Finite Crystals and Paths

Goro Hatayama, Yoshiyuki Koga, Atsuo Kuniba, Masato Okado and Taichiro Takagi

Dedicated to Professor Tetsuji Miwa on his fiftieth birthday

Abstract

. We consider a category of finite crystals of a quantum affine algebra whose objects are not necessarily perfect, and set of paths, semiinfinite tensor product of an object of this category with a certain boundary condition. It is shown that the set of paths is isomorphic to a direct sum of infinitely many, in general, crystals of integrable highest weight modules. We present examples from $C_{n}^{(1)}$ and $A_{n-1}^{(1)}$, in which the direct sum becomes a tensor product as suggested from the Bethe Ansatz.

§1. Introduction

The main object of this note is to define a set of paths from a finite crystal B, which is not necessarily perfect, and investigate its crystal structure. The set of paths $\mathcal{P}(p, B)$ is, roughly speaking, a subset of the semi-infinite tensor product $\cdots \otimes B \otimes \cdots \otimes B \otimes B$ with a certain boundary condition related to \boldsymbol{p}. If B is perfect, it is known [KMN1] that as crystals, $\mathcal{P}(\boldsymbol{p}, B)$ is isomorphic to the crystal base $B(\lambda)$ of an integrable highest weight module with highest weight λ of the quantum affine algebra $U_{q}(\mathfrak{g})$. While trying to generalize this notion, we had two examples in mind: (a) $\mathfrak{g}=C_{n}^{(1)}, B=B^{1, l}\left(l\right.$: odd); (b) $\mathfrak{g}=A_{n-1}^{(1)}, B=$ $B^{1, l} \otimes B^{1, m}(l \geq m)$. For this parametrization of finite crystals, we refer to [HKOTY]. $B^{1, l}$ stands for the crystal base of an irreducible finitedimensional $U_{q}^{\prime}(\mathfrak{g})$-module. In case (a) (resp. (b)) this finite-dimensional module is isomorphic to $V_{l \bar{\Lambda}_{1}} \oplus V_{(l-2) \bar{\Lambda}_{1}} \oplus \cdots \oplus V_{\bar{\Lambda}_{1}}\left(\right.$ resp. $\left.V_{l \bar{\Lambda}_{1}}\right)$ as $U_{q}(\overline{\mathfrak{g}})-$ module, where V_{λ} is the irreducible finite-dimensional module with highest weight λ. In both cases B is not perfect except when $l=m$ in (b). For precise treatment see section 4.1 for (a) and 4.2 for (b).

Let us consider case (a) first. When $l=1$ it has already been known [DJKMO] that the formal character of $\mathcal{P}\left(\boldsymbol{p}, B^{1,1}\right)$ for suitable \boldsymbol{p} agrees with that of the irreducible highest weight $A_{2 n-1}^{(1)}$-module with fundamental highest weight Λ_{i} regarded as $C_{n}^{(1)}$-module via the natural embedding $C_{n}^{(1)} \hookrightarrow A_{2 n-1}^{(1)}$. On the other hand, the Bethe Ansatz suggests [Ku] that $\mathcal{P}\left(\boldsymbol{p}, B^{1, l}\right)$ is equal to $B(\lambda) \otimes \mathcal{P}\left(\boldsymbol{p}^{\dagger}, B^{1,1}\right)$ for suitable $\boldsymbol{p}, \boldsymbol{p}^{\dagger}$ and a level $\frac{l-1}{2}$ dominant integral weight λ at the level of the Virasoro central charge.

Let us turn to case (b). In [HKMW] the $U_{q}^{\prime}\left({\widehat{s} l_{2}}_{2}\right)$-invariant integrable vertex model with alternating spins is considered. To translate the physical states and operators of this model into the language of representation theory of the quantum affine algebra $U_{q}\left(\widehat{s l}_{2}\right)$, they considered a set of paths with alternating spins and showed that it is isomorphic to the tensor product of crystals with highest weights. Another appearance of example (b) can be found in [HKKOTY]. They considered the inductive limit of $\left(B^{1, l}\right)^{\otimes L_{1}} \otimes\left(B^{1, m}\right)^{\otimes L_{2}}$ when $L_{1}, L_{2} \rightarrow \infty, L_{1} \equiv r_{1}, L_{1}+L_{2} \equiv r_{2}$ $(\bmod n)$, and showed that there is a weight preserving bijection between the limit and $B\left((l-m) \Lambda_{r_{1}}\right) \otimes B\left(m \Lambda_{r_{2}}\right)$. Since there is a natural isomorphism $B^{1, l} \otimes B^{1, m} \simeq B^{1, m} \otimes B^{1, l}$, the above result claims that $\mathcal{P}\left(\boldsymbol{p}, B^{1, l} \otimes B^{1, m}\right)$ for suitable \boldsymbol{p} is bijective to $B\left((l-m) \Lambda_{r_{1}}\right) \otimes B\left(m \Lambda_{r_{2}}\right)$ with weight preserved. These results are consistent with the earlier Bethe ansatz calculations on "mixed spin" models [AM, DMN].

If we forget about the degree of the null root δ from weight, this phenomenon is explained using the theory of crystals with core [KK]. (See also [HKMW] section 3.2.) Let $\left\{B_{k}\right\}_{k \geq 1}$ be a coherent family of perfect crystals and B_{m}^{\prime} be a perfect crystal of level m. Fix l such that $l \geq m$ and take dominant integral weights λ and μ of level $l-m$ and m. Then there exists an isomorphism of crystals:

$$
\begin{aligned}
B(\lambda) \otimes B(\mu) & \simeq B(\sigma \lambda) \otimes B_{l-m} \otimes B\left(\sigma^{\prime} \mu\right) \otimes B_{m}^{\prime} \\
& \simeq B(\sigma \lambda) \otimes B\left(\sigma \sigma^{\prime} \mu\right) \otimes\left(B_{l} \otimes B_{m}^{\prime}\right)
\end{aligned}
$$

where σ and σ^{\prime} are automorphisms on the weight lattice P related to $\left\{B_{k}\right\}_{k \geq 1}$ and B_{m}^{\prime}. Iterating this isomorphism infinitely many times, we can expect

$$
\mathcal{P}\left(\boldsymbol{p}^{(\lambda, \mu)}, B_{l} \otimes B_{m}^{\prime}\right) \simeq B(\lambda) \otimes B(\mu)
$$

as $P / \mathbf{Z} \delta$-weighted crystals with suitable $\boldsymbol{p}^{(\lambda, \mu)}$.
In both cases (a),(b) we have illustrated above, what we expect is an isomorphism of P-weighted crystals of the following type:

$$
\begin{equation*}
\mathcal{P}(\boldsymbol{p}, B) \simeq B(\lambda) \otimes \mathcal{P}\left(\boldsymbol{p}^{\dagger}, B^{\dagger}\right) \tag{1.1}
\end{equation*}
$$

and we shall prove it in this paper. First we examine the crystal structure of $\mathcal{P}(\boldsymbol{p}, B)$ and show it is isomorphic to a direct sum of $B(\lambda)$'s. Therefore, the structure of $\mathcal{P}(\boldsymbol{p}, B)$ is completely determined by the set of highest weight elements. In the LHS of (1.1), such set $\mathcal{P}(\boldsymbol{p}, B)_{0}$ is easy to describe, and in the RHS, this set turns out to be the set of restricted paths $\mathcal{P}^{(\lambda)}\left(\boldsymbol{p}^{\dagger}, B^{\dagger}\right)$, which is familiar to the people in solvable lattice models. Thus establishing a weight preserving bijection between $\mathcal{P}(\boldsymbol{p}, B)_{0}$ and $\mathcal{P}^{(\lambda)}\left(\boldsymbol{p}^{\dagger}, B^{\dagger}\right)$ directly, we can show (1.1).

§2. Crystals

2.1. Notation

Let \mathfrak{g} be an affine Lie algebra. We denote by I the index set of its Dynkin diagram. Note that 0 is included in I. Let $\alpha_{i}, h_{i}, \Lambda_{i}(i \in I)$ be the simple roots, simple coroots, fundamental weights for \mathfrak{g}. Let $\delta=\sum_{i \in I} a_{i} \alpha_{i}$ denote the standard null root, and $c=\sum_{i \in I} a_{i}^{\vee} h_{i}$ the canonical central element, where a_{i}, a_{i}^{\vee} are positive integers as in [Kac]. We assume $a_{0}=1$. Let $P=\bigoplus_{i \in I} \mathbf{Z} \Lambda_{i} \oplus \mathbf{Z} \delta$ be the weight lattice, and set $P^{+}=\sum_{i \in I} \mathbf{Z}_{\geq 0} \Lambda_{i} \oplus \mathbf{Z} \delta$.

