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The L-Group 

Bill Casselman 

It is an extremely useful thing to have knowledge of the true 
origins of memorable discoveries . . . It is not so much that 
thereby history may attribute to each man his own discoveries 
and that others should be encouraged to earn like commenda
tion, as that the art of making discoveries should be extended 
by considering noteworthy examples of it. 

Leibniz (from the Historia et Origo Calculi Differentialis, 
translated by J. M. Child) 

In the late 1960's, Robert Langlands introduced a number. of ideas to 
the theory of automorphic forms and formulated a number of conjec
tures which gave the theory a new focus. I was a colleague of his at 
this time, and a good deal of my professional energy since then has been 
directed to problems posed by him. Thus it was not entirely inappropri
ate that when I was invited to this conference, Miyake suggested that 
I say something about those long gone years. I was rather reluctant 
to do this, and for several reasons. The most important one is that, 
unlike other mathematicians who have contributed to class field theory 
and whose work has been discussed at this conference-such as Weber, 
Takagi, Hasse, or Artin-Langlands himself is still very much alive, and 
can very well speak for himself. Indeed, in recent years he has shown 
himself quite willing to discuss his work on automorphic forms in an 
historical context. A second reason for hesitation on my part was that 
although my own professional life has practically coincided with that 
of Langlands' principal conjectures about automorphic forms, and al
though I have been both a professional and a personal friend of his for 
that period, my own contributions to the subject have been perhaps of 
too technical a nature to be of sufficiently general interest to talk about 
at this conference. A third reason was that if I really were to tell you 
something new and of historical interest, I would most of all want to 
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be able to refer to correspondence of Langlands during the late 1960's, 
which has up to now been available only to a few specialists, and details 
of which I could hardly include in a talk of my own. 

However, last summer Langlands and I began a project which caused to 
me think again about Miyake's suggestion. With the assistance of many 
other people, we have begun to collaborate in publishing Langlands' 
collected works on the Internet. This is in many ways an ideal form of 
publication for something like this. For one thing, much of Langlands' 
work was first if not exclusively presented in unpublished correspon
dence and monographs hitherto not easily accessible. My original idea 
was simply to scan this material electronically for presentation in crude 
digital format. But Langlands was more ambitious. Currently several 
of the staff at the Institute for Advanced Study are retyping in '!EX 
not only the unpublished stuff, but in addition many of the published 
papers and books, for free distribution in electronic format. What we 
have done so far is now available at the Internet site 

http://su.nsite.ubc.ca/DigitalMathArchive/Langlands 

The site itself is one of several Internet sites partially sponsored by Sun 
Microsystems. The original idea for these sites was to make software eas
ily and freely available to the public, but the proposal UBC made to Sun 
extends the concept of software to include a wide range of mathematical 
material. 

At the moment I write this (July, 1998), what is on line includes 

• A letter to Andre Weil from January, 1967 
• A letter to Roger Godement from May, 1967 
• A letter to J-P. Serre from December, 1967 
• Euler products, originally published as a booklet by Yale Univer

sity Press 
• 'Problems in the theory of automorphic forms', contained in vol

ume #170 of the Lecture Notes in Mathematics 
• 'A bit of number theory', notes from a lecture given in the early 

1970's at the University of Toronto 

Before the end of this summer of 1998, we will probably have also, among 
smaller items, the book Automorphic forms on GL(2) by Jacquet and 
Langlands, originally volume #114 of the Lecture Notes in Mathemat
ics; the booklet Les debuts de la formule de trace stable, originally pub
lished by the University of Paris; and the preprint distributed by Yale 
University on Artin £-functions and local £-factors, which has seen only 
extremely limited distribution. 
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One of the potential problems we expected to cause us some trouble was 
that of copyright ownership. But I am pleased to say that so far none 
of the original publishers has offered any obstacle at all to our project. 
Considering current controversies over these matters, I would like to 
say that in my opinion the only copyright policy regarding research 
publication which makes any sense from the overall perspective of the 
research community is one under which control automatically reverts to 
an author after, say, at most three or four years. 

The ultimate format of the collection has probably not yet been found, 
but at the moment each item is accompanied by a few editorial remarks 
as well as comments by Langlands himself. The papers themselves can 
be retrieved in any of several electronic formats produced from 'TEX 
files. Nor is it entirely clear-at least to me-what the final fate of the 
collection will be, but the advantage of the way in which the project 
is being carried out is that things will be made available as soon as 
possible, even if the first versions might be somewhat different from the 
final ones. My own contribution is essentially editorial, although I and 
one of my colleagues at UBC are also responsible for technical matters. 
I would like to point out that this manner of publication is the ideal 
one in many situations, and that if anyone would like to know exactly 
what sort of technical effort it involves, I will be happy to try to answer 
questions. 

In the rest of this paper I will recall in modern terms the principal 
concepts introduced by Langlands in 1967 and shortly thereafter, and 
recount to some extent their origins. The crucial part of the story took 
place in January of 1967, when Langlands composed a letter to Weil 
in which the essential part of his program first saw light. Up to then, 
Langlands' own work on automorphic forms had certainly been impres
sive, but that single letter, which cost Langlands a great deal of effort, 
amounted to a definite turning point. What I have to say in the rest 
of this paper might be considered a kind of guide to reading both that 
letter and slightly later material. I will also include some informal re
marks of an historical nature, and at the end a somewhat unorthodox 
collection of unsolved related problems. There are, of course, a number 
of surveys of this material, notably a few expositions by Langlands him
self and that of Borel at the Corvallis conference, but it seems to me 
that there is still much room left for more of the same. 

Incidentally, the letter to Weil was the first document posted on the 
UBC site. 
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Roughly speaking, there were two notable features to the letter. The first 
was that it incorporated in the theory of automorphic forms a radical 
use of adele groups and, implicitly, the representation theory of local 
reductive groups. The second was that it introduced what is now called 
the L-group. It was the first which attracted a lot of attention-and 
even perhaps controversy and resentment-at the beginning, but in the 
long mn this was an inevitable step. Furthermore, the incorporation 
of adele groups did not originate with Langlands, although in his hands 
they were to be more important than they had been. But it is the second 
feature which was really the more significant. In the intervening years, 
the L-group has come to play a central role in much of the theory of 
automorphic forms and related fields. 

§1. Automorphic forms and adele groups 

Classically the automorphic forms considered in number theory are func
tions on the Poincare upper half plane 1i satisfying certain transfor
mation properties with respect to a congruence group r in SL2 (Z), 
some partial differential equation involving SL2 (Q)-invariant differen
tial operators on 1i, and some growth conditions near cusps. They 
include, for example, the 'non-analytic' automorphic forms defined first 
by Maass, which are simply functions on r\ 1i and eigenfunctions for the 
non-Euclidean Laplacian. 

Tamagawa tells me it might have been Taniyama who first noticed 
that one could translate classical automorphic forms to certain func
tions on adele quotients. More precisely, let r be the principal congru
ence subgroup of level N in SL2 (Z). Choose a compact open subgroup 
KN of flplN GL2(Zp) with these two properties: (1) r is the inverse 
image of KN with respect to the natural embedding of SL2 (Z) into 
IlplN GL2(Zp); (2) det(KN) = IlplN z;. A common choice is 

KN = { k I k = [~ ~] modulo N}. 
For pf N, let Kp = GL2(Zp)- The product K1 = KN IlptN Kp is a 
compact open subgroup of GL2 (A1) and r is the inverse image of K 1 in 
SL2 (Q). Since Z is a principal ideal domain, strong approximation tells 
us that the natural embedding 

I'\1i <-+ GL2(Q)\GL2(A)/KRKJ 

is a bijection. Here KR = S0(2), the elements of GL~08 (~) fixing i 
in the usual action on 1i. Maass' functions on I'\1i may therefore be 
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identified with certain functions on the adele quotient GL2 (Q)\GL2 (A) 
fixed by KJRK f, and holomorphic modular forms of weight other than 
0 may be identified with functions transforming in a certain way under 
KJR. 

If g is an element of G(At) then we can express the double coset KtgK1 
as a disjoint union of right cosets giK f, and define the action of a kind of 
Hecke operator on the space of all functions on GL2 (Q)\GL2 (A)/ KJRKt 
according to the formula 

T9 f(x) = I: J(xgi)-

It is not difficult to see that the Hecke operators TP and TP,P on r\ H 
correspond to right convolution by certain functions on p-adic groups 
GL2 (Qp)- More precisely, after a little fussing with weights to deal with 
the problem that classical Hecke operators involve a left action and the 
adelic operators a right one, we can make the classical operators Tp and 
Tp,p for pf N correspond to the double cosets 

For classical automorphic forms, where one already has good tools at 
hand and where terminology is not bad, it might not be entirely clear 
why this translation to an adele quotient is a good idea, but in other 
situations it makes life much simpler immediately. In particular, just 
as it does elsewhere in number theory, it allows one to separate global 
questions from local ones. Of course this always makes things clearer, 
but in this case especially so, and in fact just as with Tate's thesis 
it raises questions in local analysis which might never have otherwise 
appeared. For example, already even for classical forms one has to tailor 
the definition of Hecke operators to the level of the forms involved. In 
the adelic scheme, this fiddling takes place in the choice of KN, and the 
Hecke operators themselves become entirely local operators ( depending 
only on the prime p). 

