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Abstract. 

Irreducible characters of Hecke algebras of type A may be rep­
resented as refined counts of simple statistics on suitable subsets of 
permutations. Such formulas have been generalized to characters of 
other Coxeter groups and their Hecke algebras and to coinvariant 
algebras. In this paper we present several formulas, applications to 
combinatorial identities, and related problems. New results are given 
with proofs. 

§1. Introduction 

Combinatorial properties of the Kazhdan-Lusztig basis and the study 
of coinvariant algebras have recently led to the discovery of a new fam­
ily of combinatorial character formulas. Cf. [APRl, APR2, HLR, Ra2, 
Ste, Ro2, Ro5). Here we survey some of these formulas with emphasis 
on permutation statistics. The goal of this paper is to present existing 
formulas and to study their role in deriving combinatorial identities. 

A permutation 1r E Sn is called unimodal if there exists 1 :S m :S n, 
such that 

1r(l) < 1r(2) < • • • < 1r(m) > 1r(m + 1) > · · · > n(n). 

Denote the set of all unimodal permutations in Sn by Un. 

For a permutation 7r E Sn define 

l!(n) := #{i < jjn(i) > 1r(j)}. 
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descent(1r) := #{i/1r(i) > 1r(i + l)}. 

ma1·or(1r) := ~ i 
L..., { il1r(i}>1r(i+1)} 

By considering different representations of symmetric group charac­
ters we derive the following identity: 

(1) 

where w is a root of unity of order n. 

This identity is generalized using Hecke algebra characters: 
(2) L wmajor(1r- 1 }qdescent(1r)tmajor(1r) = L (-q)descent(1r)tR(1r) 

1rESn 1rEUn 

The rest of the paper is organized as follows. In the second section 
we give necessary background from representation theory of Hecke alge­
bras, coinvariant algebras and permutation statistics. In the first part 
of Section 3 we present two different representations of the irreducible 
characters of the symmetric group as refined counts of descent number 
and major index of permutations. A new elementary proof is given. The 
second part of Section 3 contains formulas for characters of coinvariant 
algebras and applications. In Section 4 formulas for various characters 
of Hecke algebras are given with applications to permutation statistics 
identities. Section 5 concludes the paper with a brief sketch on other 
Coxeter groups and open problems. 

§2. Background 

2.1. Permutation Statistics 

Let Sn be the symmetric group on n letters, and let Ji : Sn -----, Z+ 
(1 :S i :S t) be (non-negative, integer valued) combinatorial parameters. 
Then one is interested in the refined count of permutations according to 
these parameters: 

L q{l (1r} ... q{'(1r). 

1rESn 

The study of permutation statistics started with Euler, who considered 
the number of descents. Netto, at the beginning of the century, con­
sidered the number of inversions, and MacMahon considered the major 
index. Multivariate refined counting was studied by [Ca, FS, GG] and 
many others. 
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In this section we define basic permutation statistics, which appear 
in the rest of the paper, and describe some of their properties. It should 
be noted that permutation statistics are connected to tableaux statistics 
via standard maps, such as Robinson-Schensted-Knuth correspondence 
and row (column) word tableaux (see below). For our purposes we prefer 
the permutation language. 

The length of 7f E Sn is the number 

C(1r) := #{i < jj1r(i) > 1r(j)}. 

This statistic is also called the inversion number. This number is well 
known to be equal to the minimal length of 7f as a product of simple 
reflections Si = (i, i + 1). Using this approach the length is generalized 
naturally to arbitrary Coxeter groups. 

The descent number of 7f E Sn is defined by 

descent(1r) := #{ij1r(i) > 1r(i + l)}. 

This statistic has also a natural generalization to arbitrary Coxeter 
groups. 

The major index of a permutation 7f E Sn is the sum (possibly zero) 

major(1r) := '°' i 
L..., { il1r(i)>1r(i+l)} 

Generalization of this statistic to arbitrary Coxeter group is a challenging 
open problem. See Section 5.1. 

A classical Theorem of MacMahon shows that the length function 
and the major index have the same generating function. The following 
well known identity refines this result [FS, Corollary 1]. 