Let $U_{q}(\mathfrak{g})$ be the quantum affine algebra associated to \mathfrak{g}. For the definition of $U_{q}(\mathfrak{g})$ and its Hopf algebra structure, see e.g. section 2.1 of [KMN1]. For $J \subset I$ we denote by $U_{q}\left(\mathfrak{g}_{J}\right)$ the subalgebra of $U_{q}(\mathfrak{g})$ generated by $e_{i}, f_{i}, t_{i}(i \in J)$. In particular, $U_{q}\left(\mathfrak{g}_{I \backslash\{0\}}\right)$ is identified with the quantized enveloping algebra for the simple Lie algebra whose Dynkin diagram is obtained by deleting the 0 vertex from that of \mathfrak{g}. We also consider the quantum affine algebra without derivation $U_{q}^{\prime}(\mathfrak{g})$. As its weight lattice, the classical weight lattice $P_{c l}=P / \mathbf{Z} \delta$ is needed. We canonically identify $P_{c l}$ with $\bigoplus_{i \in I} \mathbf{Z} \Lambda_{i} \subset P$. For the precise treatment, see section 3.1 of [KMN1]. We further define the following subsets of $P_{c l}: P_{c l}^{0}=\left\{\lambda \in P_{c l} \mid\langle\lambda, c\rangle=0\right\}, P_{c l}^{+}=\left\{\lambda \in P_{c l} \mid\left\langle\lambda, h_{i}\right\rangle \geq 0\right.$ for any $\left.i\right\}$, $\left(P_{c l}^{+}\right)_{l}=\left\{\lambda \in P_{c l}^{+} \mid\langle\lambda, c\rangle=l\right\}$. For $\lambda, \mu \in P_{c l}$, we write $\lambda \geq \mu$ to mean $\lambda-\mu \in P_{c l}^{+}$.

2.2. Crystals and crystal bases

We summarize necessary facts in crystal theory. Our basic references are [K1], [KMN1] and [AK].

A crystal B is a set B with the maps

$$
\tilde{e}_{i}, \tilde{f}_{i}: B \sqcup\{0\} \longrightarrow B \sqcup\{0\}
$$

satisfying the following properties:

$$
\tilde{e}_{i} 0=\tilde{f}_{i} 0=0,
$$

for any b and i, there exists $n>0$ such that $\tilde{e}_{i}^{n} b=\tilde{f}_{i}^{n} b=0$, for $b, b^{\prime} \in B$ and $i \in I, \tilde{f}_{i} b=b^{\prime}$ if and only if $b=\tilde{e}_{i} b^{\prime}$.
If we want to emphasize I, B is called an I-crystal. A crystal can be regarded as a colored oriented graph by defining

$$
b \xrightarrow{i} b^{\prime} \quad \Longleftrightarrow \quad \tilde{f}_{i} b=b^{\prime} .
$$

For an element b of B we set

$$
\varepsilon_{i}(b)=\max \left\{n \in \mathbf{Z}_{\geq 0} \mid \tilde{e}_{i}^{n} b \neq 0\right\}, \quad \varphi_{i}(b)=\max \left\{n \in \mathbf{Z}_{\geq 0} \mid \tilde{f}_{i}^{n} b \neq 0\right\} .
$$

We also define a P-weighted crystal. It is a crystal with the weight decomposition $B=\sqcup_{\lambda \in P} B_{\lambda}$ such that

$$
\begin{align*}
& \tilde{e}_{i} B_{\lambda} \subset B_{\lambda+\alpha_{i}} \sqcup\{0\}, \quad \tilde{f}_{i} B_{\lambda} \subset B_{\lambda-\alpha_{i}} \sqcup\{0\}, \tag{2.1}\\
& \left\langle h_{i}, w t b\right\rangle=\varphi_{i}(b)-\varepsilon_{i}(b) . \tag{2.2}
\end{align*}
$$

Set

$$
\varepsilon(b)=\sum_{i \in I} \varepsilon_{i}(b) \Lambda_{i}, \quad \varphi(b)=\sum_{i \in I} \varphi_{i}(b) \Lambda_{i} .
$$

Then (2.2) is equivalent to $\varphi(b)-\varepsilon(b)=w t b . \quad P_{c l}$-weighted crystal is defined similarly.

For two weighted crystals B_{1} and B_{2}, the tensor product $B_{1} \otimes B_{2}$ is defined.

$$
B_{1} \otimes B_{2}=\left\{b_{1} \otimes b_{2} \mid b_{1} \in B_{1}, b_{2} \in B_{2}\right\} .
$$

The actions of \tilde{e}_{i} and \tilde{f}_{i} are defined by

$$
\begin{align*}
& \tilde{e}_{i}\left(b_{1} \otimes b_{2}\right)= \begin{cases}\tilde{c}_{i} b_{1} \otimes b_{2} & \text { if } \varphi_{i}\left(b_{1}\right) \geq \varepsilon_{i}\left(b_{2}\right) \\
b_{1} \otimes \tilde{e}_{i} b_{2} & \text { if } \varphi_{i}\left(b_{1}\right)<\varepsilon_{i}\left(b_{2}\right),\end{cases} \tag{2.3}\\
& \tilde{f}_{i}\left(b_{1} \otimes b_{2}\right)= \begin{cases}\tilde{f}_{i} b_{1} \otimes b_{2} & \text { if } \varphi_{i}\left(b_{1}\right)>\varepsilon_{i}\left(b_{2}\right) \\
b_{1} \otimes \tilde{f}_{i} b_{2} & \text { if } \varphi_{i}\left(b_{1}\right) \leq \varepsilon_{i}\left(b_{2}\right) .\end{cases} \tag{2.4}
\end{align*}
$$

Here $0 \otimes b$ and $b \otimes 0$ are understood to be $0 . \varepsilon_{i}, \varphi_{i}$ and wt are given by

$$
\begin{align*}
\varepsilon_{i}\left(b_{1} \otimes b_{2}\right) & =\max \left(\varepsilon_{i}\left(b_{1}\right), \varepsilon_{i}\left(b_{1}\right)+\varepsilon_{i}\left(b_{2}\right)-\varphi_{i}\left(b_{1}\right)\right), \tag{2.5}\\
\varphi_{i}\left(b_{1} \otimes b_{2}\right) & =\max \left(\varphi_{i}\left(b_{2}\right), \varphi_{i}\left(b_{1}\right)+\varphi_{i}\left(b_{2}\right)-\varepsilon_{i}\left(b_{2}\right)\right), \tag{2.6}\\
w t\left(b_{1} \otimes b_{2}\right) & =w t b_{1}+w t b_{2} . \tag{2.7}
\end{align*}
$$

Definition 2.1 ([AK]). We say a P (or $P_{c l}$)-weighted crystal is regular, if for any $i, j \in I(i \neq j), B$ regarded as $\{i, j\}$-crystal is a disjoint union of crystals of integrable highest weight modules over $U_{q}\left(\mathfrak{g}_{\{i, j\}}\right)$.

Crystal is a notion obtained by abstracting the properties of crystal bases $[\mathrm{K} 1]$. Let $V(\lambda)$ be the integrable highest weight $U_{q}(\mathfrak{g})$-module with highest weight $\lambda \in P^{+}$and highest weight vector u_{λ}. It is shown in [K1] that $V(\lambda)$ has a crystal base $(L(\lambda), B(\lambda))$. We regard u_{λ} as an element of $B(\lambda)$ as well. $B(\lambda)$ is a regular P-weighted crystal. A finite-dimensional integrable $U_{q}^{\prime}(\mathfrak{g})$-module V does not necessarily have a crystal base. If V has a crystal base (L, B), then B is a regular $P_{c l}^{0}$-weighted crystal with finitely many elements.

Let W be the affine Weyl group associated to \mathfrak{g}, and s_{i} be the simple reflection corresponding to α_{i}. W acts on any regular crystal B [K2]. The action is given by

$$
S_{s_{i}} b= \begin{cases}\tilde{f}_{i}^{\left\langle h_{i}, w t b\right\rangle} b & \text { if }\left\langle h_{i}, w t b\right\rangle \geq 0 \\ \tilde{e}_{i}^{-\left\langle h_{i}, w t b\right\rangle} b & \text { if }\left\langle h_{i}, w t b\right\rangle \leq 0\end{cases}
$$

An element b of B is called i-extremal if $\tilde{e}_{i} b=0$ or $\tilde{f}_{i} b=0 . b$ is called extremal if $S_{w} b$ is i-extremal for any $w \in W$ and $i \in I$.

Definition 2.2 ([AK] Definition 1.7). Let B be a regular $P_{c l}^{0}$-weighted crystal with finitely many elements. We say B is simple if it satisfies
(1) There exists $\lambda \in P_{c l}^{0}$ such that the weights of B are in the convex hull of $W \lambda$.
(2) $\sharp B_{\lambda}=1$.
(3) The weight of any extremal element is in $W \lambda$.

Remark 2.3. Let B be a regular $P_{c l}^{0}$-weighted crystal with finitely many elements. We have the following criterion for simplicity. Let $B(\lambda)$ denote the crystal base of the irreducible highest weight $U_{q}\left(\mathfrak{g}_{I \backslash\{0\}}\right)$ module with highest weight λ. If B decomposes into $B \simeq \bigoplus_{j=0}^{m} B\left(\lambda_{j}\right)$ as $U_{q}\left(\mathfrak{g}_{I \backslash\{0\}}\right)$-crystal and λ_{j} satisfies
(1) $\lambda_{j} \in \lambda_{0}+\sum_{i \neq 0} \mathbf{Z}_{\leq 0} \alpha_{i}$ and $\lambda_{j} \neq \lambda_{0}$ for any $j \neq 0$,
(2) The highest weight element of $B\left(\lambda_{j}\right)$ is not 0 -extremal for any $j \neq 0$,
then B is simple.

Proposition 2.4 ([AK] Lemma 1.9 \& 1.10). Simple crystals have the following properties.
(1) A simple crystal is connected.
(2) The tensor product of simple crystals is also simple.

2.3. Category $\mathcal{C}^{\text {fin }}$

Let B be a regular $P_{c l}^{0}$-weighted crystal with finitely many elements. For B we introduce the level of B by

$$
\operatorname{lev} B=\min \{\langle c, \varepsilon(b)\rangle \mid b \in B\} \in \mathbf{Z}_{\geq 0}
$$

Note that $\langle c, \varepsilon(b)\rangle=\langle c, \varphi(b)\rangle$ for any $b \in B$. We also set $B_{\min }=\{b \in$ $B \mid\langle c, \varepsilon(b)\rangle=\operatorname{lev} B\}$ and call an element of $B_{\min }$ minimal.