As one has known since I wasawa and Tate showed us how to look at (
functions, although adeles are a luxury for Q they are a virtual necessity 
for other number fields, where problems involving units and class groups, 
for example, otherwise confuse local and global questions enormously. 
For the moment, let A be the adele ring of F. The exercise above for 
G L 2 ( Q) thus suggests the following definition: An automorphic form 
for a reductive group G defined over a number field F is a function on 
the adelic quotient G(F)\G(A) with these properties: 
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• It satisfies a condition of moderate growth on the adelic analogue 
of Siegel sets; 

• it is smooth at the real primes, and contained in a finite dimen
sional space invariant under Z(g), the centre of the universal 
enveloping algebra of GJR, as well as KJR, a maximal compact 
subgroup of G(IR.); 

• it is fixed with respect to the right action of some open subgroup 
Ki of the finite adele group G(AJ ). 

Hecke operators are determined through convolution by functions on 

K1\G(A1)/K1. 

The conditions on GJR determine an ideal I of finite codimension m 
Z(g)Z(k), that of differential operators annihiliating the form. 

One of the fundamental theorems in the subject is that for a fixed I, K1, 
and KJR the dimension of automorphic forms annihilated by I is finite. 

The group G will be unramified outside a finite set of prime De, that 
is to say arises by base extension from a smooth reductive group over 
Op[l/N] for some positive integer N. For primes p not dividing N, the 
group G / Fp will therefore arise by base extension from a smooth reduc
tive group scheme over Op. One can express compact open subgroups 
KJ as a product Ks I1p\i!S Kp, where Sis a set of primes including De 
and for p tj'_ S we have Kp = G(op), The Hecke operators for Ki will 
include those defined by double cosets Kp\G(Fp)/Kp for p not in S. 

In one of next sections I will recall why the algebra generated by the 
characteristic functions of these cosets is a commutative ring, the local 
Hecke algebra Hp, whose structure one understands well. In this section 
I point out only that because of commutativity together with finite
dimensionality, it makes sense-and does no harm here--to impose on 
an automorphic form the condition that it be an eigenfunction for all 
but a finite number of Hecke algebras Hp. 

From now on, let A(G((Ql)\G(A)) be the space of automorphic forms on 
G((Ql)\G(A). 

§2. The constant term of Maass' Eisenstein series 

I will illustrate the convenience of adele groups by calculating in two ways 
the constant term of Maass' Eisenstein series. In addition to illustrating 
adelic techniques, the calculation will be required later on. 
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Let r = SL2 (Z). For any complex numbers with REAL(s) > 1/2 and 
any z = x + iy in H define 

Es(z) = L 
c>O 

gcd(Z,-d)=l 

lcz + dl 2s+1 · 

The point of this series is that for 

g = [: !] 
we have 

( az + b) 
IMAG(g(z)) = IMAG cz + d 

(ad - be) 
lcz + dl2 IMAG(z) 

so that we actually looking at 

L IMAG('y(z))8+1/ 2 

rp\r 

where r P is the stabilizer of ioo in r. It is generated by integral trans
lations and the scalar matrices ±I, so the function IMAG( ()z) is r P

invariant. The series converges and defines a real analytic function on 
r\H invariant under r such that 

flEs = (s2 - 1/4)Es, 

where fl is the non-Euclidean Laplacian. Simple spectral analysis will 
show that for REAL(s) > 1/2 the function Es is the unique eigenfunction 
of fl on f\H asymptotic to ys+i/2 at oo in the weak sense that the 
difference is square-integrable. A little more work will then show that it 
continues meromorphically in s and is asymptotic to a function of the 
form 

yl/2+s + c( 8 )yl/2~s 

as y ----; oo for generic s, in the strong sense that the difference between 
Es and this asymptotic term is rapidly decreasing in y. (My current 
favourite explanation of the general theory is the lucid article by Jacquet 
at the Edinburgh conference, but of course in the particular case at hand 
one can follow the more elementary technique of Maass.) Of course the 
coefficient c( s) is a meromorphic function of s. It is easy to <led uce that 
Es must therefore also satisfy the functional equation 
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which implies that c( s) satisfies its own functional equation 

c(s)c(l - s) = 1. 

It turns out also that y 1f2+s + c(s)y112-s is the constant term in the 
Fourier series of Es at oo, which is to say that 

yl/2+s + c(s)yl/2-s = 11 Es(x + iy)dx. 

In this section we will calculate c( s) explicitly in both classical and adelic 
terms, to get a feel for the way things go in each case. 

• The classical calculation 

The constant term of Es is 

where 

c>O 
gcd(c,d)=l 

c>O 
gcd(c,d)=l 

(1 dx 
lo lex + icy + dl2s+l 

(1 dx 
lo l(cx + d)2 + c2y21s+l/2 

1 11 dx + ys+l/2 ~ 
~ c2s+l O l(x + d/c)2 + y21s+1/2 

gcd(c,d)=l 

_ s+l/2 s+l/2 (100 dw ) ~ cp(c) 
- y + y . -00 lw2 + y21s+l/2 ~ c2s+l 

(w=x+c/d) 

_ s+l/2 1/2-s (100 dw ) ~ cp(c) 
- y + Y -oo lw2 + 11s+1/2 ~ c2s+l 

_ s+l/2 1/2-sr(l/2)r(s) ~ cp(c) 
- y + y r(s + 1/2) L.....J c2s+l 

c>O 

= ys+l/2 + yl/2-s (JR(2s) ~ cp(c) 
(JR(2s + 1) L.....J c2s+l 

c>O 
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Here cp(c) is the number of integers mod c relatively prime to c. The 
terms in the sum are 'multiplicative' in the arithmetic sense, so the sum 
is also equal to 

so that 

where 

cp(pn) ( (pn _ pn-1)) IT L pn(2s+l) = IT l + L pn(2s+1) 
p n~O p n>O 

=rr(1+(l-l/p)L }ns) 
p n>Op 

= II (1 + p-2s(1 - 1/p) L 21ns) 
p n~Op 

= II (1 + p-2s u - 1/p) 1 2 ) 1- p- s 
p 

= II ( 1 _ p-2s + p-2s _ p-2s-l) 
1- p-2s 

p 

= (1- p-2s-l) II 1 _ p-2s 
p 

~(2s) 
c(s) = ~(2s + 1) 

1 
~(s)=(R(s)Ill -s· 

p -p 

• The adelic calculation 

Let G = SL2 , and continue to let r = SL2 (Z). For each finite prime p 
let KP= G(Zp), and let Kt = I1 KP. 

By strong approximation the natural inclusion of G(JR) into G(A) in
duces a bijection 

r\'H '-+ G(Q)\G(A)/KRKt 

or in other words G(A) = G(Q)G(JR)Kt-

To a function f(g) on r\G(JR) therefore corresponds a unique function 
Fon G(Q)\G(A) defined by the formula 

F(go9R9f) = f (gR) 
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if g0 lies in G(Q), gJR in G(JR), gf in Kt· Let Es be the function on the 
adele quotient corresponding to Es. 

Before I do this, let me explain simple generalizations of the classical 
Eisenstein series and constant term. Let P be the subgroup of G = SL2 

of upper triangular matrices, N its unipotent radical. Let r.p be a function 
on fpN(JR)\G(JR) which is a finite sum of eigenfunctions with respect 
to S0(2). Suppose also that r.p satisfies the equation 

r.p(pg) = 0;+1/2(p)r.p(g) 

where 

Op : [ ~ :-1] e--, ial2 
is the modulus character of the group P. Then the series 

will converge to an automorphic form on f\G(JR) if REAL(s) > 1/2, and 
continue meromorphically in s. If r.p is invariant on the right by S0(2) 
it will be, up to a scalar multiple, the Eisenstein series Es. 

If <I> is an automorphic form on f\G(JR), define its constant term to 
be the function 

{ <l>(ng)dn 
J N(Z)\N(JR) 

on fpN(JR)\G(JR), where N(Z)\N(JR) is assigned measure 1. 

Thus if we apply the constant term to an Eisenstein series we get a 
map from certain functions on fpN(JR)\G(JR) to other functions on the 
same space. Rather than analyze this in detail, I will now explain what 
happens for adele groups. 

Because Q has class number one 

Also because G = PK locally we have 

G(A) = P(A)KJ 

and hence 
G(A) = P(A)N(A)A(JR)KJ 
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where A is the group of diagonal matrices in G, or equivalently 

P(Q)N(A)\G(A)/K1 ~ I'pN(IR)\G(IR) 

Let Op be the modulus character of P(A), taking h to the product of all 
the local factors 15 p (hp). 
Let cp8 be the unique function on P(Q)N(A)\G(A)/ K~Kf such that 

cps(pg) = l5~+1/2 (p)cps(g) and cp(l) = 1. 

