Advanced Studies in Pure Mathematics 30, 2001 Class Field Theory – Its Centenary and Prospect pp. 79–86

Embedding Problems with restricted Ramifications and the Class Number of Hilbert Class Fields

Akito Nomura

§1. Introduction

Let k be an algebraic number field of finite degree, and \mathfrak{G} its absolute Galois group. Let L/k be a finite Galois extension with Galois group G, and $(\varepsilon): 1 \to A \to E \xrightarrow{j} G \to 1$ a group extension with an abelian kernel A. Then an embedding problem $(L/k, \varepsilon)$ is defined by the diagram

where φ is the canonical surjection. When (ε) is a central extension, we call $(L/k, \varepsilon)$ a central embedding problem. A solution of the embedding problem $(L/k, \varepsilon)$ is, by definition, a continuous homomorphism ψ of \mathfrak{G} to E satisfying the conditions $j \circ \psi = \varphi$. We say the embedding problem $(L/k, \varepsilon)$ is solvable if it has a solution. The Galois extension over k corresponding to the kernel of any solution is called a solution field. A solution ψ is called a proper solution if it is surjective. The existence of a proper solution of $(L/k, \varepsilon)$ is equivalent to the existence of a Galois extension M/L/k such that the canonical sequence $1 \to \text{Gal}(M/L) \to \text{Gal}(M/k) \to \text{Gal}(L/k) \to 1$ coincides with ε .

Let S be a finite set of primes of L. An embedding problem with ramification conditions $(L/k, \varepsilon, S)$ is defined by the diagram (*), which is same to the case of $(L/k, \varepsilon)$. A solution ψ is called a solution of $(L/k, \varepsilon, S)$ if M/L is unramified outside S, where M is the solution field corresponding to ψ . We remark that these definitions are a little different from those in [3] and [8], but essentially of the same nature.

Received August 28, 1998.

Revised October 24, 1998.

\S **2.** Central embedding problems

In this section, we quote some well-known results about central embedding problems without proofs. General studies on embedding problem are in Hoechsmann[5] and Neukirch[8].

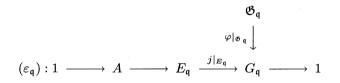
Let k be an algebraic number field, and $(L/k, \varepsilon)$ a central embedding problem defined by the diagram (*) with a finite abelian group of odd order.

Fact 1. If L/k is unramified or (ε) is split, then $(L/k, \varepsilon)$ is solvable.

Fact 2 (Ikeda[6]). If $(L/k, \varepsilon)$ is solvable, then $(L/k, \varepsilon)$ has a proper solution.

We remark that Fact 2 is always true in case A is abelian not necessary (ε) is central.

For each prime \mathfrak{q} of k, we denote by $k_{\mathfrak{q}}$ (resp. $L_{\mathfrak{q}}$) the completion of k (resp. L) by \mathfrak{q} (resp. an extension of \mathfrak{q} to L). Then the local problem $(L_{\mathfrak{q}}/k_{\mathfrak{q}}, \varepsilon_{\mathfrak{q}})$ of $(L/k, \varepsilon)$ is defined by the diagram



where $G_{\mathfrak{q}}$ is the Galois group of $L_{\mathfrak{q}}/k_{\mathfrak{q}}$, which is isomorphic to the decomposition group of \mathfrak{q} in L/k, $\mathfrak{G}_{\mathfrak{q}}$ is the absolute Galois group of $k_{\mathfrak{q}}$, and $E_{\mathfrak{q}}$ is the inverse of $G_{\mathfrak{q}}$ by j.

In the same manner as the case of $(L/k, \varepsilon)$, solutions, solution fields etc. are defined for $(L_{\mathfrak{q}}/k_{\mathfrak{q}}, \varepsilon_{\mathfrak{q}})$.

Let p be an odd prime.

Fact 3. Let $(\varepsilon): 1 \to \mathbb{Z}/p\mathbb{Z} \to E \to \operatorname{Gal}(L/k) \to 1$ be a central extension. If $(L_{\mathfrak{q}}/k_{\mathfrak{q}}, \varepsilon_{\mathfrak{q}})$ is solvable for every prime \mathfrak{q} , then $(L/k, \varepsilon)$ is solvable.

