigma$.

The relation between the class number $h_{\mathbf{k}}$ of \mathbf{k} and the class number h_{Γ} of Γ is given by $h_{\mathbf{k}} = h_{\Gamma}^2 \frac{u}{3}$ (see [B-C-71]).

Proposition 5.1. (1) $S_{\mathbf{k}} \cong \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \Leftrightarrow 3$ divides exactly h_{Γ} and u = 3.

(2) If $S_{\mathbf{k}}$ is of rank 2 and if 3 exactly divides h_{Γ} , then u = 3, whereupon $S_{\mathbf{k}} \cong \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$.

The study of the structure of $S_{\mathbf{k}}$ and its rank is based on Gerth's results in [Ge-75], [Ge-76] and [Ger-76].

The action of the Galois group of \mathbf{k}/\mathbb{Q} on $S_{\mathbf{k}}$ and genus theory allow us to distinguish three different cases (see [Ism-92]). We let $k_0 = \mathbb{Q}(j)$ and we define $(\mathbf{k}/\mathbf{k}_0)^*$ to be the relative genus field of \mathbf{k} over \mathbf{k}_0 . Then (1) \mathbf{k} is of type I if $(\mathbf{k}/\mathbf{k}_0)^* = \mathbf{k}\Gamma_1$, where Γ_1 is the Hilbert 3-class field of Γ ;

(2) **k** is of type II if $(\mathbf{k}/\mathbf{k}_0)^* \neq \mathbf{k}\Gamma_1$ and $(\mathbf{k}/\mathbf{k}_0)^*$ is a proper subfield of $\mathbf{k}_1^{(3)}$;

(3) **k** is of type III if $(\mathbf{k}/\mathbf{k}_0)^* = \mathbf{k}_1^{(3)}$.

When the 3-group $S_{\mathbf{k}}$ is of type (3,3), it has 4 subgroups of order 3, denoted by H_j , $1 \leq j \leq 4$. Let \mathbf{K}_j be the intermediate extension of \mathbf{k}_1/\mathbf{k} , corresponding by class field theory to H_j . As each \mathbf{K}_j is cyclic of order 3 over \mathbf{k} , there is at least one subgroup of order 3 of $S_{\mathbf{k}}$, i.e., at least one H_l for some $l \in \{1, 2, 3, 4\}$, which capitulates in \mathbf{K}_j (by Hilbert's theorem 94).

Definition 5.1. Let S_j be a generator of H_j $(1 \le j \le 4)$ corresponding to \mathbf{K}_j . For $1 \le j \le 4$, let $i_j \in \{0, 1, 2, 3, 4\}$. We say that the capitulation is of type (i_1, i_2, i_3, i_4) to mean the following:

(1) when $i_j \in \{1, 2, 3, 4\}$, then only the class S_{i_j} and its powers capitulate in \mathbf{K}_i ;

(2) when $i_j = 0$, then all the 3-classes capitulate in \mathbf{K}_j .

Suppose that **k** is of type I; we show (see [Ism-92]) that $S_{\mathbf{k}} = \{\mathcal{A}^{r+s\sigma} \mid 0 \leq r, s \leq 2\}$ where \mathcal{A} is such that $\mathcal{A}^{\tau} = \mathcal{A}$. The four subgroups of $S_{\mathbf{k}}$ are given by: $H_1 = \langle \mathcal{A} \rangle, H_2 = \langle \mathcal{A}^{\sigma} \rangle, H_3 = \langle \mathcal{A}^{1+\sigma} \rangle$, and $H_4 = \langle \mathcal{A}^{\sigma-1} \rangle$ which corresponds to $\mathbf{K}_4 = (\mathbf{k}/\mathbf{k}_0)^*$.

Theorem 5.1. Let p and q be prime numbers and let $u = [E_k : E_0]$.

(1) If **k** is of type I, then the possible forms of n (where $\Gamma = \mathbb{Q}(\sqrt[3]{n})$) are

- (i) $n = p^{e_1}, p \equiv 1 \pmod{3}$ with $e_1 \in \{1, 2\}$;
- (ii) $n = 3^e p^{e_1}, p \equiv 4 \text{ or } 7 \pmod{9}$ with $e, e_1 \in \{1, 2\}$;
- (iii) $n = p^e q^{e_1} \equiv \pm 1 \pmod{9}$, $p \text{ or } -q \equiv 4 \text{ or } 7 \pmod{9}$ and $e, e_1 \in \{1, 2\}$.