• The function Es is the meromorphic continuation of the series 

L 'PsCw). 
P(IQ)\G(/JJ!) 

If <I> is an automorphic form on G(Q)\G(A), its constant term is de
fined to be the function 

{ <l>(ng)dn 
JN(Q)\N(A) 

on P(Q)N(A)\G(.A). This is compatible with the classical one in that 
this diagram is commutative (A denotes automorphic forms): 

f f----t JN(Z)\N(~) f(n)dn 
A(I'\G(IR)) -----+ A(I' pN p (IR)\ G) 

l l 
F f----t JN(Q)\N(A) F(n)dn 

A(G(Q)\G(A)) -----+ A(P(Q)Np(.A)\G(A)) 

Therefore we calculate the constant term of Es to be the function 

r Es(ng)dn = r L 'Ps(,ng)dn. 
j N(Q)\N(A) j N(Q)\N(A) P(Q)\G(Q) 

The point now is that we can apply the Bruhat decomposition 

G(Q) = P(Q) u P(Q)w- 1 N(Q), P(Q)\G(Q) = {1} u w- 1 N(Q) 

where 

We can therefore express the constant term as 

'Ps(g) + r 'Ps(w- 1ng)dn. 
JN(A) 



228 B. Casselman 

The integral over N(A) is just the product of integrals over all the local 
groups N(Qp)- We must therefore calculate the integrals 

with 'Ps,p(hk) = 8~+1/2(h) (h E P(Qp)). 

In both real and p-adic cases we start with 

-1 [ 0 1 ] [ 1 X ] [ w n = -1 0 0 1 
0 

-1 

We now must factor this as hk. In all cases we rely on the transitivity 
of the action of K on lP'1 ( Qp). The group P is the stabilizer of the image 
in lP'1 of image of the row vector [O 1], so in order to factor w- 1n = pk 
we must find kin Kp taking [O 1] to [-1 -x]. 

• The p-adic case 

Let K = G(Zp)- If x lies in Zp then w- 1n lies also in K, and there is 
nothing to be done. Else lxl = p-n with n > 0 and 1/x lies in Zp. The 
row vector [-1 -x] is projectively equivalent to [x-1 1] so we may let 

k = [ ~-1 ~ ] . 
which gives us 

[ 0 1 ] [ 1 ~ ] [ -1 
h= 

-x 
-1 -1 0 -x -x 

For every integer n let 

Calculate 

= 1 + (p _ l)p-(2s+l) + (p2 _ p)p-2(2s+1) + ... 
1- p-1-2s 

1 _ p-2s · 



The L-Group 229 

• The real group 

Here we normalize [-1 -x] to [(x2 + 1)-1/ 2 x(x2 + 1)-112] and let 

where 

Then 

C 
X 

✓x2 + 1 
1 

s=---
✓x2 + 1 

-(x2 + 1)-1/2 

0 
x(x2 + 1)-1/2 ] 
-(x2 + l)1/2 

The integral is therefore 

X + l X = ---,------,-. 100 
( 2 )-s-l/2d f(l/2)f(s) 

-co r(s + 1/2) 

These local calculations lead to exactly the same formula for c( s) as 
before, of course, but it seems fair to claim that we understand better 
why it has an Euler product. 

§3. The Satake isomorphism 

In this section and the next two I shall explain how the £-group is 
constructed. Suppose briefly that F is an algebraic number field, A its 
adele ring. Recall that if r.p is an automorphic form on G(F)\G(A) then 
r.p is fixed by almost all the local compact groups G(Fp)- We know also 
from Hecke's analysis of classical automorphic forms that it's important 
to understand how certain p-adic Hecke operators act on r.p. 

For almost all primesµ, the local group G(Fp) is unramified in the sense 
that G splits over an unramified extension of Fp, which also means that 
G can be obtained by base extension from a smooth reductive group 
scheme over o = Op, the ring of integers of F. The Hecke algebra 
H = H(G(Fp), G(o)) is defined to be the algebra of measures of compact 
support of G both right- and left-invariant under the maximal compact 
subgroup K = G( o ), with convolution as multiplication. It is of course 
generated by the measures constant on single double cosets with respect 
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to K. Note that we can identify such measures with right K-invariant 
functions if we are given a Haar measure on G. 

From now on in this section, let F be a p-adic field. 

We are interested in homomorphisms of the Hecke algebra H(G(F), 
G(o)) into C, and more generally in the structure of this algebra. 

There is one simple way to obtain such homomorphisms. Let B be 
a Borel subgroup obtained by base extension from a Borel subgroup 
of G(o). Let 8 = 8B be the modulus character of B, taking b to 
I detb(b)I- We have an lwasawa decomposition G = BK. Therefore, 
if x is a character of B trivial on B n K = B(o) (which is to say an 
unramified character of B), there is a unique function rp = 'Px on G 
such that 

'Px(bk) = x(b)o1l2 (b) 

for all b in B, k in K. Up to a scalar multiple, it is unique with the 
property 

rp(bgk) = x(b)o1l 2 (b)rp(g). 

Right convolution by elements of the Hecke algebra H preserves this 
property, hence elements of H act simply as multiplication by scalars, 
and therefore from each x we obtain a homomorphism <I>x from H to C. 

The normalizing factor 8112 is there for several reasons, but among others 
to make notation easier in the result I am about to mention. 

Suppose T to be a maximal torus in B, and w to be an element of Kin 
the associated Weyl group W, and N the uni potent radical of B. If x 
satisfies some simple inequalities then the integral 

will converge and satisfy the condition 

The operator 'Px f---+ Tw'f'x also commutes with the Hecke algebra. The 
function Tw'f'x will therefore be (generically non-zero) multiple of 'Pwx· 
As a consequence, the homomorphisms <I>x and <I>wx are the same. 

This means that the map x f---+ <I>x induces one from the W-orbits of 
unramified characters of T to a set of homomorphisms from the Hecke 
algebra H to C. 

There is another way to set this up. Let T be a maximal torus in B 
and A a maximal split torus in T. The injection of A into T induces 
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an isomorphism of free groups A = A(F)/A(o) with T(F)/T(o). Re
striction from B to A therefore induces an isomorphism of the group of 
unramified characters of B ( or T) with those of A. Let R be the group 
ring CC[A] of A. Because G = BK, the R-module of all K-invariant 

functions on G with values in R such that f(ntg) = t8i/2 (t)f(g) is free 
of rank one over R. Convolution by elements of the Hecke algebra are 
R-homomorphisms of this module, and therefore we have a ring homo
morphism <I> from H to R. Any unramified character x of T gives rise 
to a ring homomorphism from R to C, and the composition of this with 
<I> will be the same as <I>x· The W-invariance we saw before now implies 
that the image of <I> lies in R w. The following result is due in special 
cases to different people, but put in essentially definitive form by Satake: 

Theorem. The canonical map constructed above from the Hecke algebra 
H to CC[A]w is a ring isomorphism. 

In other words, all homomorphisms from H to (C are of the form <I>x for 
some X· The point of Satake's proof is injectivity. 

For example, let G be GL2 (Qp), A the group of diagonal matrices in 
G. Suppose the character x takes the matrix ro1 with diagonal (p, 1) to 
a 1 and the matrix ro2 with diagonal (1,p) to a 2 . The ring CC[A]w is 
generated by the images of ro1 +ro2 and ( ro1 ro2)±1. The Hecke operator 
Tp acts on <f!x through multiplication by p1l 2(a1 +a2), and Tp,p by a1a2. 

§4. The dual group I. The split case 

Suppose we are given a classical automorphic form of weight k for the 
congruence group r, say an eigenform for the Hecke operator Tp with 
eigenvalue cp, Then by Deligne's version of the Weil conjectures c = 
(ap+bp) with lapl = lbpl = p(k-l)/z, and also apbp = pk-l_ The diagonal 
matrix 

where ap = ap/p(k-l)/z, /3p = bp/P(k-1)/z, is therefore unitary. Of 
course the pair ( ap, /3p) is determined only up to a permutation. It was 
remarked by Sato and Tate in a slightly different context that the statis
tical distribution of the numbers Cp as p varied seemed to be according 
to the SU(2)-invariant measure on the conjugacy classes determined by 
the pairs ( ap, f]p). This suggests that, more generally, an eigenfunction 
with respect to Hecke operators ought to be thought of as determining 
a conjugacy class in a complex group. 
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The simplest version of Langlands' construction of his dual group does 
exactly this. But there is a slight twist in the story. 

Let G be any split reductive group defined over a p-adic field F. As be
fore, let T ~ B be a maximal split torus contained in the Borel subgroup 
B, and let W be the Weyl group of this pair (G, T). An eigenfunction 
with respect to the Hecke algebra of G(F) with respect to the maxi
mal compact subgroup G(o), according to Satake's theorem, determines 
an element in the W-orbit of Hom(T(F)/T(o), ex). Following the sug
gestion of Sato-Take, we want to interpret this first as a W-orbit in a 
complex torus, then as a conjugacy class in some reductive group con
taining that torus. 