Theorem 0.1 

L qmajor(1r)tmajor(1r- 1 ) = L . qmajor(1r)tf(1r- 1 ). 

,rESn 1rESn 

The Robinson-Schensted correspondence is a bijection between 
permutations 7f E Sn and pairs of standard tableaux of same shape 
(P(1r), P(1r- 1 )). See e.g. [Sa, Ch. 3.3]. A Knuth class in the symmetric 
group Sn is a set {1r E SnlP(1r) = Q}, where P(1r) is the left standard 
tableau corresponding to 7f under the Robinson-Schensted correspon­
dence and Q is a fixed standard tableau. Define an inverse Knuth class 
as a set of the form c- 1 = {'rr- 1 j1r EC}, where C is a Knuth class in Sn. 

The descent set of a permutation 7f E Sn is the set { ij1r( i) > 1r( i+ 1)}. 
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Fact 0.2 All permutations in an inverse Knuth class have a common 
descent set; So, have a common major index and a common descent 
number. 

It follows that the set of all permutations of a fixed descent number 
(major index) is a union of inverse Knuth classes. This fact is generalized 
to arbitrary Coxeter groups in the following way: The set of all elements 
of a fixed descent set is a union of Kazhdan-Lusztig left cells. See e.g. 
[Hu, Ch. 7.15]. 

Let C be a Knuth class in the symmetric group Sn. Denote by 
descent(c- 1) the descent number of the permutations in c- 1 , and by 
major(c- 1) the major index of the permutations in c- 1. 

The following hook formula of Stanley is very useful. 

Theorem 0.3 {ECII, Corollary 21.5} 
Let C be a Knuth class of shape A. Then 

n 
TI (qi - 1) '°' qmajor('II") = qZ:::; .>.;(i-1) __ i=_l ___ _ 

~ TI ( qhij - l) ' 
'll"EC (i,j)EA 

where hi,J are the hook lengths in the diagram of A. 

Any permutation may be considered as a sequence of positive inte­
gers. A less classical statistic on sequences (with repeats) is the charge. 
For definition see [Md, p. 242]. For permutation sequences the following 
folkloristic claim holds. 

Claim 0.4 For any permutation 7f E Sn, 

charge(1r) = major(w01r- 1w0 ), 

where w0 = n, n - l, n - 2, ... , 1 is the longest permutation in Sn. 

To verify this claim recall that the charge of a permutation 1r is 
the sum of (weighted) lengths of increasing subsequences of consequent 
digits in 7f. The claim is based on the fact that the length of the i-th 
increasing subsequence of consequent digits in 1r equals to the difference 
between the i-th and the i - 1-th descents of w01r- 1w0 . Therefore, by 
an elementary observation the sum in the charge equals to the sum of 
the descents of w01r- 1w0 . Le, to the major index of w01r- 1w0 . 

The Kostka-Foulkes polynomials, denoted by K>.,µ(q), are defined as 
the entries of the transition matrix between the Schur polynomial basis 
of the symmetric functions and the Hall-Littlewood q-polynomials. For 
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more details see [Md, Ch. III, 6]. The Kostka-Foulkes polynomials may 
be represented as refined counts of charge of semi-standard tableaux 
[LS]. The following is a special case of Lascoux-Schiitzenberger Theorem 
[Md, Ch. III, (6.5)]. Let T be a standard tableau. Denote by n(T) the 
permutation obtained by reading T from right to left in consecutive 
rows. n(T) is called the row-word of T. 

Theorem 0.5 
K>.,In (q) = L qcharge(1r(T)), 

T 

where the sum is taken over all standard tableaux of shape ..\. 

2.2. Representations 

2.2.1. Hecke Algebms and their Cellular Representations 
Hecke algebras. Let W be a Coxeter group, with a set of simple reflec­
tions S. The associated Hecke algebra 1iw(q) is defined over the polyno­
mial ring Z[q] as follows. 1iw(q) is spanned over the basis {Twlw E W}, 
where multiplication is defined by 

TwTv = Twv, if C(wv) = C(w) + C(v) 

(Ts - l)(Ts + q) = 0, Vs ES 

Here C(w) is the length of w. 
It should be noted that the last relation is slightly non-standard; 

this is done in order to get more elegant q-analogues. In order to shift 
to the standard version, one should replace each Ti by -Ti. 