Fact 4 (Neukirch[8]). Let $(\varepsilon) : 1 \to \mathbb{Z}/p\mathbb{Z} \to E \to \operatorname{Gal}(L/k) \to 1$ be a central extension, and assume that $(L/k, \varepsilon)$ has a solution. Let Tbe a finite set of primes of k, and $M(\mathfrak{q})$ be a solution field of $(L_{\mathfrak{q}}/k_{\mathfrak{q}}, \varepsilon_{\mathfrak{q}})$ for \mathfrak{q} of T. Then there exists a solution field M of $(L/k, \varepsilon)$ such that the completion of M by \mathfrak{q} is equal to $M(\mathfrak{q})$ for each \mathfrak{q} of T.

By using this fact, we can construct a good solution of $(L/k, \varepsilon)$.

\S **3. Main theorem**

Let L/K be a Galois extension of an algebraic number field K. We denote by $P_1(L/K)$ (resp. $P_2(L/K)$) the set of primes of L which is ramified in L/K and not lying above p (resp. lying above p). Let T be a finite set of primes of k, and denote by $B_k(T)$ the set $\{\alpha \in k^* | (\alpha) = \mathfrak{a}^p \text{ for some ideal } \mathfrak{a} \text{ of } k$, and $\alpha \in k_{\mathfrak{q}}^p$ for every prime \mathfrak{q} of T}.

The following is a main theorem of this article.

Theorem. Let p be an odd prime, and L/K/k a Galois extension such that L/K is a p-extension and that the degree [K:k] is prime to p. Let S be a finite set of primes of L, which contains the set $P_1(L/K)$ and disjoint to $P_2(L/K)$, and $(\varepsilon): 1 \to \mathbb{Z}/p\mathbb{Z} \to E \to \text{Gal}(L/k) \to 1$ be a non-split central extension. Assume that the following conditions (C1), (C2) and (C3) are satisfied.

(C1) The embedding problem $(L/k, \varepsilon)$ has a solution.

(C2) For every prime \mathfrak{p} of k lying above p, the local problem $(L_{\mathfrak{p}}/k_{\mathfrak{p}}, \varepsilon_{\mathfrak{p}})$ has a solution $\psi_{\mathfrak{p}}$ such that $M_{\mathfrak{p}}/L_{\mathfrak{p}}$ is unramified, where $M_{\mathfrak{p}}$ is a solution field corresponding to $\psi_{\mathfrak{p}}$.

(C3) $B_k(S_0) = k^{*p}$, where S_0 is the set of prime \mathfrak{q} of k such that \mathfrak{q} is the restriction of some prime contained in S.

Then, $(L/k, \varepsilon, S)$ has a proper solution. That is to say, there exists a Galois extension M/k such that

(i) $1 \to \operatorname{Gal}(M/L) \to \operatorname{Gal}(M/k) \to \operatorname{Gal}(L/k) \to 1$ coincides with (ε) , and

(ii) M/L is unramified outside S.

Remark. (1) There does not always exist a non-split central extension $(\varepsilon): 1 \to \mathbb{Z}/p\mathbb{Z} \to E \to \operatorname{Gal}(L/k) \to 1$. The existence is equivalent to the non-vanishing of the cohomology group $\mathrm{H}^2(\operatorname{Gal}(L/k), \mathbb{Z}/p\mathbb{Z})$.

(2) If k is the rational number field \mathbf{Q} and L/K is unramified, then the conditions (C1), (C2) and (C3) are satisfied.

As a simple case of the main theorem, we have the following. We treat the sketch of the proof of the following instead of the main theorem. For details, see [10] and [13].

Proposition 1. Let p be an odd prime, and $L/K/\mathbf{Q}$ a Galois extension such that L/K is an unramified p-extension and that the degree $[K: \mathbf{Q}]$ is prime to p. Let $(\varepsilon): 1 \to \mathbf{Z}/p\mathbf{Z} \to E \to \operatorname{Gal}(L/\mathbf{Q}) \to 1$ be a non-split central extension.

Then there exists a Galois extension M/\mathbf{Q} such that

(i) $1 \to \text{Gal}(M/L) \to \text{Gal}(M/\mathbf{Q}) \to \text{Gal}(L/\mathbf{Q}) \to 1$ coincides with (ε) , and

(ii) M/L is unramified.