Let T be the torus we are looking for. We first pose an identification 

T(C) = Hom(T(F)/T(o), ex). 

which means that points on the torus T are the same as unramified 
characters of T(F). Second, we fix a map 

.X: T(F)/T(o) -- X*(T) = Hom(X*(T),Z) 

which identifies T(F)/T(o) with the lattice X*(T) of coweights of T. 
This map is characterized by the formula 

lx(t)I = q"i,x,>.(t)> 

for all tin T, x in X*(T). Equivalently, ifµ is a coweight of T then it 
is the image ofµ( ro-1 ) if ro is generator of p. This allows to make the 
identification 

Now if S is any complex torus then we have a canonical identification 

S(C) = Hom(X*(S),ex) 

since the coupling 
S(C) x X*(S) -- ex 

is certainly nondegenerate. If we set S = T we get an identification 

T(C) = Hom(X*(T),ex) 

which leads us also to pose 
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In other words, in some sense the tori T and T must be dual to each 
another. In any event, this is a natural way to construct tori, since from 
almost any standpoint a torus is completely determined by its lattice of 
characters. 

In summary: 

• Points on the torus T( C) may be identified with unramifi.ed com
plex characters ofT(F). 

• Elements ofT(F)/T(o) may beidentifi.ed with rational characters 
off. 

This kind of duality can be extended to one of reductive groups. Let E ~ 
X*(T) be the set of roots of g with respect to T, and let Ev be the as
sociated set of coroots in X*(T). The quadruple (X*(T), E, X*(T), Ev) 
all together make up the root data of the pair ( G, T). If, conversely, 
one is given a quadruple (L*, S*, L*, S*) where L* is a free abelian group 
of finite rank, L* is the dual of L*, S* is a root system in L* and S* 
a compatible coroot system in L* then we can find a reductive group 
defined and split over any field with these as associated root data. It is 
unique up to inner automorphism. 

In our case, given the root data (X*(T), E, X*(T), Ev) we get another 
set of root data by duality, namely the quadruple 

Let G be the reductive group defined over <C associated to these data. 
For example, if G is simply connected and of type Cn then G is adjoint 
and of type Bn. It is this involution of types that is at first a bit puzzling. 

If we are given a system of positive roots in G, then the corresponding 
coroots determine also a positive system of roots in G, or in other words 
a Borel subgroup. 

Here is Langlands' version of the Satake isomorphism in these circum
stances: 

Theorem. For a split group G over a p-adic field there is natural bi
jection between ring homomorphisms from the Hecke algebra to <C and 
W-orbits in T(<C) or equivalently semi-simple G(<C)-conjugacy classes in 
T(<C). 

Or in yet another form: 

Theorem. For a split group G over a p-adic field there is a natural 
ring isomorphism of the Hecke algebra H with the representation ring 
Rep(G). 
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Example. For G G Ln this is all straightforward. An unramified 
character of the torus of diagonal elements is of the form 

if lxi I = qm, and ti = q8 '. In fact the character is determined by the array 
of complex numbers t = (t1 , •.. , tn)- Permuted arrays will give rise to 
the same Hecke algebra homomorphism. But this means precisely that 
what really matters is the conjugacy class of the matrix 

[ tl ~2 ~ 1 
diag(ti) = 

0 tn 

In GLn(<C). This is compatible with what we have said just above, 
because the dual group of GLn is again just GLn. 

Example. For SLn the dual group is PGLn(<C). The torus f is the 
quotient of the diagonal matrices by the scalars. This can be identified 
with the group of complex characters of the group of diagonal matrices 
in S Ln simply by restriction of the corresponding identification for G Ln. 
In particular, for n = 2 the diagonal matrix 

corresponds to the character 

[ w0 -1 ;!, ] 
""" f-+ ti/b 

Let me explain briefly what the dual group means for automorphic forms. 
Suppose now that G is a split reductive group defined over a number 
field F. Let <p be an automorphic form on G(F)\G(A) which is an 
eigenfunction for the Hecke algebra Hp for j) not in a finite set of primes 
S. This means that for every fin a local Hecke algebra Hp there exists 
a constant Cf such that Rf'P = CJ'P· Then for each j) not in S there 
exists a unique conjugacy class <l>p in G with the property that 
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whenever f is an element of the Hecke algebra Hp and 1r = 1r f is the 
corresponding virtual representation of 8. 
The connection between homomorphisms of the local Hecke algebra and 
conjugacy classes in 8 is rather straightforward. It may have been no
ticed by several mathematicians before Langlands called attention to it, 
but I can find no record of the observation. It is quite likely that, if 
it had been observed, it simply wasn't felt to be of great enough im
portance to be worth making explicit. In Langlands' hands, however, 
the dual group was to serve as an uncanny guide to understanding an 
enormously wide range of phenomena involving automorphic forms. 

§5. The dual group II. The unramified case 

The first strong hint that dual group had nearly magical properties arose 
in Langlands' construction of the analogue of the dual group for arbitrary 
unramified p-adic groups. This, too, can be found in the original letter 
to Weil. 

Now suppose only that G is an unramified reductive group defined over 
the p-adic field F. I recall that this means it is determined by base 
extension from a smooth reductive group scheme over Op. 

Let B be a Borel subgroup and T a maximal torus in B, containing a 
maximal split torus A. Let W be the restricted Weyl group. Satake's 
theorem asserts that homomorphisms from the Hecke algebra Hp to (C 

correspond naturally to W-orbits in A(C) = Hom(A(F)/A(o), ex). The 
injection A <-+ T gives us also an injection X*(A) <-+ X*(T), hence a 
dual surjection 

f(q - A(q. 
In these circumstances, when A -=I= T it is not at all obvious how con
jugacy classes in the dual group relate to W-orbits in A. It has always 
seemed to me that explaining this, although simple enough once seen, 
was one of Langlands' least obvious and most brilliant ideas. The trick 
is to incorporate the Galois group in the definition of the dual group. 

The group G will split over an unramified extension E / F. let g be the 
Galois group of E / F, Frob the Frobenius automorphism. Because G 
contains a Borel subgroup defined over F, the Galois group permutes 
the positive roots of Gover E, and this gives rise to a homomorphism 
from g to the automorphism group of 8. Langlands defined the full£
group LGE/F to be the semi-direct product GXJQ. Here is his remarkable 
observation: 
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Langlands' Lemma. Semi-simple G(C)-conjugacy classes in G(C) x 
Frob correspond naturally to W-orbits in A. 
If g lies in G then 

g(go, Frob )g-1 = (ggog-Fro\ Frob) 

so that G-conjugacy in G x Frob is the same as twisted conjugacy. 
On the other hand: (1) 

and (2) if a = Frohn then 

Frob(go,Frob)Frob-1 = (FrobgoFrob- 1 ,Frob) = (ggrob,Frob). 

Therefore G-conjugacy in G x Frob is the same as LG-conjugacy. 

I outline here explicitly how the correspondence goes. First of all, every 
semi-simple G(C)-conjugacy class in G(C) x Frob contains of the form 
t x Frob with t in '.T(C). Second, the W-orbit of image of t in .A(C) 
depends only on the original conjugacy class. This at least gives us a 
map from these conjugacy classes to W-orbits in .A(C). Finally, this 
map is a bijection. 

The simplest published proof of this Lemma can be found in Borel's Cor
vallis lecture. Like Langlands' original proof, it relies upon an old paper 
of Gantmacher's for a crucial point, but Kottwitz has pointed out to me 
that this point follows easily from a well known result of Steinberg's. 
This is explained briefly in a paper by Kottwitz and Shelstad, and I will 
sketch here without details a proof which combines the arguments of 
Borel and Kottwitz-Shelstad. 

• The restricted Weyl group is defined to be the image in Aut(A) of 
subgroup of the full Weyl group of the pair (G, T) which takes A into 
itself. In §6.1 of Borel's lecture it is shown that in the dual group G 
the elements of W can be characterized as those elements of N 0 (T)/T 
commuting with the Frobenius. • Furthermore, §6.2 of Borel shows 
that every element of W can be represented by an element of N 0 (T) 
commuting with the Frobenius. • For s in '.T(C), conjugation oft x Frob 
bys is equal to t(s/sFrob) x Frob. The kernel of the projection from T 
to A is that spanned by elements s / sFrob. From this it is easy to see 
(§6.4 of Borel) that the projection from T to A induces a bijection of 
('.T(C) x Frob)/N0 ('.T) with A(C)/W. • Every semi-simple conjugacy 

class in G(C) x Frob contains an element t x Frob with tin f. This is 
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where Borel and Langlands quote Gantmacher, but I present here the 
argument of Kottwitz and Shelstad. 