The elements Ts, s E S generate 1i w ( q). 
Denote the Hecke algebra of the symmetric group Sn by 1in(q), and 

denote Ts, E 1in(q) by Ti- Then 1in(q) is generated by T1, ... , Tn-1with 
respect to the following relations 

TiTi+lTi = Ti+1TiTi+1, 1 ~ i < n - l 

(Ti - l)(Ti + q) = 0, Vi 

Let µ = (µ 1, ... , µt) be a partition of n. The element Tµ E 1in(q) is 
defined by 

I.e. Tµ is the subproduct of T 1T2 • • · Tµi+-·•+µ,-l omitting Tµ 1 +--•+µ, for 
1 ~ i < t. 
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In their fundamental paper [KL], Kazhdan and Lusztig present a 
distinguished basis for every Hecke algebra, and construct a rich family 
of representations of Coxeter groups and their Hecke algebras. In the 
case of the symmetric group, this construction gives a decomposition of 
the Hecke algebra into irreducible representations. 

A cornerstone for this theory is the concept of cellular structure. 
Any Coxeter group can be partitioned into subsets called Kazhdan­
Lusztig cells. The action of the group on each of these cells gives rise 
to a so-called Kazhdan-Lusztig representation. Denote the associated 
Kazhdan-Lusztig representation of a right (left) Kazhdan-Lusztig cell, 
C, by pc, and the corresponding character by xc. 

In the symmetric group case the Kazhdan-Lusztig right cells are 
the Knuth classes, while the Kazhdan-Lusztig left cells are the inverse 
Knuth classes [KL, §5, proof of Proposition 1.4]. The representation 
associated with a Kazhdan-Lusztig right (left) cell is the Sn-irreducible 
representation s>.., where >. is the shape of Q. We say that >. is the shape 
of the cell (Knuth class) C. 

2.2.2. The Coinvariant Algebra 
The symmetric group Sn acts on the polynomial ring Pn = 

Q[x1, ... , Xn] by permuting the variables. The coinvariant algebra is 
the quotient Pn/ In, where In is the ideal generated by the symmetric 
(Sn-invariant) polynomials without a constant term. The coinvariant 
algebra of a finite Weyl group W is defined similarly. The group algebra 
of W and its coinvariant algebra are isomorphic as W-modules [Hu, Ch. 
3.6]. Early work of Borel showed how to identify the coinvariant alge­
bra with the cohomology ring of G / B, where G is a simple Lie group 
and B is a Borel subgroup. Schubert polynomials, constructed in the 
seminal papers [BGG] and [De], form a distinguished basis for the coin­
variant algebra. These polynomials correspond to the Schubert cells in 
H*(G/B). 

The coinvariant algebra has a natural grading to homogenous com­
ponents, induced from the grading of the polynomial ring by total de­
gree. Denote by Rk the k-th homogeneous component of the coinvariant 
algebra. and by xk its corresponding character as a W-module. 

Decomposition into irreducibles. The decomposition of the coin­
variant algebra into irreducible representations involves major indices [KW]. 

Theorem 0.6 The multiplicity of the Sn-irreducible representation s>.. 
in the k-th homogeneous component of the coinvariant algebra, Rk, is 
equal to the number of Knuth classes of shape>. and major(c-1 ) = k. 
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An elegant proof of this theorem, using the principal specialization 
of Schur functions, was given by Stanley and developed in [Ste, Ga, Reu, 
Ch. 8.3]. In [Ro5] we applied Foata and Schiitzenberger's work on the 
major index, together with properties of Kazhdan-Lusztig representa­
tions, to derive this result. An analogous rule for decomposing the coin­
variant algebras of classical Weyl groups of type B and other wreath 
products was given in [Ste]. This analogue involves a new interpretation 
of the major index in terms of Coxeter elements [ARI]. Decomposition 
of other quotient rings is described by Kostka-Foulkes polynomials [GP]. 