Definition 2.5. We denote by $\mathcal{C}^{\text {fin }}(\mathfrak{g})$ (or simply $\mathcal{C}^{\text {fin }}$) the category of crystal B satisfying the following conditions:
(1) B is a crystal base of a finite-dimensional $U_{q}^{\prime}(\mathfrak{g})$-module.
(2) B is simple.
(3) For any $\lambda \in P_{c l}^{+}$such that $\langle c, \lambda\rangle \geq \operatorname{lev} B$, there exists $b \in B$ satisfying $\varepsilon(b) \leq \lambda$. It is also true for φ.

We call an object of $\mathcal{C}^{f i n}(\mathfrak{g})$ finite crystal.
Remark 2.6. (i) Condition (1) implies B is a regular $P_{c l}^{0}$-weighted crystal with finitely many elements.
(ii) Set $l=\operatorname{lev} B$. Condition (3) implies that the maps ε and φ from $B_{\text {min }}$ to $\left(P_{c l}^{+}\right)_{l}$ are surjective. (cf. (4.6.5) in [KMN1])
(iii) Practically, one has to check condition (3) only for $\lambda \in P_{c l}^{+}$such that there is no $i \in I$ satisfying $\lambda-\Lambda_{i} \geq 0$ and $\left\langle c, \lambda-\Lambda_{i}\right\rangle \geq \operatorname{lev} B$. In particular, if $a_{i}^{\vee}=1$ for any $i \in I\left(\mathfrak{g}=A_{n}^{(1)}, C_{n}^{(1)}\right)$, the surjectivity of ε and φ assures (3).
(iv) The authors do not know a crystal satisfying (1) and (2), but not satisfying (3).

Let B_{1} and B_{2} be two finite crystals. Definition 2.5 (1) and the existence of the universal R-matrix assures that we have a natural isomorphism of crystals.

$$
\begin{equation*}
B_{1} \otimes B_{2} \simeq B_{2} \otimes B_{1} \tag{2.8}
\end{equation*}
$$

The following lemma is immediate.
Lemma 2.7. Let B_{1}, B_{2} be finite crystals.
(1) $\operatorname{lev}\left(B_{1} \otimes B_{2}\right)=\max \left(\operatorname{lev} B_{1}, \operatorname{lev} B_{2}\right)$.
(2) If $\operatorname{lev} B_{1} \geq \operatorname{lev} B_{2}$, then $\left(B_{1} \otimes B_{2}\right)_{\min }=\left\{b_{1} \otimes b_{2} \mid b_{1} \in\left(B_{1}\right)_{\min }\right.$, $\varphi_{i}\left(b_{1}\right) \geq \varepsilon_{i}\left(b_{2}\right)$ for any $\left.i\right\}$.
(3) If lev $B_{1} \leq \operatorname{lev} B_{2}$, then $\left(B_{1} \otimes B_{2}\right)_{\min }=\left\{b_{1} \otimes b_{2} \mid b_{2} \in\left(B_{2}\right)_{\min }\right.$, $\varphi_{i}\left(b_{1}\right) \leq \varepsilon_{i}\left(b_{2}\right)$ for any $\left.i\right\}$.
$\mathcal{C}^{\text {fin }}(\mathfrak{g})$ forms a tensor category.
Proposition 2.8. If B_{1} and B_{2} are objects of $\mathcal{C}^{\text {fin }}(\mathfrak{g})$, then $B_{1} \otimes B_{2}$ is also an object of $\mathcal{C}^{\text {fin }}(\mathfrak{g})$.

Proof. We need to check the conditions in Definition 2.5 for $B_{1} \otimes B_{2}$. (1) is obvious and (2) follows from Proposition 2.4 (2).

Let us prove condition (3) for ε. Set $l_{1}=\operatorname{lev} B_{1}, l_{2}=\operatorname{lev} B_{2}$. Using (2.8) if necessary, we can assume $l_{1} \geq l_{2}$. Thus we have $\operatorname{lev} B_{1} \otimes B_{2}=l_{1}$. For any $\lambda \in P_{c l}^{+}$such that $\langle c, \lambda\rangle \geq l_{1}$, one can take $b_{1} \in B_{1}$ satisfying $\varepsilon\left(b_{1}\right) \leq \lambda$. Since $\left\langle c, \varphi\left(b_{1}\right)\right\rangle \geq l_{1} \geq l_{2}$, one can take $b_{2} \in B_{2}$ satisfying $\varepsilon\left(b_{2}\right) \leq \varphi\left(b_{1}\right)$. In view of (2.5) one has $\varepsilon\left(b_{1} \otimes b_{2}\right)=\varepsilon\left(b_{1}\right) \leq \lambda$.

For the proof of φ, repeat a similar exercise for $B_{2} \otimes B_{1}\left(\simeq B_{1} \otimes B_{2}\right)$ using (2.6).

2.4. Category \mathcal{C}^{h}

If an element b of a crystal B satisfies $\tilde{e}_{i} b=0$ for any i, we call it a highest weight element.

Definition 2.9. We denote by $\mathcal{C}^{h}(I, P)$ (or simply \mathcal{C}^{h}) the category of regular P-weighted crystal B satisfying the following condition:

For any $b \in B$, there exist $l \geq 0, i_{1}, \cdots, i_{l} \in I$ such that $b^{\prime}=$ $\tilde{e}_{i_{1}} \cdots \tilde{e}_{i_{l}} b \in B$ is a highest weight element.

Clearly, $\mathcal{C}^{h}(I, P)$ forms a tensor category.
Proposition 2.10 ([KMN1] Proposition 2.4.4). An object of $\mathcal{C}^{h}(I, P)$ is isomorphic to a direct sum (disjoint union) of crystals $B(\lambda)\left(\lambda \in P^{+}\right)$ of integrable highest weight $U_{q}(\mathfrak{g})$-modules.

Let O be an object of $\mathcal{C}^{h}(I, P)$. By O_{0} we mean the set of highest weight elements in O. Suppose that $O_{0}=\left\{b_{j} \mid j \in J\right\}$ and wt $b_{j}=\lambda_{j} \in$ P^{+}, then from the above proposition we have an isomorphism

$$
O \simeq \bigoplus_{j \in J} B\left(\lambda_{j}\right) \quad \text { as } P \text {-weighted crystals. }
$$

J can be an infinite set.
The following lemma is standard.
Lemma 2.11. Let B_{1}, B_{2} be weighted crystals. Then $b_{1} \otimes b_{2} \in B_{1} \otimes B_{2}$ is a highest weight element, if and only if b_{1} is a highest weight element and $\tilde{e}_{i}^{\left\langle h_{i}, w t b_{1}\right\rangle+1} b_{2}=0$ for any i.

Let O be an object of $\mathcal{C}^{h}(I, P)$. From this lemma we have the following bijection.

$$
\begin{array}{rll}
(B(\lambda) \otimes O)_{0} & \longrightarrow & O^{\leq \lambda}:=\left\{b \in O \mid \tilde{e}_{i}^{\left\langle h_{i}, \lambda\right\rangle+1} b=0 \text { for any } i\right\} \\
u_{\lambda} \otimes b & \mapsto & b .
\end{array}
$$

Note that $O^{\leq 0}=O_{0}$.

§3. Paths

In this section we construct a set of paths from a finite crystal and consider its structure.

3.1. Energy function

Let us recall the energy function used in [NY] to identify the KostkaFoulkes polynomial with a generating function over classically restricted paths.

Let B_{1} and B_{2} be two finite crystals. Suppose $b_{1} \otimes b_{2} \in B_{1} \otimes B_{2}$ is mapped to $\tilde{b}_{2} \otimes \tilde{b}_{1} \in B_{2} \otimes B_{1}$ under the isomorphism (2.8). A \mathbf{Z}-valued function H on $B_{1} \otimes B_{2}$ is called an energy function if for any i and $b_{1} \otimes b_{2} \in B_{1} \otimes B_{2}$ such that $\tilde{e}_{i}\left(b_{1} \otimes b_{2}\right) \neq 0$, it satisfies

$$
\begin{array}{rlc}
H\left(\tilde{e}_{i}\left(b_{1} \otimes b_{2}\right)\right) & =H\left(b_{1} \otimes b_{2}\right)+1 & \text { if } i=0, \varphi_{0}\left(b_{1}\right) \geq \varepsilon_{0}\left(b_{2}\right) \\
& =H\left(b_{1} \otimes b_{2}\right)-1 & \text { if } i=0, \varphi_{0}\left(\tilde{b}_{2}\right) \geq \varepsilon_{0}\left(\tilde{b}_{1}\right) \\
& & \varphi_{0}\left(\tilde{b}_{2}\right)<\varepsilon_{0}\left(\tilde{b}_{1}\right) \\
& =H\left(b_{1}\right) \\
& \text { otherwise } . \tag{3.1}
\end{array}
$$

When we want to emphasize $B_{1} \otimes B_{2}$, we write $H_{B_{1} B_{2}}$ for H. The existence of such function can be shown in a similar manner to section 4 of [KMN1] based on the existence of combinatorial R-matrix. The energy function is unique up to additive constant, since $B_{1} \otimes B_{2}$ is connected. By definition, $H_{B_{1} B_{2}}\left(b_{1} \otimes b_{2}\right)=H_{B_{2} B_{1}}\left(\tilde{b}_{2} \otimes \tilde{b}_{1}\right)$.