Let B be a Borel subgroup fixed by Frob containing f. Given a semi
simple element xx Frob in G(C), we want to find gin G(C) such that 

g(x X Frob)g-1 = gxg-Frob X Frob = t X Frob 

with t in T(C). Equivalently, we want to find g with the property that 
if we set 

t = gxg-Frob 

then 
tBr1 = jj tfr1 = f. 

' 
Let H = B or T. Then tHr1 = H means that 

or equivalently 

x(g-1 Hglrobx- 1 = (x X Frob)g-1 Hg(x X Frob)-1 

= g-1 Hg 

since HFrob = H. In other words, since all Borel subgroups and tori are 
conjugate in G(C) we are looking for a group H* fixed under conjugation 
by xx Frob. But a well known result of Steinberg guarantees that we 
can find some pair (B*, T*) fixed by conjugation under xx Frob, so we 
are finished. 

• The map induced by inclusion from (T(C) x Frob)/N0 (T) into the 

G-classes in G x Frob is an injection. This is proven in §6.5 of Borel 
(but note that there are quite a few simple typographical errors there). 

This Lemma has as immediate consequence: 

Theorem. There is a natural bijection between homomorphisms from 
the Hecke algebra H into (['. and semi-simple G(C) or LG(C)-conjugacy 

classes in G(C) x Frob. 

Example. The unramified special unitary group SU3 • 

Let F. be an unramified quadratic extension of F. Let 
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and let G be the unitary group of 3 x 3 matrices X with coefficients 
in F. corresponding to the Hermitian matrix w. This is an algebraic 
group over F-if R is any ring containing F then G(R) is made up of 
the matrices with coefficients in F. ® F R such that 

where x 1--+ x comes from conjugation in F •. 

The group G(F) contains the torus T of diagonal matrices 

[
y~ 0 y/y 

0 

with y in F.x . 

Over F. this group becomes isomorphic to S£3 , so G is PGL3 (<C). Let 
g = {1, u} be the Galois group of F./ F. The torus f dual to Tis the 
quotient of the group of complex matrices 

[ 
ti o o l diag(ti) = 0 t2 0 
0 0 t3 

by scalar matrices. The element u acts on G through the automorphism 

X 1---t W tx-1w-1 . 

and, more explicitly, it acts on f by taking 

The map 
T-----, Hom(T(E.)/T(oE.), (Cx) 

takes the element diag(ti) to the character 
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The group A is generated by the element 

[r 0 
1 
0 !] 

and the map from f to A takes diag( ti) to the character 
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If x is any unramified character of T, or equivalently of A, the element ix 
can thus be chosen as any element off such that ti/t3 = x(av (ro- 1 )). 

We shall need to know a bit more about the action of the Galois group 
on G. Let xi,j for i < j be the matrix with a single non-zero entry 
1 in location ( i, j). These form a basis for the Lie algebra n. Then CY 

interchanges X1,2 and X2,3 and takes x1,3 to -x1,3• This concludes my 
discussion of SU3. 

Globally, an automorphic form is unramified at all but a finite number 
of primes. At an unramified prime p it gives rise to a homomorphism 
from the Hecke algebra Hp into C It therefore also corresponds to a 

semi-simple G(C)-conjugacy class <I>µ in G(C) x Frobp for all but a finite 
set of p. It is tempting to call this class the Frobenius class of the 
form at p, and I shall not resist the temptation. 

This construction depends very weakly on the choice of splitting exten
sion E / F, and one has a local £-group for every possible choice. In 
some ways the canonical choice is to let E be the maximal unramified 
extension of F. 

One can also define an £-group attached to a global field F to be a 
semi-direct product 

LG = G )q 9 ( F / F) 

and then one has also various embeddings of the local groups into this 
corresponding to local embeddings of Galois groups. Other variants 
of the £-group are also possible, with the Galois groups replaced by 
Weil groups or Weil-Deligne group. It was at any rate the introduction 
of Galois groups into the £-group which turned out to be incredibly 
fruitful. Incidentally, note that the definition of the extended £-group 
given in this section is compatible with that in the previous one, since 
when G is split the Galois group acts trivially on G. 



240 B. Casselman 

Langlands himself has told me that the subtle point in his definition 
of the £-group was not the introduction of the Galois group, which he 
claims was more or less obviously necessary. Instead, he says, the point 
about which he worried was that the £-group should be a semi-direct 
product of Q and G rather than some non-trivial extension. I suppose he 
had the Weil group-a highly non-trivial extension-on "the periphery 
of his mind. By now there is no doubt that his definition is correct, but 
it would be an interesting exercise to put together a simple argument to 
this effect. 

§6. The dual group III. Why is the £-group important? 

There were two questions which were answered, at least conjecturally, 
as soon as the £-group was defined. 

• How do we attach £-functions to automorphic forms? 

In 1967 there had been already a long history of how to associate L
functions to automorphic forms in very special circumstances, but there 
was no systematic way to do this. In some cases it was not at all clear 
which was best among several choices. In terms of the £-group there was 
a natural guess. Suppose that r.p is an automorphic form for a reductive 
group G defined over a number field F. Let <I>p be a representative of the 
corresponding Frobenius class of the L -group for p outside some finite set 
S of primes. Then for each irreducible finite-dimensional representation 
p of the £-group we define 

L(s,p,r.p) = IT det (1 - pt<I>~))-l 
pts p 

Of course there are a finite number of factors missing for primes in 
S, but these will not affect analytic properties seriously. Of course one 
conjectures this £-function to have all sorts of nice analytic properties
meromorphic continuation, functional equation, etc. The new feature 
here is the parameter p, and implicit in the construction of these func
tions was that p should play a role here analogous to that played by 
representations of the Galois group in the context of Artin's conjecture. 
This conjecture was made somewhat more reasonable, at least in Lang
lands' own mind and in lectures he gave very shortly after he wrote the 
letter to Weil, when he showed that the theory of Eisenstein series pro
vided some weak evidence for it. It turned out that the constant term of 
series associated to cusp forms on maximal parabolic subgroups deter
mined a new class of £-function of Langlands' form for which one could 
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at least prove analytic continuation. This was explained in Langlands' 
Yale notes in Euler products, and I shall say something about it further 
on. Later and more striking evidence that the L-functions suggested by 
Langlands were the natural ones was provided by several investigations 
which showed that the Hasse-Weil ( functions of Shimura varieties were 
of Langlands' type. A result of this kind had been shown first by Eichler 
for classical modular varieties and later on by Shimura for more sophisti
cated modular varieties, but of course the relationship with the £-group 
was disguised there. What was really striking was that Deligne's for
mulation of Shimura's results on modular varieties and their canonical 
fields of definition fitted naturally with Langlands' £-group. This was 
first pointed out in Langlands' informal paper on Shimura varieties in 
the Canadian Journal of Mathematics, recently reprinted. 

• How are automorphic forms on different group related ? 

There were many classical results, culminating in work of Eichler and 
Shimizu, that exhibited a strong relationship between automorphic forms 
for quaternion division algebras over Q and ones on GL2 (Q). To Lang
lands this appeared as a special case of a remarkable principle he called 
functoriality. The functoriality principle conjectured that if G 1 and 
G2 were two rational reductive groups, then whenever one had a group 
homomorphism from LG1 and LG2 compatible with projections onto the 
Galois group, one could expect a strong relationship between automor
phic forms for the two groups. 

The underlying idea here is perhaps even more remarkable. We know 
that an automorphic form gives rise to Frobenius classes in local £
groups for all but a finite number of primes. We know that £-functions 
can be attached to automorphic forms in terms of these classes. The 
functoriality principle asserts that the automorphic form is in some 
sense very strongly determined by those classes induced by £-group 
homomorphisms. Evidence for this idea was the theorem of Jacquet
Langlands in their book on GL2 which extended the work of Eichler
Shimizu to arbitrary global fields. This theorem was the first of many 
to come suggested by the functoriality principle, and its proof was the 
first and simplest of many in which the trace formula was combined with 
difficult local analysis. 

The functoriality principle was especially interesting when the group G 
was trivial! In this case the £-group is just its Galois group component, 
and the functoriality principle asserts that finite dimensional representa
tions of the Galois group should give rise to automorphic forms. This is 
because an n-dimensional representation of the Galois group amounts to 
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a homomorphism from the trivial £-group into that for G Ln. Even more 
remarkable was the eventual proof by Langlands of certain non-trivial 
cases of Artin's conjecture, applying techniques from representation the
ory and automorphic forms. This was also strong evidence of the validity 
of the functoriality principle. 

§7. How much of this was in the letter to Weil? 

Essentially all of it! At least the results. The proofs were crude or barely 
sketched, but better was perhaps not possible in view of incomplete 
technology. For example, even the work of Bruhat-Tits on the structure 
of local p-adic groups was not yet in definitive form. I have always found 
it astonishing that Langlands introduced the £-group full-grown right 
from the start. The scope and audacity of the conjectures in his letter to 
Weil were nearly incredible, especially because at that time the details 
of various technical things he needed hadn't been quite nailed down yet. 
The first time reasonably complete account appeared in Langlands' lec
ture in 1970 at a conference in Washington, the written version in the 
conference proceedings in the Springer Lecture Notes #170. It is instruc
tive for the timid among us to compare this account with the original 
letter, and with Godement's account in the Seminaire Bourbaki. 