Hecke algebra action. Explicit deformations of the symmetric group 
action on the coinvariant algebra is presented in [APRl]. Two different 
Hecke algebra actions on the polynomial ring Pn are defined. 

For the first action, each generator Ti acts on Pn as the linear op­
erator 

ifo:~,B 

if 0: < ,B 

Here m is a monomial involving neither Xi nor Xi+l. The action of Ri is 
extended to the full polynomial ring by linearity. For the second action 

each generator Ti acts on Pn as the q-commutator 

Ai := aixi - qXiai 

where ai is the divided difference operator ai := (xi - Xi+1)- 1(1 - si), 
and Xi is multiplication by Xi. 

The symmetric functions are invariant under these two actions. 
Therefore, the actions on the homogeneous components of the coinvari­
ant algebra form Hecke algebra representations. It should be noted that 
the two actions form equivalent representations. The associated char­
acters may represented as refined counts over subsets of permutations. 
Surprisingly, the Kazhdan-Lusztig characters of the Hecke algebra may 
be represented as refined counts of exactly the same statistic over differ­
ent summation sets. See Theorems 8 and 9 below. 

§3. Symmetric Group Characters 

3.1. Irreducible Characters 

The Murnaghan-Nakayama classical rule represents the symmet­
ric group characters as a signed enumeration of the so called rim-hook 
tableaux. Cf. [Sa, Ch. 4.10]. For a representation theoretical interpre­
tation of refined counts of rim-hook tableaux see [LLT]. In this section 
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we represent symmetric group characters as refined counts of permuta­
tions. These representations are convenient for generalizations to Hecke 
algebras, coinvariant algebras, and other groups and algebras. 

Definition. A sequence of positive integers a = a1, ... , an is unimodal 
if there exists 1 ~ m ~ n, such that 

a1 < a2 < · · · < am > am+l > · · · > an. 

Letµ= (µ 1 , ... , µt) be a partition of n. A sequence of n positive integers 
is µ-unimodal if the first µ 1 integers form a unimodal sequence, the next 
µ 2 integers form a unimodal sequence, and so on. 

A permutation n: E Sn is called a µ-unimodal permutation if the sequence 
n:(1), ... ,n:(n) is µ-unimodal. For example, n: = 174239856 is (4,3,2)­
unimodal, but not (5, 4)-unimodal. 

Denote the set of all µ-unimodal permutations in Sn by Uµ. Let 
,X and µ be partitions of n, and let x~ be the Sn-character value of 
the irreducible representation s>-- at a conjugacy class of type µ. The 
following Theorem is a special case of [Ro2, Theorem 4]. 

Theorem 1. 
X>-. = ~ (-l)descent(1r) 

µ ~1rECnu,,, ' 

where the sum runs over all µ-unimodal permutations in a Knuth class 
C of shape>.. 

For an elementary combinatorial proof see [Ro2, Proof of Theorem 
6]. 

The following lemma is an immediate consequence of Stanley's hook 
formula (Theorem 0.3). 

Lemma 2. Let C be a Knuth class of shape >.. Then 

L wmajor(1r)={(-l)k, 
1rEC 0, 

where w is a root of unity of order n. 

if .X = (n - k, lk) 

otherwise 

Proof. By Theorem 0.3 for any Knuth class of shape (n - k, lk) 
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If ,\ is not a hook then combining the fact that the refined count is a 
polynomial together with Theorem 0.3 implies that 

L qmajor(-rr) = q~ - 1 p(q), 
-rrEC qJ - l 

for some j < n, where j is a divisor of n, and p(q) is a polynomial in q. 
Hence, 

" wmajor(-rr) = (1 + wi + w2i +. • • + wn-j) • p(w) = 0 · p(w) = 0. 
~-rrEC 

• 
Another combinatorial representation of irreducible characters fol­

lows from this lemma. 