If the tensor product $B_{1} \otimes B_{2}$ is homogeneous, i.e., $B_{1}=B_{2}$, we have $\tilde{b}_{2}=b_{1}, \tilde{b}_{1}=b_{2}$. Thus (3.1) is rewritten as

$$
\begin{align*}
H\left(\tilde{e}_{i}\left(b_{1} \otimes b_{2}\right)\right) & =H\left(b_{1} \otimes b_{2}\right)+1 & & \text { if } i=0, \varphi_{0}\left(b_{1}\right) \geq \varepsilon_{0}\left(b_{2}\right), \\
& =H\left(b_{1} \otimes b_{2}\right)-1 & & \text { if } i=0, \varphi_{0}\left(b_{1}\right)<\varepsilon_{0}\left(b_{2}\right), \\
& =H\left(b_{1} \otimes b_{2}\right) & & \text { if } i \neq 0 . \tag{3.2}
\end{align*}
$$

The following proposition, which is shown by case-by-case checking, reduces the energy function of a tensor product to that of each component.

Proposition 3.1. Set $B=B_{1} \otimes B_{2}$, then

$$
\begin{aligned}
H_{B B}\left(\left(b_{1} \otimes b_{2}\right) \otimes\left(b_{1}^{\prime} \otimes b_{2}^{\prime}\right)\right)= & H_{B_{1} B_{2}}\left(b_{1} \otimes b_{2}\right)+H_{B_{1} B_{1}}\left(\tilde{b}_{1} \otimes b_{1}^{\prime}\right) \\
& +H_{B_{2} B_{2}}\left(b_{2} \otimes \tilde{b}_{2}^{\prime}\right)+H_{B_{1} B_{2}}\left(b_{1}^{\prime} \otimes b_{2}^{\prime}\right)
\end{aligned}
$$

Here $\tilde{b}_{1}, \tilde{b}_{2}^{\prime}$ are defined as

$$
\begin{aligned}
B_{1} \otimes B_{2} & \simeq B_{2} \otimes B_{1} \\
b_{1} \otimes b_{2} & \mapsto \tilde{b}_{2} \otimes \tilde{b}_{1} \\
b_{1}^{\prime} \otimes b_{2}^{\prime} & \mapsto \tilde{b}_{2}^{\prime} \otimes \tilde{b}_{1}^{\prime} .
\end{aligned}
$$

Remark 3.2. Decomposition of the energy function is not unique. For instance, the following also gives such decomposition.

$$
\begin{aligned}
H_{B B}\left(\left(b_{1} \otimes b_{2}\right) \otimes\left(b_{1}^{\prime} \otimes b_{2}^{\prime}\right)\right)= & H_{B_{2} B_{1}}\left(b_{2} \otimes b_{1}^{\prime}\right)+H_{B_{1} B_{1}}\left(b_{1} \otimes \check{b}_{1}^{\prime}\right) \\
& +H_{B_{2} B_{2}}\left(\breve{b}_{2} \otimes b_{2}^{\prime}\right)+H_{B_{1} B_{2}}\left(\check{b}_{1}^{\prime} \otimes \check{b}_{2}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
B_{2} \otimes B_{1} & \simeq B_{1} \otimes B_{2} \\
b_{2} \otimes b_{1}^{\prime} & \mapsto \check{b}_{1}^{\prime} \otimes \check{b}_{2}
\end{aligned}
$$

3.2. Set of paths $\mathcal{P}(p, B)$

We shall define a set of paths from any finite crystal in $\mathcal{C}^{\text {fin }}$ imitating the construction in section 4 of [KMN1] from a perfect crystal.

Definition 3.3. An element $\boldsymbol{p}=\cdots \otimes \boldsymbol{b}_{j} \otimes \cdots \otimes \boldsymbol{b}_{\mathbf{2}} \otimes \boldsymbol{b}_{1}$ of the semiinfinite tensor product of B is called a reference path if it satisfies $\mathbf{b}_{j} \in$ $B_{\min }$ and $\varphi\left(\boldsymbol{b}_{j+1}\right)=\varepsilon\left(\boldsymbol{b}_{j}\right)$ for any $j \geq 1$.
Definition 3.4. Fix a reference path $\boldsymbol{p}=\cdots \otimes \boldsymbol{b}_{j} \otimes \cdots \otimes \boldsymbol{b}_{2} \otimes \boldsymbol{b}_{1}$. We define a set of paths $\mathcal{P}(\boldsymbol{p}, B)$ by

$$
\mathcal{P}(\boldsymbol{p}, B)=\left\{p=\cdots \otimes b_{j} \otimes \cdots \otimes b_{2} \otimes b_{1} \mid b_{j} \in B, b_{k}=\boldsymbol{b}_{k} \text { for } k \gg 1\right\}
$$

An element of $\mathcal{P}(\boldsymbol{p}, B)$ is called a path. For convenience we denote b_{k} by $p(k)$ and $\cdots \otimes b_{k+2} \otimes b_{k+1}$ by $p[k]$ for $p=\cdots \otimes b_{j} \otimes \cdots \otimes b_{2} \otimes b_{1}$.

Definition 3.5. For a path $p \in \mathcal{P}(\boldsymbol{p}, B)$, set

$$
\begin{aligned}
E(p) & =\sum_{j=1}^{\infty} j(H(p(j+1) \otimes p(j))-H(\boldsymbol{p}(j+1) \otimes \boldsymbol{p}(j))) \\
W(p) & =\varphi(\boldsymbol{p}(1))+\sum_{j=1}^{\infty}(w t p(j)-w t \boldsymbol{p}(j))-E(p) \delta
\end{aligned}
$$

$E(p)$ and $W(p)$ are called the energy and weight of p.

We distinguish $W(p) \in P$ from wt $p=\varphi(\boldsymbol{p}(1))+\sum_{j=1}^{\infty}(w t p(j)-$ $\left.{ }^{w} t \boldsymbol{p}(j)\right) \in P_{c l}$.

Remark 3.6. (i) If B is perfect, the set of reference paths is bijective to $\left(P_{c l}^{+}\right)_{l}$, where $l=\operatorname{lev} B$. For $\lambda \in\left(P_{c l}^{+}\right)_{l}$ take a unique $\boldsymbol{b}_{1} \in B_{\min }$ such that $\varphi\left(\boldsymbol{b}_{1}\right)=\lambda$. The condition $\varphi\left(\boldsymbol{b}_{j+1}\right)=\varepsilon\left(\boldsymbol{b}_{j}\right)$ fixes $\boldsymbol{p}=\cdots \otimes \boldsymbol{b}_{j} \otimes \cdots \otimes \boldsymbol{b}_{1}$ uniquely.
(ii) In $[\mathrm{KMN1}] \boldsymbol{p}$ is called a ground state path, since $E(p) \geq E(\boldsymbol{p})$ for any $p \in \mathcal{P}(\boldsymbol{p}, B)$. But if B is not perfect, it is no longer true in general.

The following theorem is essential for our consideration below.
Theorem 3.7. Assume rank $\mathfrak{g}>2$. Then $\mathcal{P}(\boldsymbol{p}, B)$ is an object of \mathcal{C}^{h}.
Proof. Assume $\tilde{e}_{i} p=\cdots \otimes \tilde{e}_{i} b_{j} \otimes \cdots \otimes b_{1} \neq 0$. Note that $E\left(\tilde{e}_{i} p\right)=$ $E(p)-\delta_{i 0}$ and $w t \tilde{e}_{i} b_{j}=w t b_{j}+\alpha_{i}-\delta_{i 0} \delta \in P_{c l}$. By Definition 3.5 it is immediate to see $\mathcal{P}(\boldsymbol{p}, B)$ is a P-weighted crystal. Thus one has to check the following:
(i) If for any $i, j \in I(i \neq j), \mathcal{P}(\boldsymbol{p}, B)$ regarded as $\{i, j\}$-crystal is a disjoint union of crystals of integrable highest weight modules over $U_{q}\left(\mathfrak{g}_{\{i, j\}}\right)$.
(ii) For any $p \in \mathcal{P}(\boldsymbol{p}, B)$, there exist $l \geq 0, i_{1}, \cdots, i_{l} \in I$ such that $p^{\prime}=\tilde{e}_{i_{1}} \cdots \tilde{e}_{i_{l}} p \in \mathcal{P}(\boldsymbol{p}, B)$ is a highest weight element.
We prove (i) first. For $p \in \mathcal{P}(\boldsymbol{p}, B)$ take m, m^{\prime} such that $p(k)=\boldsymbol{p}(k)$ for $k>m$ and $m^{\prime} \gg m$. Note that if ${\tilde{i_{N}}}^{\cdots} \tilde{f}_{i_{1}} p[m]=p\left[m^{\prime}\right] \otimes b_{m^{\prime}}^{\prime} \otimes \cdots \otimes$ b_{m+1}^{\prime}, then $b_{k}^{\prime}=\boldsymbol{p}(k)$ for $k>m+N$. From the assumption, $U_{q}\left(\mathfrak{g}_{\{i, j\}}\right)$ is the quantized enveloping algebra associated to a finite-dimensional Lie algebra. Since B is regular, the connected component containing $p[m]$, as $\{i, j\}$-crystal, can be considered to be in $B\left(\varphi\left(p\left[m^{\prime}\right]\right)\right) \otimes B^{\otimes\left(m^{\prime}-m\right)}$. Since $\varepsilon(p[m])=0$, we can regard $p[m]$ as highest weight element of some $\{i, j\}$-crystal B_{0} which is isomorphic to the crystal of an integrable highest weight $U_{q}\left(\mathfrak{g}_{\{i, j\}}\right)$-module. Hence p is contained in a component of the $\{i, j\}$-crystal $B_{0} \otimes B^{\otimes m}$, which is a disjoint union of crystals of integrable highest weight $U_{q}\left(\mathfrak{g}_{\{i, j\}}\right)$-modules.