§8. Where does representation theory enter? 

So far I haven't made any explicit reference to the representation the
ory of local reductive groups. I haven't needed it to formulate results, 
but without it the whole subject is practically incoherent. It already 
appears at least implicitly in the classical theory of automorphic forms, 
where one always knew that different automorphic forms were only triv
ially different from others. In current terminology this is because they 
occurred in the same local representation spaces. One place where local 
representation theory explains what is really going on is in the treat
ment of unramified automorphic forms above, where homomorphisms of 
Hecke algebras were attached to unramified characters X· Many things 
look rather bizarre unless we realize that we are looking there at the 
subspace of G( Op )-fixed vectors in the representation of G(Fp) induced 
by x from the Borel subgroup. In fact, we really defining a class of 
local £-functions L(s, p, 1r) where now 7r is an unramified representation 
of a j)-adic group. Satake's isomorphism asserts that there is a natural 
bijection between certain G(CC)-conjugacy classes in local £-groups LG 
and irreducible unramified representations of the local group G(F). We 
can reformulate this result by saying that, given on G the structure of 
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a smooth reductive group over OF there is a natural bijection between 
irreducible unramified representations and splittings of a sequence 

1----+ G----+ Le----+< Frob >----+ 1. 

(using a suitable variant of LG). This is a special case of a local func
toriality principle, which conjectures a strong relationship between 
homomorphisms from a local Galois group into LG and irreducible rep
resentations of the local group G. We know that at least for unramified 
representations 7r of G we have a whole family of £-functions L(s, p, 1r) 
which vary with the finite dimensional representation p of G. This leads 
us to ask more generally how we might associate £-functions to represen
tations other than the unramified ones. We know from Tate's thesis in 
the case of Gm= GL1 that we should expect not only an £-function but 
in addition a local root number E(s,rr,p,¢) as well which depends on 
a choice of local additive character ¢ of the field. This idea was worked 
out in detail by Jacquet and Langlands for the case of GL2 through the 
theory of Whittaker models, and a bit later by Godement and Jacquet 
for all groups GLn, following Tate and Weil for division algebras. There 
are in fact several ways to attach both £-functions and root numbers to 
representations of a group G defined over a local field Fp, but the most 
natural and intriguing idea is this, which extends local class field theory 
in a remarkable way: 

To each representation of a local reductive group G we 
should be able to associate a homomorphism from the 
Galois group or some variant (such as the Weil-Deligne 
group) into LG which is compatible with the canonical pro
jection from LG onto the Galois group. If p is a finite 
dimensional representation of Le we can then expect the 
corresponding £-function and root number to be that ob
tained by Artin, Hasse, Dwork, and Langlands from the 
representation of the Galois group we get by composition. 

There are a few mild but important modifications of this idea neces
sary, for example, to deal with certain poorly behaved l-adic Galois 
representations, but although evidence for it is still somewhat indirect 
it seems very likely to be true. In particular if G = G Ln we should ex
pect irreducible cuspidal representations of G to correspond bijectively 
and naturally to irreducible n-dimensional representations of the Ga
lois group. In my opinion the strongest evidence for the conjecture here 
comes from work of Deligne, Langlands, and Carayol on the reduction of 
classical modular varieties in bad characteristic. Here G = GL2. Other 
convincing evidence comes from the remarkable results of Kazhdan and 
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Lusztig dealing with the best of the poorly behaved cases, covered by 
the Deligne-Langlands conjecture. 

§9. Weil's reaction 

Weil's first reaction to the letter Langlands had written to him was per
haps not quite what Langlands had hoped for. Langlands had written 
the letter by hand, and Weil apparently decided that the handwriting 
was unreadable! You can form your own opinion on this question, be
cause at the UBC Sun SITE we have posted a copy of the hand-written 
letter in digital format (Weil's very own copy of the original was scanned 
by Mark Goresky in Princeton). At any rate, Langlands then sent to 
Weil a typed version. Copies of this were distributed to several math
ematicians over the next few years, and this is how Langlands' idea 
became well known. 

I do not believe that Weil ever made a written reply, but after all he 
worked only across Princeton from Langlands. Nonetheless, I think it 
is reasonable to guess that his first serious reaction was confusion. In 
spite of the fact that Weil had been one of the founders of the theory 
of algebraic groups, he may not have been familiar with the general 
theory of root systems, and this alone may have caused him technical 
difficulty. It also seems that although he had a hand in introducing 
representations into the theory of automorphic forms through his papers 
on Siegel's formulas, he was unfamiliar with the representation theory 
of Gelfand and Harish-Chandra, which was a major part of Langlands' 
own background. He says himself of his reaction to Langlands' letter 
( Collected Papers III, page 45) 

. . . pendant longtemps je n'y compris rien ... 

At the time he received the letter, he was concerned with extending his 
'converse theorem', which asserted that if an £-function and sufficiently 
many twists satisfied a certain type of functional equation, arose from 
a classical cusp form. He wanted to generalize this to automorphic 
forms for the groups GL2 associated to number fields other than Q, and 
troubles he was having with complex archimedean primes were almost 
immediately cleared up by Langlands' idea about the relation between 
representation theory and Galois representations. Also, after a while 
he worked out the case of GLn in some detail and gave a talk on it at 
Oberwolfach. In this case, as we have seen, the £-group is just GLn 
again, and many technical difficulties vanish. Finally, he wrote a short 
paper related to the local conjecture for G L2 over a p-adic field with 
residue characteristic two. 
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Weil also felt strongly, as he repeated often, that conjectures were to 
be evaluated according to the evidence behind them. There is much 
to be said for this attitude, since ideas often come cheaply and without 
support. Since Langlands' conjectures included Artin's conjecture about 
L-functions as a special case, and since it took a lot of work to verify 
even simple cases, or at least a lot of imagination to see how fruitful the 
conjectures would be in breaking up large problems into smaller ones, 
it could have been predicted that Weil would be skeptical. What he 
himself says is this ( Collected Papers III, page 457): 

... je fus incapable de partager l'optimisme de Langlands 
a ce sujet; la suite a prouve que j'avais tort. Je lui dis 
cependant, comme j'ai coutume de le faire en pareil cas: 
"Theorems are proved by those who believe in them." 

Presumably a necessary, not a sufficient, condition. 

§10. L-functions associated to the constant term of Eisenstein 
series 

Implicit in Langlands' conjectures is the idea that the L-functions he 
defines are precisely those of arithmetic interest. Not quite a conjecture, 
this should be taken rather as a working hypothesis. At the time he made 
the principal conjectures, the main evidence that he had for this idea 
came from the theory of Eisenstein series. In this section I will explain 
this evidence, and even a mild extension of what was known definitely 
to Langlands in 1967. Other explanations of this material can be found 
in Langlands' notes on Euler products and Godement's Bourbaki talk 
on the same topic. For technical reasons, both restricted themselves to 
the case of automorphic forms unramified at all primes of a split group. 
Developments in local representation theory that took place a few years 
later made it possible to extend the result somewhat beyond what can 
be found in the literature. 

The basic idea is simple, but unfortunately it requires some technical 
preparation to introduce it. Let G be a semi-simple group defined over 
the number field F, P a rational parabolic subgroup with unipotent 
radical N and reductive quotient M. For the moment, let A be the 
adele ring of F. We can identify the induced representation 

Ind(A(M(F)\M(A)) IP(A), G(A)) 

with a space of functions on P(F)Np(A.)\G(A), which we can call with
out trouble the space A(P(F)Np(A.)\G(A)) of automorphic forms on 
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the parabolic quotient P(F)Np(A)\G(A). The functions in this space 
can also be characterized directly. 

Suppose that (1r, V) is an irreducible representation of G(A) occurring in 
the subspace of induced cusp forms on P(F)Np(A)\G(A). Let Pdori = 
1, · · • , n be the maximal proper rational parabolic subgroups containing 
P, for each i let {ji be the modulus character of Pi, and for s in en let 

8'}, = II 8t'-

For cp in V and s in en the function 

'Ps = cp8'}, 

also lies in the space of induced cusp forms. For REAL(s) sufficiently 
large the Eisenstein series 

E[cps](g) = 
P(F)\G(F) 

converges to an automorphic form on G(F)\G(A), and continues mero
morphically in s to all of en. 
If <I> is an automorphic form on G(F)\G(A) and Q is a rational parabolic 
subgroup, then the constant term of <I> associated to Q is the function 

{ <I>(ng)dn 
}Nq(F)\Nq(A) 

on Q(F)Nq(A)\G(A). 
Suppose, now that P and Q are two rational parabolic subgroups. Start 
with cp in the space of cusp forms in A(P(F)Np(A)\G(A)), and take the 
constant term of E[cp] with respect to Q. In effect, we are constructing 
a map from a subspace of 

A(P(F)Np(A)\G(A)) _, A(Q(F)Nq(A)\G(A)). 