Theorem 3. 
X>. =" wmajor(-rr) 

(n) ~-rrEC ' 

where the sum is taken over a Knuth class C of shape ,\, and w is a root 
of unity of order n. 

Proof. It follows from Theorem 1 that X2n) = (-ll if,\= (n - k, lk) 

and zero otherwise. Combining this fact with Lemma 2 gives the desired 
result. 

• 
Remark. Theorem 3 was first proved in a deep work of Stembridge. In 
this work it was shown that the summands in the right hand side are 
essentially the eigenvalues. See [Ste, Theorem 3.2]. 

The Kostka-Foulkes polynomials are defined as entries of transition 
matrices between bases of q-symmetric functions. See Section 2.2. Com­
bining Theorem 3 with Theorem 0.5 we obtain 

Corollary 4. 
X2nl = K.x,, 1n(w), 

where K.x,,,,(q) is the Kostka-Foulkes polynomial, w is a root of unity of 
order n, and ,\' is the conjugate partition of>.. 

Proof. By Claim 0.4 and Theorem 0.5 

K.x,in(q) = Lqcharge(-rr(T)) = L qmajor(-rr)_ 

T -rrEwoSi-wo 

Here S.x := {(1r(T))- 1 IT is a standard tableau of shape,\}, where 1r(T) 
is the row word of T. 
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But S>. is a Knuth class of shape)..'. Moreover, for any Knuth class C 
of shape>.', woC and Cwo are Knuth classes of shape>.. Hence, woS>.Wo 
is a Knuth class of shape >.'. 

Theorem 3 completes the proof. D 

3.2. Coinvariant Algebra Characters 

Let xt be the Sn-character value at a conjugacy class of type µ 
of the k-th homogeneous component of the coinvariant algebra of the 
symmetric group Sn. Denote the set {1r E Snlt'(1r) = k} by L(k). An 
analogue of Theorem 1 is proved in [Ro5, Theorem 1]. 

Theorem 5. 
Xk = '°' (-l)descent(1r) 1 

µ ~1rEL(k)nU,, 

where the sum runs over all µ-unimodal permutations of length k. 

In other words 

Theorem 5'. 

It follows from Theorem 3 that 

Theorem 6. 

Proof. Clearly, 

k " >. X(n) = ~>. m>.,kX(n)' 

where m>.,k is the multiplicity of the irreducible representations>. in the 
k-th homogeneous component of the coinvariant algebra. 

Theorem 0.6 asserts that m>.,k equals to the number of Knuth classes 
C with major(c-1) = k. It follows that 

'°' Xk tk = '°' Xe tmajor(e- 1 ). 
~k (n) ~e (n) 

Here Xe is the irreducible character x>., where >. is the shape of C. 
By Theorem 3 the right hand side equals to 

'°' '°' wmajor(n)tmajor(c- 1 ) = '°' wmajor(1r)tmajor(1r- 1 ). 

~e~1rEe ~1rESn 
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Theorem 0.1 completes the proof. 

• 
Comparing Theorem 5' to Theorem 6 implies the following identity. 

Corollary 7. 

L wmajor(1r)tl(1r) = L (-l)descent(-rr)tf(1r), 
1rESn 1rEUn 

where Un is the set of all unimodal permutations in Sn. 

§4. Hecke Algebra Characters 

Hecke algebra characters provide q-analogues of the above results. 
The following formula for the irreducible characters is proved in (Ro2, 
Theorem 4] and in (Ra2]. Recall the definition of Tµ E Hn(q) from Sec­
tion 2.2.1, and let x;(Tµ) be the Hn(q)-character value of the irreducible 
representation corresponding to >. at the element Tµ E Hn(q). Then 

Theorem 8. 
x>.(T ) = " (-q)descent(1r), 

q µ ~1rECnUµ 

where the sum runs over all µ-unimodal permutations in a Knuth class 
C of shape>.. 

Action of Hecke algebra of type A on coinvariant algebras is de­
scribed in Section 2.1.2. Let x! be the character of the Hecke algebra 
Hn(q), defined by the action on the k-th homogeneous component of the 
coinvariant algebra. The following analogue of Theorem 5 is proved in 
(APRl, Theorems 5.1 and 6.6]. 