To prove (ii) for $p=\cdots \otimes b_{k} \otimes \cdots \otimes b_{1} \in \mathcal{P}(\boldsymbol{p}, B)$, we take the minimum integer m such that $p^{\prime}=p[m]$ is a highest weight element. We prove by induction on m.

First let us show that there exist $l \geq 0, i_{1}, \cdots, i_{l} \in I$ such that $\tilde{e}_{i_{1}} \cdots \tilde{e}_{i_{l}}\left(p^{\prime} \otimes b_{m}\right)$ is a highest weight element. The proof is essentially the same as a part of that of Theorem 4.4.1 in [KMN1]. Nevertheless we repeat it for the sake of self-containedness. Suppose that there does
not exist such i_{1}, \cdots, i_{l}. Then there exists an infinite sequence $\left\{i_{\nu}\right\}$ in I such that

$$
\tilde{e}_{i_{k}} \cdots \tilde{e}_{i_{1}}\left(p^{\prime} \otimes b_{m}\right) \neq 0
$$

Since $\tilde{e}_{i_{k}} \cdots \tilde{e}_{i_{1}}\left(p^{\prime} \otimes b_{m}\right)=p^{\prime} \otimes \tilde{e}_{i_{k}} \cdots \tilde{e}_{i_{1}} b_{m}$ and B is a finite set, there exists $b^{(1)} \in B$ and j_{1}, \cdots, j_{l} such that

$$
p^{\prime} \otimes b^{(1)}=\tilde{e}_{j_{l}} \cdots \tilde{e}_{j_{1}}\left(p^{\prime} \otimes b^{(1)}\right)
$$

Hence setting $b^{(\nu+1)}=\tilde{e}_{j_{\nu}} b^{(\nu)}$, we have

$$
\tilde{e}_{j_{\nu}}\left(p^{\prime} \otimes b^{(\nu)}\right)=p^{\prime} \otimes b^{(\nu+1)} \text { and } b^{(l+1)}=b^{(1)}
$$

In view of (2.6) we have $\varphi_{i}\left(p^{\prime}\right) \geq \varphi_{i}\left(b_{m+1}\right)$ for any i. Thus by (2.3) we have $\varepsilon_{j_{\nu}}\left(b^{(\nu)}\right)>\varphi_{j_{\nu}}\left(p^{\prime}\right) \geq \varphi_{j_{\nu}}\left(b^{\prime}\right)$ for some $b^{\prime} \in B$. Hence we have

$$
\tilde{e}_{j_{\nu}}\left(b^{\prime} \otimes b^{(\nu)}\right)=b^{\prime} \otimes b^{(\nu+1)}
$$

Therefore, from (3.2), we have

$$
H\left(b^{\prime} \otimes b^{(\nu+1)}\right)=H\left(b^{\prime} \otimes b^{(\nu)}\right)-\delta_{i_{\nu} 0}
$$

Hence $H\left(b^{\prime} \otimes b^{(l+1)}\right)=H\left(b^{\prime} \otimes b^{(1)}\right)-\sharp\left\{\nu \mid j_{\nu}=0\right\}$, which implies there is no ν such that $j_{\nu}=0$. On the other hand, $\sum_{\nu} \alpha_{j_{\nu}}=0 \bmod \mathbf{Z} \delta$ and hence $\sum_{\nu} \alpha_{j_{\nu}}$ is a positive multiple of δ, which contradicts $0 \notin$ $\left\{j_{1}, \cdots, j_{l}\right\}$.

Now set $p^{\prime \prime}=p^{\prime} \otimes b_{m}(=p[m-1]), b^{\prime \prime}=b_{m-1} \otimes \cdots \otimes b_{1}$. Notice that for any $i \in I$ satisfying $\tilde{e}_{i} p^{\prime \prime} \neq 0$, there exists $k \geq 1$ such that

$$
\tilde{e}_{i}^{k}\left(p^{\prime \prime} \otimes b^{\prime \prime}\right)=\tilde{e}_{i} p^{\prime \prime} \otimes \tilde{e}_{i}^{k-1} b^{\prime \prime}
$$

Therefore there exist $l \geq 0,\left(i_{1}, k_{1}\right), \cdots,\left(i_{l}, k_{l}\right) \in I \times \mathbf{Z}_{>0}$ such that

$$
\tilde{e}_{i_{1}}^{k_{1}} \cdots \tilde{e}_{i_{l}}^{k_{l}} p=\tilde{e}_{i_{1}} \cdots \tilde{e}_{i_{l}} p^{\prime \prime} \otimes \tilde{e}_{i_{1}}^{k_{1}-1} \cdots \tilde{e}_{i_{l}}^{k_{l}-1} b^{\prime \prime}
$$

and $\tilde{e}_{i_{1}} \cdots \tilde{e}_{i_{1}} p^{\prime \prime}$ is a highest weight element. Now we can use the induction assumption and complete the proof.

Remark 3.8. As seen in the proof, the theorem does not require the condition $\boldsymbol{b}_{j} \in B_{\min }$ for the reference path $\boldsymbol{p}=\cdots \otimes \boldsymbol{b}_{j} \otimes \cdots \otimes \boldsymbol{b}_{\mathbf{1}}$.

The following proposition describes the set of highest weight elements in $\mathcal{P}(\boldsymbol{p}, B)$.

Proposition 3.9.

$$
\mathcal{P}(\boldsymbol{p}, B)_{0}=\left\{p \in \mathcal{P}(\boldsymbol{p}, B) \mid p(j) \in B_{\min }, \varphi(p(j+1))=\varepsilon(p(j)) \text { for } \forall j\right\}
$$

Proof. Assume $p=\cdots \otimes b_{j} \otimes \cdots \otimes b_{1}$ is a highest weight element. We prove the following by induction on m in decreasing order.
(i) $b_{m} \in B_{\min }, \varphi\left(b_{m+1}\right)=\varepsilon\left(b_{m}\right)$
(ii) $\varphi(p[m-1])=\varphi\left(b_{m}\right)$

These conditions are satisfied for sufficiently large m. From (ii) for $m+1$ we have $\varphi(p[m])=\varphi\left(b_{m+1}\right)$. From Lemma 2.11 we see that $p[m]$ is a highest weight element and $\varepsilon\left(b_{m}\right) \leq w t p[m]=\varphi(p[m])=\varphi\left(b_{m+1}\right)$. Combining this with (i) for $m+1$, we can conclude (i) for m. For (ii) use (2.6).

As seen in the proof, we obtain
Corollary 3.10. If $p \in \mathcal{P}(\mathbf{p}, B)_{0}$, then $w t p[j]=\varphi(p(j+1))$.

3.3. Restricted paths

When B is perfect the set of restricted paths was defined in [DJO] and shown to be bijective to $(B(\lambda) \otimes B(\mu))_{0}$ for some $\lambda, \mu \in P_{c l}^{+}$. Here we shall consider restricted paths for any finite crystal B.

For $\lambda \in P_{c l}^{+}$and $p \in \mathcal{P}(\boldsymbol{p}, B)$, we introduce a sequence of weights $\left\{\lambda_{j}(p)\right\}_{j \geq 0}$ by

$$
\begin{aligned}
& \lambda_{j}(p)=\lambda+\varphi(p(j+1)) \text { for } j \gg 1, \\
& \lambda_{j-1}(p)=\lambda_{j}(p)+w t p(j) .
\end{aligned}
$$

Notice that this definition is well-defined by virtue of the property of the reference path. In fact, $\lambda_{j}(p)=\lambda+w t p[j]$.

Definition 3.11. For $\lambda \in P_{c l}^{+}$we define a subset $\mathcal{P}^{(\lambda)}(\mathbf{p}, B)$ of $\mathcal{P}(\boldsymbol{p}, B)$ by

$$
\mathcal{P}^{(\lambda)}(\boldsymbol{p}, B)=\left\{p \in \mathcal{P}(\boldsymbol{p}, B) \mid \tilde{e}_{i}^{\left(h_{i}, \lambda_{j}(p)\right\rangle+1} p(j)=0 \text { for } \forall i, j\right\}
$$

An element of $\mathcal{P}^{(\lambda)}(\boldsymbol{p}, B)$ is called a restricted path.
Proposition 3.12. For $\lambda \in P_{c l}^{+}$we have

$$
\mathcal{P}(\boldsymbol{p}, B)^{\leq \lambda}=\mathcal{P}^{(\lambda)}(\boldsymbol{p}, B) .
$$

Proof. Assume $p=\cdots \otimes b_{j} \otimes \cdots \otimes b_{1} \in \mathcal{P}(\boldsymbol{p}, B) \leq \lambda$, which is equivalent to saying $u_{\lambda} \otimes p$ is a highest weight element. So is $u_{\lambda} \otimes p[j] \otimes b_{j}$ by Lemma 2.11. Using this lemma again we get $\varepsilon\left(b_{j}\right) \leq w t\left(u_{\lambda} \otimes p[j]\right)=\lambda_{j}(p)$.