(2) Let $n \in \mathbb{N}$ be as in (ii) (resp. (iii)), let $\left(\frac{3}{p}\right)_3 \neq 1$ (resp. $\left(\frac{q}{p}\right)_3 \neq 1$)) and assume $3||h_{\Gamma}$. Then u = 1, $S_{\mathbf{k}}$ is cyclic of order 3 and $E_{\mathbf{k}} = \langle \varepsilon, \varepsilon^{\sigma}, -j \rangle$, where ε is the fundamental unit of Γ .

Theorem 5.2. (1) All the 3-classes capitulate in $\mathbf{K}_4 = \mathbf{k}\Gamma_1 = (\mathbf{k}/\mathbf{k}_0)^*$.

(2) The numbers of 3-classes capitulating in \mathbf{K}_1 , \mathbf{K}_2 and \mathbf{K}_3 are the same. More precisely, the possible capitulation types are (0, 0, 0, 0), (1, 2, 3, 0) or (4, 4, 4, 0).

Suppose that **k** is of type II; we show (see [Ism-92]) that the four cubic fields \mathbf{K}_i are given as follows: $\mathbf{K}_1 = (\mathbf{k}/\mathbf{k}_0)^*$ which corresponds by class field theory to $H_1 = S_{\mathbf{k}}^{(\sigma)} = \langle \mathcal{A} \rangle$, $\mathbf{K}_2 = \mathbf{k}\Gamma_1''$, $\mathbf{K}_3 = \mathbf{k}\Gamma_1'$ and $\mathbf{K}_4 = \mathbf{k}\Gamma_1$, where Γ_1 (resp. Γ_1' , Γ_1'') is the Hilbert 3-class field of Γ (resp. of the two other cubic fields Γ' , Γ'' contained in **k**).

Diagram 4

Theorem 5.3. (1) The class \mathcal{A} capitulates in the four cubic extensions \mathbf{K}_i , $1 \leq i \leq 4$.

(2) The numbers of 3-classes capitulating in \mathbf{K}_2 , \mathbf{K}_3 and \mathbf{K}_4 are the same. More precisely, the possible capitulation types are (0,0,0,0), (0,1,1,1), (1,0,0,0) or (1,1,1,1).

Theorem 5.4. Let q_i be prime numbers $\equiv -1 \pmod{3}$. (1) If the field **k** is of type II, then the possible forms of n (where $\Gamma = \mathbb{Q}(\sqrt[3]{n})$) are

- (i) $n = 3^e q_1^{e_1}$ with $q_1 \equiv -1 \pmod{9}$ and $e, e_1 \in \{1, 2\}$;
- (ii) $n = q_1^{e_1} q_2^{e_2}$ with $q_1 \equiv q_2 \equiv -1 \pmod{9}$ and $e_1, e_2 \in \{1, 2\}$;
- (iii) $n = 3^e q_1^{\overline{e}_1} q_2^{e_2}$ with q_1 or $q_2 \equiv 2$ or 5 (mod 9), $e_1, e_2 \in \{1, 2\}$, $e \in \{0, 1, 2\}$ and $n \not\equiv \pm 1 \pmod{9}$;
- (iv) $n = q_1^{e_1} q_2^{e_2} q_3^{e_3}$ with q_1 or q_2 or $q_3 \equiv 2$ or 5 (mod 9), $n \equiv \pm 1$ (mod 9) and $e_1, e_2, e_3 \in \{1, 2\}$.

(2) If the integer n has one of the four forms of (1) and if $3||h_{\Gamma}$, then the index u = 3, whereupon **k** is of type II.

(3) The normal closure **k** of $\Gamma = \mathbb{Q}(\sqrt[3]{n})$ is of type II if and only if n has one of the four forms of (1) and $3||h_{\Gamma}$.

Suppose finally that \mathbf{k} is of type III. Then we have the following.

Theorem 5.5. Let p, q, q_1 and q_2 be prime numbers such that $p \equiv -q \equiv -q_1 \equiv -q_2 \equiv 1 \pmod{3}$. The normal closure $\mathbf{k} = \mathbb{Q}(j, \sqrt[3]{n})$ of $\Gamma = \mathbb{Q}(\sqrt[3]{n})$ is of type III if and only if $3||h_{\Gamma}$, and n has one of the following forms:

(i) $n = 3^{e}p^{e_{1}}$ with $p \equiv 1 \pmod{9}$ and $e, e_{1} \in \{1, 2\}$; (ii) $n = q^{e}p^{e_{1}}$ with $-q \equiv p \equiv 1 \pmod{9}$ and $e, e_{1} \in \{1, 2\}$; (iii) $n = p^{e}q_{1}^{e_{1}}q_{2}^{e_{2}}$ with $p \text{ or } -q_{1} \text{ or } -q_{2} \equiv 4 \text{ or } 7 \pmod{9}$, $n \equiv \pm 1 \pmod{9}$ and $e, e_{1}, e_{2} \in \{1, 2\}$; (iv) $n = 3^{e}p^{e_{1}}q^{e_{2}}$ with $p \text{ or } -q \equiv 4 \text{ or } 7 \pmod{9}$, $e \in \{0, 1, 2\}$, $e_{1}, e_{2} \in \{1, 2\}$ and $n \not\equiv \pm 1 \pmod{9}$.

Let us remark that **k** is of type III means that $(\mathbf{k}/\mathbf{k}_0)^* = \mathbf{k}_1^{(3)}$; in this case for $\forall \mathcal{A} \in S_{\mathbf{k}}$ we have $\mathcal{A}^{\sigma} = \mathcal{A}$, i.e., all the 3-classes are ambiguous classes.

When n has one of the four forms of the last theorem, and if $p \equiv -q \equiv -q_1 \equiv -q_2 \equiv 1 \pmod{3}$, we have $p = \pi_1 \pi_2$, $-q = \pi$, $-q_1 = \pi_3$ and $-q_2 = \pi_4$, where π , π_i $(1 \leq i \leq 4)$ are prime integers of \mathbf{k}_0 ; we also have $\mathcal{3O}_{\mathbf{k}_0} = (\lambda)^2$ with $\lambda = 1 - j$. We denote respectively by P_1 , P_2 , Q, Q_1 , Q_2 and I the prime ideal of \mathbf{k} lying above π_1 , π_2 , π , π_3 , π_4 and λ . We summarize in the next theorem most of the results concerning the capitulation problem when \mathbf{k} is of type III.

Theorem 5.6. Suppose that the normal closure $\mathbf{k} = \mathbb{Q}(\sqrt[3]{n}, j)$ of $\Gamma = \mathbb{Q}(\sqrt[3]{n})$ is of type III.

(A) If n has one of the four forms of last theorem with the property that the prime number $p \equiv \pi_1 \pi_2$ dividing n satisfies $p \equiv 1 \pmod{9}$, or if n has the fourth form with $p \not\equiv 1 \pmod{9}$ and (n,3) = 1, then we have the following:

(1) $\mathbf{k}_1^{(3)} = \mathbf{k}(\sqrt[3]{\pi_1}, \sqrt[3]{\pi_2}), P_1P_2 \text{ is not a principal ideal in } \mathbf{k} \text{ and } S_{\mathbf{k}} = \langle [P_1P_2], [P_1] \rangle.$

(2) $\mathbf{K}_1 = \mathbf{k}(\sqrt[3]{\pi_1\pi_2}), \mathbf{K}_2 = \mathbf{k}(\sqrt[3]{\pi_2}), \mathbf{K}_3 = \mathbf{k}(\sqrt[3]{\pi_1}) \text{ and } \mathbf{K}_4 = \mathbf{k}\Gamma_1 = \mathbf{k}(\sqrt[3]{\pi_1\pi_2}).$

(3) $[P_1P_2]$ capitulates in \mathbf{K}_1 , $[P_2]$ capitulates in \mathbf{K}_2 , $[P_1]$ capitules in \mathbf{K}_3 and all the 3-classes capitulate in \mathbf{K}_4 .

(4) The possible capitulation types are (0,0,0,0), (1,3,2,0), (0,3,2,0) or (1,0,0,0).

(B) If n has the form of (iii) with $p \not\equiv 1 \pmod{9}$ or n has the form of (iv) with $3 \mid n$, then all the 3-classes capitulate in \mathbf{K}_4 and we have the following capitulation types depending on some conditions on the ideals Q, I, Q_1 and Q_2 :

(a) (0, 4, 4, 0), (1, 4, 4, 0), (4, 4, 4, 0), (1, 0, 0, 0) or (4, 0, 0, 0);

(b) (0, 0, 0, 0);