(sketch of the proof.) In this case, by using the general theory of embedding problems, we can easily see that the problem $(L/\mathbf{Q}, \varepsilon)$ is solvable. By virtue of Fact 2 we can take a solution field $M_1/L/\mathbf{Q}$ such that every prime \mathfrak{P} of L lying above p is unramified in M_1/L . Let \mathfrak{Q} be a prime of L ramified in M_1/L , and q the prime number below \mathfrak{Q} . Then $q \equiv 1 \mod p$. Hence there exists a field F such that $\mathbf{Q} \subset F \subset \mathbf{Q}(\zeta_q)$ and that $[F : \mathbf{Q}] = p$. Let M_2 be the inertia field of \mathfrak{Q} in M_1F/L , then M_2 is also a solution field of $(L/\mathbf{Q}, \varepsilon)$. And the number of primes ramified in M_2/L is less than that of in M_1/L . By repeating this process, we can take a required extension.

§4. Applications

Let D be the group defined by

$$|\langle x, y, z | x^p = y^p = z^p = 1, yxy^{-1} = xz, zx = xz, yz = zy > 1$$

This is a non-abelian *p*-group of order p^3 .

Proposition 2. Let K be a quadratic field, and assume that the prank of the ideal class group of K is greater than or equal to 2. Then there exists a Galois extension M/K such that the Galois group is isomorphic to D and that M/K is unramified.

(sketch of the proof.) Let L/K be an unramified extension such that the Galois group $\operatorname{Gal}(L/K)$ is isomorphic to $\mathbf{Z}/p\mathbf{Z} \times \mathbf{Z}/p\mathbf{Z}$. Then the Galois group $\operatorname{Gal}(L/\mathbf{Q})$ is isomorphic to

$$< a, b, c \, | \, a^p = b^p = c^2 = 1, ab = ba, cac^{-1} = a^{-1}, cbc^{-1} = b^{-1} > .$$

Let $E = \langle x, y, z, t | x^p = y^p = z^p = t^2 = 1, y^{-1}xy = xz, zx = xz, yz = zy, t^{-1}xt = x^{-1}, t^{-1}yt = y^{-1}, tz = zt >$.

Then $1 \to \langle z \rangle \to E \xrightarrow{j} \text{Gal}(L/\mathbf{Q}) \to 1$ is a non-split central extension, where j is defined by $x \to a, y \to b, t \to c$.

Since the Sylow subgroup of E is isomorphic to D, then by applying Proposition 1, we can take a required extension.

Let K_1 be the Hilbert *p*-class field of K, and K_2 the central *p*-class field of K_1/K . The following proposition is obtained by Miyake.

Proposition 3 (Miyake[7]). Let K be a quadratic field. Then the Galois group $\operatorname{Gal}(K_2/K_1)$ is isomorphic to $\operatorname{Gal}(K_1/K) \wedge \operatorname{Gal}(K_1/K)$,

where \wedge denotes the exterior square. Further assume that the p-Sylow subgroup of the ideal class group of K is isomorphic to $\mathbf{Z}/p^{e_1}\mathbf{Z}\times\mathbf{Z}/p^{e_2}\mathbf{Z}\times\cdots\times\mathbf{Z}/p^{e_r}\mathbf{Z}$ $(1 \leq e_1 \leq e_2 \leq \cdots \leq e_r)$.

Then the Galois group $\operatorname{Gal}(K_2/K)$ is isomorphic to

$$< a_i, c_{i,j} \mid i = 1, 2, \cdots, r, \ j = i + 1, \cdots, r >; a_i^{p^{e_i}} = c_{i,j}^{p^{e_i}} = 1, \ [a_i, a_j] = c_{i,j}, \ [a_i, c_{m,n}] = [c_{i,j}, c_{m,n}] = 1, i = 1, 2, \cdots, r, \ j = i + 1, \cdots, 1 \le m < n \le r.$$

Let ρ_p be the *p*-rank of the unit group of k and Cl_k the ideal class group of k.

Proposition 4 (Nomura[13]). Let p be an odd prime, and L/K/ka Galois extension such that L/K is an unramified p-extension and that the degree [K : k] is prime to p. If p-rank of the cohomology group $H^2(Gal(L/k), \mathbb{Z}/p\mathbb{Z})$ is greater than $\varrho_p + p$ -rank Cl_k , then the class number of L is divisible by p.

(sketch of the proof.) There exists a finite set S_0 of primes of k satisfying the conditions : (i) S_0 does not contain any prime lying above p, (ii) $B_k(S_0) = k^{*p}$, (iii) $|S_0| = \varrho_p + p$ -rank Cl_k .