To show the inverse inclusion, assume $p=\cdots \otimes b_{j} \otimes \cdots \otimes b_{1} \in$ $\mathcal{P}^{(\lambda)}(\boldsymbol{p}, B)$. We prove $\varepsilon(p[j]) \leq \lambda$ by induction on j in decreasing order. We know $\varepsilon(p[j])=0$ for sufficiently large j. Supposing $\varepsilon(p[j]) \leq \lambda$ we immediately obtain $\varepsilon\left(p[j] \otimes b_{j}\right) \leq \lambda$ from (2.5) and the condition $\varepsilon\left(b_{j}\right) \leq \lambda_{j}(p)$.

As seen in the proof we have $\lambda_{j}(p) \in P_{c l}^{+}$and its level is $\langle c, \lambda\rangle+\operatorname{lev} B$.
Combining the results in section 2.4, Theorem 3.7 and Proposition 3.12 , we obtain

Theorem 3.13. Let $\mathcal{P}(\boldsymbol{p}, B)$ and $\mathcal{P}\left(\boldsymbol{p}^{\dagger}, B^{\dagger}\right)$ be two sets of paths. If for certain $\lambda \in P_{c l}^{+}$, there exists a bijection

$$
\begin{align*}
\mathcal{P}(\boldsymbol{p}, B)_{0} & \longrightarrow \mathcal{P}^{(\lambda)}\left(\boldsymbol{p}^{\dagger}, B^{\dagger}\right) \tag{3.3}\\
p & \mapsto p^{\dagger}
\end{align*}
$$

such that $W(p)=\lambda+W\left(p^{\dagger}\right)$, then we have an isomorphism of P_{-} weighted crystals

$$
\mathcal{P}(\boldsymbol{p}, B) \simeq B(\lambda) \otimes \mathcal{P}\left(\boldsymbol{p}^{\dagger}, B^{\dagger}\right)
$$

They are isomorphic to a direct sum of crystals of integrable highest weight $U_{q}(\mathfrak{g})$-modules, and their highest weight elements are parametrized by (3.3).

§4. Examples

We shall give two examples to which we can apply Theorem 3.13 efficiently.

4.1. Example 1

We present a useful proposition first. Similar to $O^{\leq \lambda}$ we define $B^{\leq \lambda}$ for a finite crystal B and $\lambda \in P_{c l}^{+}$by

$$
B^{\leq \lambda}=\left\{b \in B \mid \tilde{e}_{i}^{\left\langle h_{i}, \lambda\right\rangle+1} b=0 \text { for any } i\right\}
$$

Note that if $\operatorname{lev} B=l$, then $B_{\min }=\bigsqcup_{\lambda \in\left(P_{c l}^{+}\right){ }_{l}} B^{\leq \lambda}$.
Proposition 4.1. Let B and B^{\dagger} be finite crystals such that $\operatorname{lev} B \geq$ $\operatorname{lev} B^{\dagger}$, and $\boldsymbol{p}=\cdots \otimes \mathbf{b}_{j} \otimes \cdots \otimes \boldsymbol{b}_{1}$ be a reference path for B. Suppose there exists a map $t: B_{\min } \rightarrow B^{\dagger}$ satisfying the following conditions:
(1) For any $\mu \in\left(P_{c l}^{+}\right)_{l}(l=\operatorname{lev} B),\left.t\right|_{B \leq \mu}$ is a bijection onto $\left(B^{\dagger}\right) \leq \mu$.
(2) $\omega t t(b)=\omega t b$ for any $b \in B_{\min }$.
(3) $H_{B^{\dagger} B^{\dagger}}\left(t\left(b_{1}\right) \otimes t\left(b_{2}\right)\right)=H_{B B}\left(b_{1} \otimes b_{2}\right)$ up to global additive constant for any $\left(b_{1}, b_{2}\right) \in B_{\text {min }}^{2}$ such that $\varphi\left(b_{1}\right)=\varepsilon\left(b_{2}\right)$.
(4) $\boldsymbol{p}^{\dagger}=\cdots \otimes t\left(\boldsymbol{b}_{j}\right) \otimes \cdots \otimes t\left(\boldsymbol{b}_{\mathbf{1}}\right)$ is a reference path for B^{\dagger}.

Then setting $\lambda=\varphi\left(\boldsymbol{b}_{1}\right)-\varphi\left(t\left(\boldsymbol{b}_{1}\right)\right)$, we have

$$
\mathcal{P}(\boldsymbol{p}, B) \simeq B(\lambda) \otimes \mathcal{P}\left(\boldsymbol{p}^{\dagger}, B^{\dagger}\right)
$$

Proof. Consider the following map.

$$
\begin{aligned}
\mathcal{P}(\boldsymbol{p}, B)_{0} & \longrightarrow \quad \mathcal{P}\left(\boldsymbol{p}^{\dagger}, B^{\dagger}\right) \\
p=\cdots \otimes b_{j} \otimes \cdots \otimes b_{1} & \mapsto \quad p^{\dagger}=\cdots \otimes t\left(b_{j}\right) \otimes \cdots \otimes t\left(b_{1}\right)
\end{aligned}
$$

From Theorem 3.13 it suffices to show that this map is a bijection onto $\mathcal{P}^{(\lambda)}\left(\boldsymbol{p}^{\dagger}, B^{\dagger}\right)$ such that $W(p)=\lambda+W\left(p^{\dagger}\right)$. Preservation of weight is immediate. To show the bijectivity one has to notice that wt $p^{\dagger}[j]-$ $w t p[j]$ does not depend on j. Thus one has $w t p^{\dagger}[j]-\omega t p[j]=w t p^{\dagger}-$ $\omega t p=-\lambda$, and hence

$$
\lambda_{j}\left(p^{\dagger}\right)=\lambda+w t p^{\dagger}[j]=w t p[j]=\varphi\left(b_{j+1}\right)=\varepsilon\left(b_{j}\right) .
$$

Note that $p \in \mathcal{P}(\boldsymbol{p}, B)_{0}$ (cf. Proposition $3.9 \&$ Corollary 3.10). In view of (1) this equality concludes the bijectivity.

We now consider the $C_{n}^{(1)}$ case. For an odd positive integer l, consider a finite crystal $B^{1, l}$ given by $B^{1, l}=\left\{\begin{array}{l|l}\left(x_{1}, \ldots, x_{n}, \bar{x}_{n}, \ldots, \bar{x}_{1}\right) & \begin{array}{l}x_{i}, \bar{x}_{i} \in \mathbf{Z}_{\geq 0} \forall i=1, \cdots, n \\ \sum_{i=1}^{n}\left(x_{i}+\bar{x}_{i}\right) \in\{l, l-2, \ldots, 1\}\end{array}\end{array}\right\}$.

The crystal structure of $B^{1, l}$ is given by

$$
\begin{aligned}
& \tilde{e}_{0} b= \begin{cases}\left(x_{1}-2, x_{2}, \ldots, \bar{x}_{2}, \bar{x}_{1}\right) & \text { if } x_{1} \geq \bar{x}_{1}+2, \\
\left(x_{1}-1, x_{2}, \ldots, \bar{x}_{2}, \bar{x}_{1}+1\right) & \text { if } x_{1}=\bar{x}_{1}+1, \\
\left(x_{1}, x_{2}, \ldots, \bar{x}_{2}, \bar{x}_{1}+2\right) & \text { if } x_{1} \leq \bar{x}_{1},\end{cases} \\
& \tilde{e}_{i} b= \begin{cases}\left(x_{1}, \ldots, x_{i}+1, x_{i+1}-1, \ldots, \bar{x}_{1}\right) & \text { if } x_{i+1}>\bar{x}_{i+1}, \\
\left(x_{1}, \ldots, \bar{x}_{i+1}+1, \bar{x}_{i}-1, \ldots, \bar{x}_{1}\right) & \text { if } x_{i+1} \leq \bar{x}_{i+1},\end{cases} \\
& \tilde{e}_{n} b=\left(x_{1}, \ldots, x_{n}+1, \bar{x}_{n}-1, \ldots, \bar{x}_{1}\right), \\
& \tilde{f}_{0} b= \begin{cases}\left(x_{1}+2, x_{2}, \ldots, \bar{x}_{2}, \bar{x}_{1}\right) & \text { if } x_{1} \geq \bar{x}_{1}, \\
\left(x_{1}+1, x_{2}, \ldots, \bar{x}_{2}, \bar{x}_{1}-1\right) & \text { if } x_{1}=\bar{x}_{1}-1 \\
\left(x_{1}, x_{2}, \ldots, \bar{x}_{2}, \bar{x}_{1}-2\right) & \text { if } x_{1} \leq \bar{x}_{1}-2,\end{cases} \\
& \tilde{f}_{i} b= \begin{cases}\left(x_{1}, \ldots, x_{i}-1, x_{i+1}+1, \ldots, \bar{x}_{1}\right) & \text { if } x_{i+1} \geq \bar{x}_{i+1}, \\
\left(x_{1}, \ldots, \bar{x}_{i+1}-1, \bar{x}_{i}+1, \ldots, \bar{x}_{1}\right) & \text { if } x_{i+1}<\bar{x}_{i+1},\end{cases} \\
& \tilde{f}_{n} b=\left(x_{1}, \ldots, x_{n}-1, \bar{x}_{n}+1, \ldots, \bar{x}_{1}\right),
\end{aligned}
$$

where $b=\left(x_{1}, \ldots, x_{n}, \bar{x}_{n}, \ldots, \bar{x}_{1}\right)$ and $i=1, \ldots, n-1$. If some component becomes negative upon application, it should be understood as 0 . The values of $\varepsilon_{i}, \varphi_{i}$ read

$$
\begin{array}{ll}
\varepsilon_{0}(b)=\frac{l-s(b)}{2}+\left(x_{1}-\bar{x}_{1}\right)_{+}, & \varphi_{0}(b)=\frac{l-s(b)}{2}+\left(\bar{x}_{1}-x_{1}\right)_{+} \\
\varepsilon_{i}(b)=\bar{x}_{i}+\left(x_{i+1}-\bar{x}_{i+1}\right)_{+}, & \varphi_{i}(b)=x_{i}+\left(\bar{x}_{i+1}-x_{i+1}\right)_{+} \\
\varepsilon_{n}(b)=\bar{x}_{n}, & \varphi_{n}(b)=x_{n}
\end{array}
$$