Theorem 9. 

xk(T ) =" (-q)descent(1r) 
q µ ~1rEL(k)nUµ ' 

where L(k) is the set of all permutations of length kin Sn. 

Here is an alternative combinatorial description. 

Theorem 10. 

Xk(T ) =" . wmajor(1r- 1 )qdescent(1r)_ 
q (n) ~{1rESnlma1or(1r)=k} 

Proof. In order to prove this corollary we need the following lemma. 
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Lemma 11. 

X.x(T. ) =" wmajor(-n:)qdescent(-n:- 1 ) 

q (n) ~-n:EC ' 

where the sum is taken over a Knuth class C of shape >.. 

Proof of Lemma 11. By Fact 0.2 all permutations in an inverse Knuth 
class c- 1 have a common descent number, denoted by descent(c- 1 ). 

Moreover, it is easy to verify that for any Knuth class C of hook shape 
(n - k, lk), descent(C- 1) = k. Combining these facts with Lemma 2 we 
obtain 

" wmajor(-n:)qdescent(-n:- 1 ) = qdescent(c-1)" wmajor(-n:) = 
~-n:EC ~-n:EC 

= {(-q)k, if>.= (n - k, lk) for some 0 ~ k < n. 
0, otherwise 

On the other hand, by Theorem 8 

X.x(T.n) = {(-ql, if>.= (n - k, lk) for some 0 ~ k < n. 
q ( ) 0 otherwise 

' 
• 

Using Theorem 0.6, as in the proof of Theorem 6, together with 
Lemma 11 yields 

" xk(T. )tk = " xc(T. )tmajorcc- 1 ) = ~k q (n) . ~C (n) 

We conclude that 

= " " wmajor(-n:)qdescent(-n:- 1 )tmajor(c- 1 ) = 
~C~-n:EC 

= L wmajor(-n:)qdescent(-n:- 1 )tmajor(-n:-1 ) _ 

-n:ESn 

xk(T. ) =" . wmajor(-n:)qdescent(-n:- 1 ). 
q (n) ~{-n:ESnlllaJOr(-n:- 1 )=k} · 

Comparing Theorem 9 with Theorem 10 we obtain 

Corollary 12. With the above notations 

• 

L wmajor(-n:- 1 )qdescent(-n:)tmajor(-n:) = L (-q)descent(-n:)tf(-n:). 
-n:ESn -n:EUn 
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§5. Final Remarks and Open Problems 

5.1. Other Weyl Groups 

Let H be a parabolic subgroup of an arbitrary Coxeter group W, 
which is isomorphic to a direct product of symmetric groups. In the 
following definition we refer to cycle type and weight! of elements in H 
under this isomorphism. 

Definition. Let µ be a cycle type of an element in H. For any element 
w = r · 1r E W, where 7f E H and r is the representative of minimal 
length of the left coset of wH in W, define 

weightq (w) := ' . { 
(-q)descent(1r) if 1r is µ-unimodal 

µ, 0, otherwise 

Note that weighti is independent of the choice of H, provided that 
His isomorphic to a direct product of symmetric groups and thatµ is 
the cycle type of some element in H. 

Let v,,, E H have a cycle typeµ, and let T,,, be the element in the 
Hecke algebra 1iw(q) indexed by v,,,. 

Theorem 13. {Rol, Corollary 3} Let C be a finite Kazhdan-Lusztig 
right cell in an arbitrary Coxeter group W, and let xc be its associated 
Hecke algebra character. Then 

xc(T,,,) =" weight!(w). 
~wEC 

A formally similar result for coinvariant algebras is proved in [APR2]. 
Let Rk be the k-th homogeneous component of the coinvariant algebra 
of W. Denote by xk the W-character of Rk. Let v,,, E H have cycle type 
µ. Then 

Theorem 14. [APR2, Theorem 4} Let W be an arbitrary finite Weyl 
group. With the above notations 

xk(v,,,) =" weightt(w). 
~{wEW:l'(w)=k} 

So, coinvariant algebra characters of an arbitrary finite Weyl group 
W and Kazhdan-Lusztig characters of these groups may be represented 
as sums of exactly the same weights, but over different summation sets. 
This curious analogy seems to deserve further study. 