Formally, this is simple to describe. We calculate 

{ E[cp](ng)dn = { L cp('yng)dn. 
}Nq(F)\Nq(A) }Nq(F)\Nq(A) P(F)\G(F) 

Let T be a maximal split torus contained in both P and Q. The Bruhat 
decomposition tells us that P(F)\G(F)/Q(F) is a finite disjoint union 
P(F)wQ(F) as w ranges over an easily described subset of the Weyl 
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group of Tin G. We can choose representatives of the Weyl group in 
G(F). Hence we can write 

G(F) = LJP(F)wQ(F), 
w 

P(F)\G(F) = LJ w(w- 1 P(F)w n Q(F))\Q(F). 

The constant term of E[cp] is then the sum 

L 1 L cp(w,ng)dn. 
w NQ(F)\NQ(A) (w-lP(F)wnQ(F))\Q(F) 

How to manipulate this expression in the most general case is a bit 
complicated . There is only one case that we are actually interested in, 
however-that when Q is an opposite P of P. In this case, we may identify 
the reductive group M with the intersection P n P. Furthermore, there 
is only one term in the sum that we are interested in, that with w = 1. 
The term we are interested in is then 

rcp(g) = Tp,pcp(g) 

= k _ "'£ cp('yng )dn 
N(F)\N(A) P(F)nP(F)\P(F) 

= k _ "'£ cp(,ng)dn 
N(F)\N(A) N(F) 

= ~ cp(ng)dn 
1-tv(A) 

We know that 7r may be expressed as a restricted tensor product 7r = ®trp 
and hence may assume that cp also is a restricted tensor product ®cpp. 
We may therefore express the adelic integral as a product 

~ cp(ng)dn = IJ ~ 'Pp(npgp)dnp 
hv(A) P 1-J..r(Fp) 

of local intertwining operators. We shall calculate some of these in 
moment. But whether they can be calculated explicitly or not it is 
known that all of them have a meromorphic continuation ins. For the 
finite primes this follows from a simple algebraic argument about the 
Jacquet module, while for the real primes it is somewhat more difficult. 
At any rate, this point now appears relatively straightforward, but in 
1967 it was not known, and appeared difficult. 
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The representations 1Tp will be unramified at all but a finite number of 
primes, and as we shall see in a moment in certain cases the constant 
term of the Eisenstein series can be written as a quotient of Langlands' 
L-functions for the inducing representation O" and M. The Eisenstein 
series satisfies a functional equation 

and from it we shall deduce that at least in favourable circumstances 
some of Langlands' Euler products possess a meromorphic continuation 
also. This argument does not allow us to deduce a functional equation 
for them, although it is compatible with one. Because of the technical 
problems with local intertwining operators, Langlands restricted himself 
in his writings to globally unramified automorphic forms. Presumably 
in order to simplify the argument for an untutored audience, he also 
restricted himself to split groups. 
The principal step in this discussion is to express the unramified terms in 
the product through the L-group. I will do this in detail for unramified 
rank one groups. The general case will follow easily. 

For the moment, let F be an arbitrary j:)-adic field. 

It suffices to look only at simply connected groups of rank one. There are 
then two types of unramified p-adic groups to be considered. The first 
is the restriction to F of a group S L 2 ( E) where E / F is an unramified 
extension. The second is the restriction of a unitary group in three 
variables. 

• The group S L2 ( E) 

Let qE be the size of the residue field OE/IJE, and let n be the degree of 
the unramified extension E / F. Let P be the group of upper triangular 
matrices in S L 2 ( E), P that of lower triangular matrices. Let 

be an unramified character of P(E). Let T be the G(E)-covariant map 

Ind(xs I P(E), G(E)) _, Ind(xs I P(E), G(E)) 

defined as the meromorphic continuation of 

T'P(g) = ~ 'P(ng)dn. 
jN(E) 
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Let <p8 be the function in Ind(xslP(E), G(E)) fixed by G(OE) with 
<p8 (l) = 1, <p8 the analogous function in Ind(xslP(E), G(E)). We know 
that 

Tl.f)s = c(s)<p8 

for some scalar c( s). From the calculation we made before for S L 2 ( QP) 
we can deduce that 

where w is primitive n-th root of unity, since qE = qF. 
On the other hand, the £-group associated to the restriction of S£2 from 
E to F is the semi-direct product of the cyclic Galois group Q with the 
direct product of n copies of PGL2 (C), Q acting by cyclic permutation. 
Let ft0 PP = fl_av root space of g corresponding to the dual root -av, ix 
the element of f corresponding to Xs. We can write the formula for c( s) 
in the form 

• The group SU3 

Continue to let E be an unramified extension of F and E. an unramified 
quadratic extension of E. Let 

o 1 l -1 0 , 
0 0 

and let G be the unitary group associated to the Hermitian matrix w, 
already introduced earlier in this paper. The upper triangular matrices 
in G form a Borel subgroup B, and its opposite can be taken to be the 
lower triangular matrices. The radical N of its opposite is the group of 
elements 
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where 
x=y, z+z=xy. 

The groups B and B intersect in the torus T of diagonal matrices 

[y o o l 0 y/y 0 
0 0 l/y 

with yin E;. 
We want to calculate the constant c( s) such that 

We have 

If 

T<p 8 = c(s)c,38 , 

c(s) = T<fJs(l) = ~ <fJs(n)dn. 
h,(F) 

n - [~ ! ~] 
then n will be in G ( 0) if and only if z lies in OE.. Otherwise we want 
to write it as hk with h E P, k E G(O). We have 

[O O l]n = [z y 1]. 

which if z (/. 0 we can normalize to 

[1 y/z 1/z]. 

We finally find 

0 
1 

y/z 

We filter N by subgroups Nn where z lies in Pe •. The quotient N 0 / Nl 
has size q1, the quotient Ni/N2 has size qE. The groups Neven are all 
conjugate, as are the groups Nodd· 

Let x be the character 

[
y~ 0 y/y 

0 
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By expressing the integral for T over N as the sum of integrals over 
No,N-1 - No, etc. We find that 

with 
c(s) = (1- qji/x(av(w)))(l + qi/x(av(w))) 

1 ~ x(aV(w))2 . 

For the calculation, let X = (xt5i,"2(av(w))). Then the integral is 

l + (q _ l)X + (q4 _ q)X2 + (q5 _ q4)X3 + (qs _ q5)X4 + ... 
= 1 + ((q - l)X + (q4 - q)X2)(1 + q4X 2 + q8 X 4 + ... ) 

(1- q4X2) + (qX - X) + (q4X2 - qX2) 
1- q4X2 

(1 - X)(l + qX) 
1 - q4X2 

Now let's interpret this in terms of the £-group, which I have already 
partly described in an earlier section. The £-group LGE./E is the semi-

direct product of PGL3 (C) and {1,a}, and the £-group GE./F is the 
product of several copies of this and an induced action of the cyclic 
Galois group of E / F. Again let n°PP be the negative root space in G. I 
now claim that 

To see this, we just have to calculate a det.;;opp(tx x Frob). Here tis 
chosen so 

But we can calculate 

Frob : x1,2 1----t x2,3 

X2,3 1----t x1,2 

X1,3 1----t -x1,3 

t X Frob: X1,2 I--+ (t3/t2)x2,3 

x2,3 1----t (t2/t1)x1,2 

x1,3 1----t -(t3/ti)x1,3 
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so that its matrix is 

from which the claim can be verified. 

•Representations induced from a Borel subgroup 

Let now G be an arbitrary unramified reductive group defined over F, let 
B be a Borel subgroup. T a maximal torus in B, W the corresponding 
Weyl group. For each unramified character x of T and Borel subgroups 
P and Q containing T let 

T = TQ,P,x : Ind(x I P(F), G(F)) - lnd(x I Q(F), G(F)) 

be the intertwining operator defined formally by 

r<.p(g) = f 1.p(ng)dn. 
j NQ(F)nNp(F)\NQ(F) 

If x,y are elements of W with l(xy) = l(x) + l(y), then we have a kind 
of functional equation 

For any unramified character x and Borel subgroup P containing T 
there exists a unique function 'Px,P in Ind(xlP(F), G(F)) fixed by K 
with 'Px,P(l) = 1. From the functional equation just above and the rank 
one calculations made earlier we can deduce easily that 

TwBw- 1 ,Bcpx,B = c(x)'Px,wBw- 1 

and 

where 

•Representations induced from opposite parabolic subgroups 

Suppose now that Pis a parabolic subgroup of G, Pan opposite, M = 
P n P. If (a, U) is an unramified representation of M(F), then by the 
Satake isomorphism it corresponds to a conjugacy class £,, x Frob in 
the L-group of M. The same element represents in Le the unrami
fied representation Ind(alP(F), G(F)) of G(F). Suppose given in U 
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a particular vector r.pu fixed by M ( 0). In the induced representation 
Ind(alM(F), G(F)) there will be a unique function l.{)u fixed by G(O) 
and such that l.{)u(l) = r.pu. Define 'Pu similarly in the representation 
induced from P. 