Here $s(b)=\sum_{i=1}^{n}\left(x_{i}+\bar{x}_{i}\right),(x)_{+}=\max (x, 0)$ and $i=1, \cdots, n-1 . B^{1, l}$ is a level $\frac{l+1}{2}$ non-perfect crystal. Now for a fixed l set $B=B^{1, l}$. The minimal elements of B are grouped as $B_{\min }=\bigsqcup_{\mu \in\left(P_{c l}^{+}\right)_{\frac{l+1}{2}}} B^{\leq \mu}$, where for $\mu=\mu_{0} \Lambda_{0}+\cdots+\mu_{n} \Lambda_{n}$. The set $B^{\leq \mu}$ is given by

$$
\begin{aligned}
B^{\leq \mu} & =\left\{b_{k}^{\mu} \mid \mu_{k-1}>0,1 \leq k \leq n\right\} \cup\left\{b_{\bar{k}}^{\mu} \mid \mu_{k}>0,1 \leq k \leq n\right\} \\
b_{k}^{\mu} & =\left(\mu_{1}, \ldots, \mu_{k-1}-1, \mu_{k}+1, \ldots, \mu_{n}, \mu_{n}, \ldots, \mu_{k-1}-1, \ldots, \mu_{1}\right) \\
b_{\bar{k}}^{\mu} & =\left(\mu_{1}, \ldots, \mu_{k}-1, \ldots, \mu_{n}, \mu_{n}, \ldots, \mu_{1}\right)
\end{aligned}
$$

Next consider $B^{\dagger}=B^{\mathbf{1 , 1}}$ by taking l to be 1 . Setting

$$
b_{k}^{\dagger}=\left(x_{i}=\delta_{i k}, \bar{x}_{i}=0\right), \quad b_{\bar{k}}^{\dagger}=\left(x_{i}=0, \bar{x}_{i}=\delta_{i k}\right)
$$

for $1 \leq k \leq n$, one has

$$
\left(B^{\dagger}\right)^{\leq \mu}=\left\{b_{k}^{\dagger} \mid \mu_{k-1}>0,1 \leq k \leq n\right\} \cup\left\{\left.b \frac{\dagger}{k} \right\rvert\, \mu_{k}>0,1 \leq k \leq n\right\}
$$

for μ as above. Define the map $t: B_{\min } \rightarrow B^{\dagger}$ by

$$
\left.t\right|_{B \leq \mu}: b_{k}^{\mu} \mapsto b_{k}^{\dagger} \quad \text { for } k \in\{1, \ldots, n, \bar{n}, \ldots, \overline{1}\}
$$

We are to show that this t satisfies the conditions (1) - (4) in Proposition 4.1. For our purpose fix a dominant integral weight $\lambda \in\left(P_{c l}^{+}\right)_{\frac{l-1}{2}}$ and define $\boldsymbol{p}=\cdots \otimes \boldsymbol{b}_{j} \otimes \cdots \otimes \boldsymbol{b}_{1}$ by

$$
\boldsymbol{b}_{j}= \begin{cases}b_{\overline{\tilde{j}}}^{\lambda+\Lambda_{i}} & \text { if } j \equiv i(\bmod 2 n) \text { for some } i(1 \leq i \leq n) \\ b_{i}^{\lambda+\Lambda_{i-1}} & \text { if } j \equiv 1-i(\bmod 2 n) \text { for some } i(1 \leq i \leq n)\end{cases}
$$

Note that $\varepsilon\left(b_{\bar{i}}^{\lambda+\Lambda_{i}}\right)=\varphi\left(b_{i}^{\lambda+\Lambda_{i-1}}\right)=\lambda+\Lambda_{i}, \varepsilon\left(b_{i}^{\lambda+\Lambda_{i-1}}\right)=\varphi\left(b_{\bar{i}}^{\lambda+\Lambda_{i}}\right)=\lambda+$ $\Lambda_{i-1} \cdot \boldsymbol{p}$ becomes a reference path. Let us check (1) - (4) in Proposition 4.1. (1),(2) and (4) are straightforward. To check (3) one can use the formula for $H_{B B}$ in [KKM] section 5.7. (In [KKM] our non-perfect case is not considered. However, the formula itself is valid. Since the formula in [KKM] contains some misprints, we rewrite it below.)

$$
H_{B^{1, l} B^{1, l}}\left(b \otimes b^{\prime}\right)=\max _{1 \leq j \leq n}\left(\theta_{j}\left(b \otimes b^{\prime}\right), \theta_{j}^{\prime}\left(b \otimes b^{\prime}\right), \eta_{j}\left(b \otimes b^{\prime}\right), \eta_{j}^{\prime}\left(b \otimes b^{\prime}\right)\right)
$$

$$
\begin{aligned}
\theta_{j}\left(b \otimes b^{\prime}\right) & =\sum_{k=1}^{j-1}\left(\bar{x}_{k}-\bar{x}_{k}^{\prime}\right)+\frac{1}{2}\left(s\left(b^{\prime}\right)-s(b)\right), \\
\theta_{j}^{\prime}\left(b \otimes b^{\prime}\right) & =\sum_{k=1}^{j-1}\left(x_{k}^{\prime}-x_{k}\right)+\frac{1}{2}\left(s(b)-s\left(b^{\prime}\right)\right), \\
\eta_{j}\left(b \otimes b^{\prime}\right) & =\sum_{k=1}^{j-1}\left(\bar{x}_{k}-\bar{x}_{k}^{\prime}\right)+\left(\bar{x}_{j}-x_{j}\right)+\frac{1}{2}\left(s\left(b^{\prime}\right)-s(b)\right), \\
\eta_{j}^{\prime}\left(b \otimes b^{\prime}\right) & =\sum_{k=1}^{j-1}\left(x_{k}^{\prime}-x_{k}\right)+\left(x_{j}^{\prime}-\bar{x}_{j}^{\prime}\right)+\frac{1}{2}\left(s(b)-s\left(b^{\prime}\right)\right),
\end{aligned}
$$

where $b=\left(x_{1}, \ldots, x_{n}, \bar{x}_{n}, \ldots, \bar{x}_{1}\right), b^{\prime}=\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}, \bar{x}_{n}^{\prime}, \ldots, \bar{x}_{1}^{\prime}\right)$.
Therefore, the isomorphism in Proposition 4.1 holds with notations above.

4.2. Example 2

We consider the $A_{n-1}^{(1)}$ case. Let $B^{1, l}$ be the crystal base of the symmetric tensor representation of $U_{q}^{\prime}\left(A_{n-1}^{(1)}\right)$ of degree l. As a set it reads

$$
B^{1, l}=\left\{\left(a_{0}, a_{1}, \cdots, a_{n-1}\right) \mid a_{i} \in \mathbf{Z}_{\geq 0}, \sum_{i=0}^{n-1} a_{i}=l\right\}
$$

For convenience we extend the definition of a_{i} to $i \in \mathbf{Z}$ by setting $a_{i+n}=$ a_{i} and use a simpler notation $\left(a_{i}\right)$ for ($a_{0}, a_{1}, \cdots, a_{n-1}$). For instance, $\left(a_{i-1}\right)$ means $\left(a_{n-1}, a_{0}, \cdots, a_{n-2}\right)$. The actions of $\tilde{e}_{r}, \tilde{f}_{r}(r=0, \cdots, n-$ $1)$ are given by

$$
\tilde{e}_{r}\left(a_{i}\right)=\left(a_{i}-\delta_{i, r}^{(n)}+\delta_{i, r-1}^{(n)}\right), \quad \tilde{f}_{r}\left(a_{i}\right)=\left(a_{i}+\delta_{i, r}^{(n)}-\delta_{i, r-1}^{(n)}\right) .
$$

Here $\delta_{i j}^{(n)}=1(i \equiv j \bmod n),=0$ (otherwise). If some component becomes negative upon application, it should be understood as 0 . The values of ε, φ read as follows.

$$
\varepsilon\left(\left(a_{i}\right)\right)=\sum_{i=0}^{n-1} a_{i} \Lambda_{i}, \quad \varphi\left(\left(a_{i}\right)\right)=\sum_{i=0}^{n-1} a_{i-1} \Lambda_{i}
$$

Thus $\operatorname{lev} B^{1, l}=l$ and all elements are minimal. We introduce a \mathbf{Z}-linear automorphism σ on $P_{c l}$ by $\sigma \Lambda_{i}=\Lambda_{i-1}\left(\Lambda_{-1}=\Lambda_{n-1}\right)$.