Indeed, let $F = k(\sqrt[p]{\alpha}; \alpha \in B_k(\emptyset))$. Then the Galois group $\operatorname{Gal}(F/k(\zeta_p))$ is an abelian *p*-group and isomorphic to $(\mathbb{Z}/p\mathbb{Z})^m$, where $m = \varrho_p + p$ -rank Cl_k . By Chevotarev's density theorem, there exist primes $\mathfrak{q}_1, \mathfrak{q}_2, \dots, \mathfrak{q}_m$ such that the Frobenius automorphism of \mathfrak{q}_i $(i = 1, 2, \dots, m)$ generate $\operatorname{Gal}(F/k(\zeta_p))$. Then $S_0 = {\mathfrak{q}_1, \dots, \mathfrak{q}_m}$ is a required set.

Let S be the set of primes of L which is an extension of $\mathbf{q} \in S_0$. For each $(\varepsilon) : 1 \to \mathbf{Z}/p\mathbf{Z} \to E \to \operatorname{Gal}(L/k) \to 1$, let M_{ε} be a Galois extension corresponding to a proper solution of $(L/k, \varepsilon, S)$. Let M be the composite field of M_{ε} for all ε . Then the Galois group $\operatorname{Gal}(M/L)$ is isomorphic to $(\mathbf{Z}/p\mathbf{Z})^m$, where m is equal to the p-rank of $\operatorname{H}^2(\operatorname{Gal}(L/k), \mathbf{Z}/p\mathbf{Z})$. For $\mathbf{q} \in S_0$, denote by $M(\mathbf{q})$ the inertia field of $\hat{\mathbf{q}}$ in M/L, where $\hat{\mathbf{q}}$ is an extension of \mathbf{q} to L. Since $\operatorname{Gal}(M/L)$ is contained in the center of $\operatorname{Gal}(M/k), M(\mathbf{q})/L/k$ is a Galois extension. Then every prime of L lying above \mathbf{q} is unramified in $M(\mathbf{q})/L$. Let M^* be the intersection of $M(\mathbf{q})$ for all \mathbf{q} of S_0 . If $m > |S_0|$, then M^*/L is a non-trivial p-extension. Hence the class number of L is divisible by p.

Proposition 5. Let p be an odd prime, and L the Hilbert p-class field of k. Assume that the p-rank of the ideal class group of k is greater than $(1 + \sqrt{1 + 8\varrho_p})/2$, then the class number of L is divisible by p.

A. Nomura

(proof.) Since $\operatorname{Gal}(L/k)$ is abelian, the *p*-rank of $\operatorname{H}^2(\operatorname{Gal}(L/k), \mathbb{Z}/p\mathbb{Z})$ is equal to n(n+1)/2, where *n* is the *p*-rank of the ideal class group of *k*. By using Proposition 4, we have thus proved the proposition.

We investigate an application to the Boston's question, which is related to the Fontaine-Mazur conjecture. For the Fontaine-Mazur conjecture, see [1], [2] and [4].

Conjecture (Fontaine-Mazur). Let K^{ur} be the maximal unramified extension of an algebraic number field K. For any K, positive integer n and representation ρ : $\operatorname{Gal}(K^{ur}/K) \to \operatorname{GL}_n(\mathbf{Q}_p)$, the image of ρ is finite.

Let p be an odd prime. A pro-p group G is called powerful if $G/\overline{G^p}$ is abelian, where the line denotes topological closure.

In [1] Boston introduced the following, which is equivalent to the above conjecture.

Conjecture (Fontaine-Mazur-Boston). For any algebraic number field K, there does not exist an unramified pro-p extension \tilde{K}/K such that the degree $[\tilde{K}:K]$ is infinite and that the Galois group is powerful.

Boston pointed out that this conjecture is closely related to the existence of unramified *p*-extensions of a certain type, and introduced the following question.

Question (Boston). Let K be a number field, p an odd prime, and K(p) its p-class field. Suppose that the class number of K(p) is divisible by p. Then is there always an everywhere unramified extension M of degree p of K(p) such that M is Galois over K and exp(Gal(M/K)) = exp(Gal(K(p)/K))? The "exp" stands for the exponent of the group.

Remark (Boston). (1) The truth of the Fontaine-Mazur conjecture implies an affirmative answer, when K has an infinite p-class field tower.