(0,3,2,0) or (0,2,3,0); (1,0,0,0); (1,3,2,0) or (1,2,3,0). **Theorem 5.7.** Let h_{Γ} be the class number of the pure cubic field $\Gamma = \mathbb{Q}(\sqrt[3]{n})$. If $n = c^e p^{e_1}$, where c = 3 or q, and p, q are prime numbers such that $p \equiv -q \equiv 1 \pmod{9}$ and $e, e_1 \in \{1, 2\}$, then

$$\left(\frac{c}{p}\right)_3 = 1 \Rightarrow 3^2 |h_{\Gamma}.$$

When n has the form (iii) or the form (iv), we prove seven other similar results. Each time, we construct, under certain conditions, a natural integer c such that:

$$\left(\frac{c}{p}\right)_3 = 1 \Rightarrow 3^2 |h_{\Gamma}|.$$

The proof of all the results given in this section can be found in [Ism-92]. In this work we used also the arithmetic properties of a pure cubic field (see [De-00]), Kummer theory and the cubic symbol (see [I-R-82]). For the following numerical examples we used the tables given in [B-87] and [B-W-Z-71].

Numerical Examples.

(1) For $p \in \{61, 67, 103, 151\}$ we have $\mathbf{k} = \mathbb{Q}(j, \sqrt[3]{p})$ is of type I. (2)

n	h_{Γ}	$\mathbf{k} = \mathbb{Q}(j, \sqrt[3]{n})$
$3 \cdot 17 = 51$	3	type II
$3^2 \cdot 17 = 153$	$9 = 3^2$	$S_{\mathbf{k}} \cong C_9 \times C_9$
$3 \cdot 53 = 159$	3	type II
$3^2 \cdot 53 = 477$	$9 = 3^2$	$S_{\mathbf{k}} \cong C_9 \times C_9$
$3 \cdot 71 = 213$	$21 = 7 \cdot 3$	type II
$3^2 \cdot 71 = 639$	$18 = 2 \cdot 3^2$	$S_{\mathbf{k}} \cong C_9 \times C_9$
$3 \cdot 89 = 267$	$15 = 5 \cdot 3$	type II
$3^2 \cdot 89 = 801$	$6 = 3 \cdot 2$	type II
$3 \cdot 107 = 321$	$9 = 3^2$	$S_{\mathbf{k}} \cong C_9 \times C_9$
$3^2 \cdot 107 = 963$	3	type II

Table 2

n	h_{Γ}	n	h_{Γ}
$3 \cdot 19 = 57$	6	$3^2 \cdot 19 = 171$	6
$3 \cdot 37 = 111$	3	$3^2 \cdot 37 = 333$	3
$3 \cdot 109 = 327$	12	$3^2 \cdot 109 = 981$	3
$3 \cdot 127 = 381$	12	$3 \cdot 163 = 489$	3
$3 \cdot 181 = 543$	3	$3\cdot 199 = 597$	3

(3) For each integer n in the next table, $\mathbf{k} = \mathbb{Q}(j, \sqrt[3]{n})$ is of type III.

Table 3

References

- [Ay-95] M. Ayadi, Sur la capitulation des 3-classes d'idéaux d'un corps cubique cyclique. Thèse de doctorat. Université Laval - Québec - Canada. (1995).
- $\begin{array}{ll} \mbox{[Aya-95]} & \mbox{M. Ayadi, Table d'Ennola de corps cubiques cycliques de conduc$ $teurs \leq 15993. Prépublication. Département de Mathématiques$ $et de Statistique U. Laval, 95–21. \end{array}$
- [Az-93] A. Azizi, Capitulation des 2-classes d'idéaux de $\mathbb{Q}(\sqrt{d}, i)$. Thèse de doctorat. Université Laval Québec Canada. (1993).
- [B-87] W. H. Beyer, Standard Mathematical Tables, 28th edition, (1987), by CRC. Press Inc.
- [B-C-70] P. Barrucand and H. Cohn, A Rational Genus, Class Number Divisibility, and Unit Theory for Pure Cubic Fields. J. Number Theory, 2 (1970), 7–21.
- [B-C-71] P. Barrucand and H. Cohn, Remarks on Principal Factors in a Relative Cubic Field. J. Number Theory, 3 (1971), 226–239.
- [Bl-58] N. Blackburn, On Prime Power Groups with two Generators. Proc. Cambridge Phil. Soc., 54 (1958), 327–337.
- [B-W-Z-71] B. D. Beach, H. C. Williams, C. R. Zarnke, Some Computer Results on Units in Quadratic and Cubic Fields. Proceedings of the Twenty-Fifth Summer Meeting of the Canadian Mathematical Congress (Lakehead Univ., Thunder Bay, Ont. 1971), 609–648.
- [De-00] R. Dedekind, Uber die Anzahl der Idealklassen in reinen kubischen Zahlkörpern. J. reine angewandte Mathematik, Bd., 121 (1900), 40–123.
- [Fr-93] G. Frei, Théorie des corps de classes. Notes de cours, U. Laval 1992–1993.
- [Ge-75] F. Gerth III, On 3-Class Groups of Pure Cubic Fields. J. reine angew. Math., 278/279 (1975), 52–62.