Theorem. In these circumstances we have 

where 
( ) _ detfiopp(J - (£71" X Frob))- 1 

C 7r - -1 , · 
detfiopp(] - qF (t11" X Frob))- 1 

and ft is the radical of P in G. 
The proof of this formula follows almost immediately from the one in the 
previous section, because induction from parabolic subgroups is transi
tive. 

• The global constant term 

Now we consider things globally. Let P be a maximal proper rational 
parabolic subgroup of the rational group G, a a cuspidal automorphic 
representation of M(A), 7r = Ind(alP(A), G(A)). Let i0 be the element 
off representing the modulus character 8 p. It lies in fact in the center 
of L M, since Op is a character of M. It is also the image in f of the 
product 

The vector space ft0 PP decomposes under i6 into eigenspaces with eigen
values ai. Let Pi be the representation of L M on the eigenspace for 
ai. 

The constant term of the Eisenstein series corresponding to the local 
function r.p 8 IT L(aiS,Pi,1r) . 

1 L(ais+l,Pi,1r) 

In favourable cases (for example, when r = l) this implies that the 
£-function has a meromorphic continuation. More about exactly which 
£-functions arise is discussed in some detail in the.Euler Products notes. 
I should add that although it was certainly impressive that Langlands 
was able to use the theory of Eisenstein series to prove in one stroke that 
several new families of £-functions possessed a meromorphic continua
tion, the technique was certainly limited. As observed by Langlands 
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himself, perhaps the most striking case was that where G 
M=GLz. 

A similar calculation for other terms in the Fourier expansion of Eisen
stein series, suggested by Langlands in the 1967 letter to Godement and 
carried out in detail much later by Shahidi, derives a functional equation 
for the £-function in the cases where /J' has a Whittaker model. 

Langlands tells me that £-functions arising in the constant term of Eisen
stein series played a crucial role in his thinking, but exactly what role is 
not clear to me. In the notes on Euler products he credits Jacques Tits 
with the observation that they are of the form L(s, p, n) where pis the 
representation on the nilpotent Lie algebra, but as far as I can see Tits 
could only have made this observation in Langlands' lectures at Yale in 
May, 1967, several months after the letter to Weil. 

§11. Some subsequent developments 

Langlands realized the importance of the £-group much more clearly 
than any to whom he explained his conjectures. He immediately began 
to work out various ways in which it played a role. Already in May, 
1967, we find him writing a letter to Godement conjecturing a formula 
relating Whittaker functions to the Weyl character formula applied to 
the £-group. (This was later to become the formula of Casselman and 
Shalika, who learned only after they had proven it that Langlands had 
conjectured it seven years before!) 

Questions raised by his conjectures presumably motivated his exhaustive 
investigation oflocal £-factors and root numbers, later simplified to some 
extent by Deligne. The local functoriality principle received striking 
evidence from his work on the l-adic representations of modular varieties 
for presentation at the 1972 Antwerp conference, which I have already 
alluded to. 

But perhaps most interesting was the appearance of phenomena related 
to L-indistinguishability. We have already seen that to some extent 
the functoriality principle asserted a kind of characterization of an au
tomorphic form, or equivalently an irreducible representation of G(A), 
by its Frobenius classes. But what happens for G L2 turns out to be 
deceiving. For other groups, representations both global and local come 
in equivalence classes called £-indistinguishable, which means that as 
far as their £-functions are concerned they appear to be the same. For 
GLn, each equivalence class has just a single element in it. This no
tion of equivalence among representations turned out to be related to 
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a simple equivalence relation on conjugacy classes. Both these notions 
turned out to be necessary to understand the exact relationship be
tween the trace formula and the Hasse-Weil zeta functions of Shimura 
varieties. Questions raised in this way were surprisingly subtle and com
plicated, and have occupied many first-rate mathematicians since they 
were brought to public attention in Langlands' lectures at the Univer
sity of Paris. Many of the most difficult, but presumably not impossibly 
difficult, open questions in the subject are concerned with these issues. 
( A succinct and admirable discussion of these matters was presented by 
Arthur at the Edinburgh conference.) 

Another extremely interesting development was the extension of local 
functoriality to include Galois representations with a large unipotent 
component, for example those arising form elliptic curves with multi
plicative reduction. Here arose the Deligne-Langlands conjecture, 
which predicted a complete classification of square-integrable represen
tations of µ-adic reductive groups occurring as subrepresentations of the 
unramified principal series. This conjecture was eventually proven by 
Kazhdan and Lusztig. Related matters were investigated in a long se
ries of papers by Lusztig on the Hecke algebras associated to affine Weyl 
groups, where perhaps for the first time the £-group occurred as a geo
metrical object. In particular, L-indistinguishability appeared naturally 
in terms of local systems on the £-group. 

§12. Things to look for 

One can find elsewhere accounts of serious and outrageously difficult con
jectures implicit in Langlands' construction of the £-group and Arthur's 
generalization of functoriality. I will not recall these conjectures, but 
instead I will pose here a number of more frivolous questions which are 
presumably more easily answered. 

• Even in the case of compact quotients, the role of L-indistinguish
ability in the Arthur-Selberg trace formula is not at all clear, as 
Arthur points out in his Edinburgh expose. This is presumably 
related to the rather formal aspect of proofs of the trace formula. 
Can one use ideas of Patterson, Bunke, and Olberich to elucidate 
the nature of L-indistinguishability? 

• Even more formal are Arthur's arguments for non-compact quo
tients. What sort of analysis or geometry would make the trace 
formula seem natural? This is somewhat mysterious even for 
SL2(Q). 
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• Recently, following an extraordinary paper of Lusztig where in
tersection cohomology and the Weyl character formula appear 
together, Ginzburg and others have formulated the Satake iso
morphism in terms of tensor categories of sheaves on a kind 
of Grassmannian associated to a group over fields of the form 
F((T)). In this context, the £-group is defined for the first time 
as a group rather than just formally. Is there a version of this 
valid for p-adic groups? Can one formulate and prove classical lo
cal class field theory in these terms? It is difficult to believe that 
one will ever understand the conjectured relationship between lo
cal Galois groups and representations of p-adic groups until one 
has a formulation of local class field theory along these lines. 

• Geometry of the £-group first appeared, as I have already men
tioned, in Lusztig's work on the conjecture of Deligne-Langlands. 
Lusztig showed in this work that Kazhdan-Lusztig cells in affine 
Weyl groups were strongly related to unipotent conjugacy classes 
in the £-group. Apparently still unproven remain conjectures of 
Lusztig such cells to cohomology of subvarieties in the flag man
ifold of relating the £-group. 

• What replaces the £-group in analyzing Kazhdan-Lusztig cells in 
hyperbolic Coxeter groups? The phenomena to be explained can 
be found in work of Robert Bedard, but not even the merest hint 
of what to do with them. 

• Manin tells us that we should think of algebraic varieties at real 
primes as having the worst possible reduction. Is there any way 
one can use this idea to make better sense of representations of 
real groups? Can we use representation theory of either real or 
p-adic groups to explain Manin's formulas in Arakelov geometry? 

• In his Zi.irich talk, Rapoport mentioned a possible approach to lo
cal functoriality conjectured by Kottwitz and Drinfeld. The idea 
is highly conjectural, but any progress here would be interesting. 

• Another approach to local functoriality was mentioned in Ginz
burg's talk at the ICM in Berkeley. This looks more interesting 
in light of the 'new' Satake isomorphism. Is there anything to it? 

• One of the oddest puzzles in the theory of local £-functions in 
representation theory is the necessity of introducing an additive 
character to define the E-factors. There are two places in local 
representation theory where these arise naturally~in the theory 
of Godement-J acquet for G Ln and in the theory of Whittaker 
functions, which play a puzzling role. In a recent raper, Frenkel 
et al. interpret the explicit formula of Casselman-Shalika for 
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Whittaker functions in geometric terms. It would be interesting
illuminating both the meaning of local £-functions and L-group
if one could prove the formula in this context. It would also 
be interesting if one could similarly understand Mark Reeder's 
generalization of the Casselman-Shalika formula. 

• I have proven above a formula for the effect of intertwining op
erators on unramified functions on a J:)-adic group, which has a 
striking formulation in terms of the £-group. The proof is entirely 
computational, however. Can one explain this formula directly 
in terms of the £-group? Extend it to ramified representations? 
Similarly deduce Macdonald's formula for unramified matrix co
efficients? 

• There has been a lot of work on the classification of irreducible 
representations of local reductive groups in the past several years, 
but the Galois group plays no apparent role in these investiga
tions. Is there any way to introduce it there? Is there any way 
to generalize Kazhdan-Lusztig's work on the Deligne-Langlands 
conjecture to ramified representations? 

I refrain from commmenting on overlap among these problems. 
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