(2) Lemmermeyer noticed that the answer to this question is in the negative in general. He pointed out an example, due to Scholz and Taussky[14]. The Galois group of the maximal unramified 3-extension of $\mathbf{Q}(\sqrt{-4027})$ is isomorphic to $\langle x, y | y^{(x,y)} = y^{-2}, x^3 = y^3 \rangle$. This group has a non-abelian subgroup of order 27 and exponent 9. Let K be the corresponding intermediate field, its 3-class field is an elementary abelian extension of degree 9 contained in no larger unramified extension with Galois group of exponent 3. Since the class field tower of K is finite, this is not a counter example of Fontaine-Mazur conjecture.

We produce some sufficient conditions for the answer to Boston's question for K and p is affirmative. For detail and other results, see [11] and [12].

Proposition 6. (1) Let l and p be odd primes such that the order of p mod l is even. Assume that K/\mathbf{Q} is an abelian l-extension and the class number of K is divisible by p. Then there exists an unramified non-abelian p-extension M/K such that the exponent of $\operatorname{Gal}(M/K)$ is p, and therefore the answer to Boston's question for K and p is affirmative.

(2) Let p be an odd prime, and K a quadratic field. Then the answer to Boston's question for K and p is affirmative.

(sketch of the proof.) (1) There exists a Galois extension $L/K/\mathbf{Q}$ such that L/K is an unramified abelian *p*-extension of exponent *p*. Under the assumption of *p* and *l*, the cohomology group $\mathrm{H}^2(\mathrm{Gal}(L/\mathbf{Q}), \mathbf{Z}/p\mathbf{Z})$ is non-trivial. Hence there exists an non-split central extension $(\varepsilon): 1 \to \mathbf{Z}/p\mathbf{Z} \to E \to \mathrm{Gal}(L/\mathbf{Q}) \to 1$. By Proposition 1, there exists a Galois extension $M_1/L/\mathbf{Q}$ such that M_1 gives a proper solution of $(L/\mathbf{Q}, \varepsilon)$ and that M_1/L is unramified. By group theoretical considerations, the *p*-Sylow subgroup E_p of *E* is a non-abelian *p*-group of exponent *p*, and the Galois group of M_1/K is isomorphic to E_p . Then $M_1 \cdot K(p)$ gives an affirmative answer to Boston's question for *K* and *p*.

By using Proposition 2, we can easily prove (2).

References

- N. Boston, Some cases of the Fontaine-Mazur conjecture, J. Number Theory, 42 (1992), 285–291.
- N. Boston, Some cases of the Fontaine-Mazur conjecture II, J. Number Theory, 75 (1999), 161–169.
- T. Crespo, Embedding problem with ramification conditions, Arch. Math., 53 (1989), 270–276.
- [4] F. Hajir, On the growth of *p*-class groups in *p*-class field towers, J. Algebra, **188** (1996), 256–271.
- [5] K. Hoechsmann, Zum Einbettungsproblem, J. reine angew. Math., 229 (1968), 81–106.
- [6] M. Ikeda, Zur Existenz eigentlicher galoisscher Körper beim Einbettungsproblem, Hamb. Abh., 24 (1960), 126–131.
- [7] K. Miyake, On the Ideal Class Groups of the *p*-Class Fields of Quadratic Number Fields, Proc. Japan Acad., 68 Ser.A (1992), 62–67.
- J. Neukirch, Über das Einbettungsproblem der algebraischen Zahlentheorie, Invent. Math., 21 (1973), 59–116.

A. Nomura

- [9] A. Nomura, On the existence of unramified p-extensions, Osaka J. Math., 28 (1991), 55–62.
- [10] A. Nomura, On the class number of certain Hilbert class fields, Manuscripta Math., 79 (1993), 379–390.
- [11] A. Nomura, A Remark on Boston's Question Concerning the Existence of Unramified *p*-extensions, J.Number Theory, 58 (1996), 66–70.
- [12] A. Nomura, A Remark on Boston's Question Concerning the Existence of Unramified *p*-extensions II, Proc. Japan Acad., **73** Ser.A (1997), 10–11.
- [13] A. Nomura, On embedding problems with restricted ramifications, Arch. Math., 73 (1999), 199–204.
- [14] A. Scholz and O. Taussky, Die Hauptideale der kubischen Klassenkörper imaginärquadratischer Zahlkörper; ihre rechnerische Bestimmung und ihr Einfluss auf den Klassenkörperturm, J. Reine Angew. Math., 171 (1934), 19–41.

Department of Mathematics, Kanazawa University, Kanazawa 920-1192, Japan E-mail address: anomura@t.kanazawa-u.ac.jp

86