- [Ge-76] F. Gerth III, On 3-Class Groups of Cyclic Cubic Extensions of Certain Number Fields. J. Number Theory, 8 (1976), 84–98.
- [Ger-76] F. Gerth III, Ranks of 3-Class Groups of non-Galois Cubic Fields. Acta Arithmetica, **30** (1976), 307–322.
- [Gr-73] G. Gras, Sur les l-classes d'idéaux dans les extensions cycliques relatives de degré premier l. I,II, Ann. Inst. Fourier (Grenoble), v. 23, no. 3 (1973), pp. 1–48; ibid. v. 23, no 4, (1973), pp. 1–44.
- [H-S- 82] F. P. Heider und B. Schmithals, Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen. J. reine angew. Math., 336 (1982), 1–25.
- [I-R-82] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory. Graduate Texts in Mathematics, 84, Springer-Verlag (1982).
- [Ish-76] M. Ishida, The Genus Fields of Algebraic Number Fields. Lecture Notes in Mathematics Vol. 555, Springer-Verlag (1976).
- [Ism-92] M. C. Ismaili, Sur la capitulation des 3-classes d'idéaux de la clôture normale d'un corps cubique pur. Thèse de doctorat. Université Laval - Québec - Canada. (1992).
- [Ja-88] J. F. Jaulent, L'état actuel du problème de la capitulation. Séminaire de théorie des nombres de Bordeaux, 1987–1988, exposé no. 17.
- [Ki-76] H. Kisilevsky, Number Fields with Class Number Congruent to 4 mod 8 and Hilbert's Theorem 94. J. Number Theory, 8, (1976), 271–279.
- [Ka-73] P. Kaplan, Divisibilité par 8 du nombre de classes des corps quadratiques dont le 2-groupe des classes est cyclique et réciprocité biquadratique. J. Math. Soc. Japan. vol. 25, No 4, (1973).
- [Ka-76] P. Kaplan, Sur le 2-groupe des classes d'idéaux des corps quadratiques. J. reine angew. Math., 283/284, (1976), 313–363.
- [Kub-53] T. Kubota, Über die Beziehung der Klassenzahlen der Unterkörper des bizyklischen Zahlkörpers. Nagoya Math. J., 6, (1953), 119–127.
- [Kub-56] T. Kubota, Über den bizyklischen biquadratischen Zahlkörper. Nagoya Math. J., 10, (1956), 65–85.
- [Kur-43] S. Kuroda, Über den Dirichletschen Zahlkörper. J. Fac. Sci. Imp. Univ. Tokyo, Sec. I, vol. IV, part 5, (1943), 383–406.
- [Mi-89] K. Miyake, Algebraic Investigations of Hilbert's Theorem 94, the Principal Ideal Theorem and Capitulation Problem. Expos. Math., 7, (1989), 289–346.
- [Ne-67] J. Neubüser, Die Untergruppenverbände der Gruppen der Ordnungen ≤ 100 mit Ausnahme der Ordnugen 64 und 96. Publications de l'U. Kiel, (1967).
- [Pa-90] C. J. Parry, Bicyclic Bicubic Fields. Can. J. Math., vol. XLII, no. 3, (1990), 491–507.

[S-T-34]	A. Scholz und O. Taussky, Die Hauptideale der kubischen Klassen- körper imaginär-quadratischer Zahlkörper: ihre rechnerische Bestimmung und ihr Einfluβ auf den Klassenkörperturm. J.
	reine angew. Math., 171 (1934), 19–41.
[Su- 91]	H. Suzuki, A Generalization of Hilbert's Theorem 94. Nagoya
	Math. J., vol. 121 , (1991).
[Te-71]	F. Terada, A Principal Ideal Theorem in the Genus Fields,
	Tôhoku Math. J., Second Series, vol. 23, (4), (1971), 697–718.
[Wa-66]	H. Wada, On the Class Number and the Unit Group of Certain
	Algebraic Number Fields. Tokyo U., Fac. of Sc. J., Series I, 13,

Department of Mathematics, Faculty of Sciences, University Mohamed I, Oujda, MOROCCO.

(1966), 201-209.

482

M. Ayadi, A. Azizi and M. C. Ismaili