Unfortunately, we do not know of an explicit Hecke algebra action 
on homogeneous components of coinvariant algebras of general type. 
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Problem 1. Define an action of the Hecke algebra of an arbitrary 
finite Weyl group on its coinvariant algebra, which produces a natural 
q-analogue of Theorem 14. 

When it comes to Theorem 3, analogues are known for classical Weyl 
groups and wreath products [Ste]. 

Problem 2. Give an analogue of Theorem 3 for an arbitrary finite 
Coxeter group. 

Stembridge proved that Theorem 3 describes the Sn-character xfn) 
as a sum of the eigenvalues of the full cycle at the irreducible representa­
tion SA_ Theorem 13 describes Kazhdan-Lusztig characters of a general 
Hecke algebra. Eigenvalues are described by Geck and Michel. 

Theorem 15. {GM, Proposition 1.3} Let W be a finite Coxeter group, 
and let p be an irreducible representation of its Hecke algebra 1iw(q). 
Let w E W be an element of minimal length in some conjugacy class 
in W. Let w be a root of unity of order d, where d is the order of 
w. Then there exist integers mi and rational numbers ri, such that the 
eigenvalues of p(Tw), Tw E 1iw(q), are 

(1 :Si :S dimp). 

Unfortunately, the problem of determining the integers mi is not 
solved in general. In case of classical Weyl groups and related wreath 
products, these integers are determined by a generalized major index 
[Ste, Theorem 5.1]. In this perspective, the problem of determining 
the integers mi (and so, solving Problem 2) is strongly related to the 
problem of defining major index on arbitrary Coxeter groups. Partial 
results appear in [Reil-2, FCl-3, Stei ,Ste, ARl ]. 

A closely related problem is the following: Recall that the sets of 
permutations of a fixed major index are unions of Kazhdan-Lusztig cells. 
This fact, together with Garsia-Gessel refined count of the major index 
of shuffles [GG], implies an extremely simple combinatorial rule for re­
stricting the coinvariant algebra of type A to parabolic subgroups [Ro4]. 
This rule is an exact analogue of the Barbasch-Vogan rule for restricting 
Kazhdan-Lusztig representations of arbitrary Weyl groups. No such a 
rule is known for coinvariant algebras of other Weyl groups. 

Geck and Michel give an algorithm for calculating the exponents ri 
in Theorem 15 [GM, §4.3]. In light of Corollary 4, a combinatorial under­
standing of this algorithm may be helpful in the study of deformations 
of Kostka-Foulkes polynomials. See e.g. [GH]. 
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5.2. Other Representation Theory Interpretations 

Stanley's hook formula for refined counts of major index over stan­
dard tableaux of shape A (Theorem 0.3) is identical with Olsson's hook 
formula, giving the dimensions of uni potent representations of G Ln ( q), 
the general linear group over a finite field [O]. Refined counts of charge 
on semi-standard tableaux of shape A gives Kostka-Foulkes polynomials 
[LS]. These polynomials are equal to unipotent characters of GLn(q) 
[Lu3, Shl, Ch. 2.7]. Therefore the charge essentially refines the major 
index, both as permutation statistics and in the representation theoretic 
interpretation. The charge gives also the eigenvalues of conjugacy classes 
of type rnfr. Unfortunately, eigenvalues of conjugacy classes of general 
type are not given by charge. See [Ste]. 

Finally, it should be mentioned that Hecke algebra bitraces may 
be represented as refined counts of nonnegative integer matrices [HLR]. 
This result follows from Theorem 8. The problem of representing charac­
ters of Brauer and Birman-Wenzl algebras as refined counts is a promis­
ing open problem [Ra3]. 

Acknowledgments. Thanks to Ron Adin, Arnn Ram and Victor 
Reiner for helpful comments. 
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