Now consider the finite crystal $B=B^{1, l} \otimes B^{1, m}(l \geq m)$ and set $B^{\dagger}=B^{1, m}$. From Lemma 2.7 (1) the level of B is l. Fix two dominant
integral weights $\lambda=\sum_{i=0}^{n-1} \lambda_{i} \Lambda_{i} \in\left(P_{c l}^{+}\right)_{l-m}, \mu=\sum_{i=0}^{n-1} \mu_{i} \Lambda_{i} \in\left(P_{c l}^{+}\right)_{m}$. From (λ, μ) we define a path

$$
\boldsymbol{p}^{(\lambda, \mu)}(j)=\left(\lambda_{i+j}+\mu_{i+2 j}\right) \otimes\left(\mu_{i+2 j-1}\right) \in B
$$

From Lemma 2.7 (2) we see $\boldsymbol{p}^{(\lambda, \mu)}(j) \in B_{\text {min }}$ and by (2.5),(2.6) we obtain $\varepsilon\left(\boldsymbol{p}^{(\lambda, \mu)}(j)\right)=\sigma^{j} \lambda+\sigma^{2 j} \mu=\varphi\left(\boldsymbol{p}^{(\lambda, \mu)}(j+1)\right)$. Therefore $\boldsymbol{p}^{(\lambda, \mu)}$ is a reference path.

We would like to show (4.1) $\quad \mathcal{P}\left(\boldsymbol{p}^{(\lambda, \mu)}, B\right) \simeq B(\lambda) \otimes \mathcal{P}\left(\boldsymbol{p}^{(\mu)}, B^{\dagger}\right) \quad$ as P-weighted crystals with $\boldsymbol{p}^{(\mu)}(j)=\left(\mu_{i+j}\right)$. To do this, consider the following map

$$
\begin{align*}
\mathcal{P}\left(\boldsymbol{p}^{(\lambda, \mu)}, B\right)_{0} & \longrightarrow \mathcal{P}\left(\boldsymbol{p}^{(\mu)}, B^{\dagger}\right) \tag{4.2}\\
p & \mapsto p^{\dagger}
\end{align*}
$$

given by $p^{\dagger}(j)=\left(b_{i-j+1}^{(j)}\right)$ for $p(j)=\left(a_{i}^{(j)}\right) \otimes\left(b_{i}^{(j)}\right)$. Note that $p^{(\lambda, \mu)}$ is sent to $\boldsymbol{p}^{(\mu)}$ under this map. By Theorem 3.13 it suffices to check the following items:
(i) The map (4.2) is a bijection onto $\mathcal{P}^{(\lambda)}\left(\boldsymbol{p}^{(\mu)}, B^{\dagger}\right)$.
(ii) $w t p-w t p^{\dagger}=\lambda$.
(iii) $E(p)=E\left(p^{\dagger}\right)$.

Since $p \in \mathcal{P}\left(\boldsymbol{p}^{(\lambda, \mu)}, B\right)_{0}$, one obtains (cf. Lemma 2.7 (2), Proposition 3.9)

$$
\begin{align*}
& \varphi_{i}\left(\left(a_{i}^{(j)}\right)\right)=a_{i-1}^{(j)} \geq b_{i}^{(j)}=\varepsilon_{i}\left(\left(b_{i}^{(j)}\right)\right) \tag{4.3}\\
& \varphi_{i}(p(j))=a_{i-1}^{(j)}+b_{i-1}^{(j)}-b_{i}^{(j)}=a_{i}^{(j-1)}=\varepsilon_{i}(p(j-1)) \tag{4.4}
\end{align*}
$$

for any i, j. Taking sufficiently large J and using (4.4), one has

$$
\begin{aligned}
w t p^{\dagger}[j] & =\sum_{i} b_{i-J+1}^{(J)} \Lambda_{i}+\sum_{k=j+1}^{J} \sum_{i}\left(b_{i-k}^{(k)}-b_{i-k+1}^{(k)}\right) \Lambda_{i} \\
& =\sum_{i}\left(b_{i-J+1}^{(J)}-a_{i-J}^{(J)}+a_{i-j}^{(j)}\right) \Lambda_{i} \\
& =\sum_{i} a_{i-j}^{(j)} \Lambda_{i}-\lambda .
\end{aligned}
$$

Thus the condition $\varepsilon\left(p^{\dagger}(j)\right) \leq \lambda_{j}\left(p^{\dagger}\right)$ is equivalent to saying $b_{i-j+1}^{(j)} \leq$ $a_{i-j}^{(j)}$ for any i, which is guaranteed by (4.3). This proves (i). For (ii) one only has to notice that $w t p[j]=\varphi(p(j+1))=\sum_{i} a_{i}^{(j)} \Lambda_{i}$.

In order to prove (iii), we set

$$
\begin{gathered}
E_{L}^{\text {diff }}=\sum_{j=1}^{L} j\left\{H_{B B}\left(\left(\left(a_{i}^{(j+1)}\right) \otimes\left(b_{i}^{(j+1)}\right)\right) \otimes\left(\left(a_{i}^{(j)}\right) \otimes\left(b_{i}^{(j)}\right)\right)\right)\right. \\
\left.-H_{B^{\dagger} B^{\dagger}}\left(\left(b_{i-(j+1)+1}^{(j+1)}\right) \otimes\left(b_{i-j+1}^{(j)}\right)\right)\right\}
\end{gathered}
$$

We can assume $\left(a_{i}^{(j)}\right) \otimes\left(b_{i}^{(j)}\right) \in B_{\text {min }}$ for $1 \leq j \leq L+1$. Under such assumption the isomorphism $B^{1, l} \otimes B^{1, m} \simeq B^{1, m} \otimes B^{1, l}$ sends $\left(a_{i}\right) \otimes\left(b_{i}\right)$ to $\left(b_{i+1}\right) \otimes\left(a_{i}-b_{i+1}+b_{i}\right)$ [NY]. Thus, from Proposition 3.1 we have
$H_{B B}\left(\left(\left(a_{i}\right) \otimes\left(b_{i}\right)\right) \otimes\left(\left(a_{i}^{\prime}\right) \otimes\left(b_{i}^{\prime}\right)\right)\right)=b_{0}+a_{0}^{\prime}+b_{0}^{\prime}+H_{B^{\dagger} B^{\dagger}}\left(\left(b_{i}\right) \otimes\left(b_{i+1}^{\prime}\right)\right)$.
Let us recall the following formula for $H_{B^{1, m} B^{1, m}}$ (cf. [KKM] section 5.1).

$$
H_{B^{1, m} B^{1, m}}\left(\left(b_{i}\right) \otimes\left(b_{i}^{\prime}\right)\right)=\max _{0 \leq j \leq n-1}\left(\sum_{k=0}^{j-1}\left(b_{k}^{\prime}-b_{k}\right)+b_{j}^{\prime}\right)
$$

From this one gets

$$
\begin{aligned}
H_{B^{\dagger} B^{\dagger}}\left(\left(b_{i}^{(j+1)}\right)\right. & \left.\otimes\left(b_{i+1}^{(j)}\right)\right)-H_{B^{\dagger} B^{\dagger}}\left(\left(b_{i-j}^{(j+1)}\right) \otimes\left(b_{i-j+1}^{(j)}\right)\right) \\
& =\sum_{k=1}^{j}\left(b_{k-j-1}^{(j+1)}-b_{k-j}^{(j)}\right) .
\end{aligned}
$$

Using above facts and (4.4) one obtains

$$
E_{L}^{d i f f}=\sum_{j=1}^{L} \sum_{k=0}^{j-1} a_{-k}^{(L)}+L \sum_{k=0}^{L} b_{-k}^{(L+1)} .
$$

This completes (iii). We have finished proving (4.1). It is also known [KMN2] that $\mathcal{P}\left(\boldsymbol{p}^{(\mu)}, B^{1, m}\right) \simeq B(\mu)$. Therefore we have
$\mathcal{P}\left(\boldsymbol{p}^{(\lambda, \mu)}, B^{1, l} \otimes B^{1, m}\right) \simeq B(\lambda) \otimes B(\mu) \quad$ as P-weighted crystals.
The multi-component version is straightforward. Consider the finite crystal $B^{1, l_{1}} \otimes \cdots \otimes B^{1, l_{s}}\left(l_{1} \geq \cdots \geq l_{s} \geq l_{s+1}=0\right)$. For $\lambda^{(i)} \in$ $\left(P_{c l}^{+}\right)_{l_{i}-l_{i+1}}(1 \leq i \leq s)$ we define a reference path $\boldsymbol{p}^{\left(\lambda_{1}, \cdots, \lambda_{s}\right)}$ by

$$
\text { the } k \text {-th tensor component of } \boldsymbol{p}^{\left(\lambda_{1}, \cdots, \lambda_{s}\right)}(j)
$$

$$
=\left(\lambda_{i+k j-k+1}^{(k)}+\lambda_{i+(k+1) j-k+1}^{(k+1)}+\cdots+\lambda_{i+s j-k+1}^{(s)}\right) .
$$

Then we have

$$
\mathcal{P}\left(\boldsymbol{p}^{\left(\lambda_{1}, \cdots, \lambda_{s}\right)}, B^{1, l_{1}} \otimes \cdots \otimes B^{1, l_{s}}\right) \simeq B\left(\lambda_{1}\right) \otimes \cdots \otimes B\left(\lambda_{s}\right) .
$$

The proof will be given elsewhere.

Acknowledgements

The authors thank Professor Masaki Kashiwara and Professor Tetsuji Miwa for useful discussions and kind interest.

References

[AK] T. Akasaka and M. Kashiwara, Finite-dimensional representations of quantum affine algebras, Publ. Res. Inst. Math. Sci. 33 (1997) 839867.
[AM] S. R. Aladim and M. J. Martins, Critical behaviour of integrable mixed spin chains, J. Phys. A26 (1993) L529-534.
[DJKMO] E. Date, M. Jimbo, A. Kuniba, T. Miwa and M. Okado, One dimensional configuration sums in vertex models and affine Lie algebra characters, Lett. Math. Phys. 17 (1989) 69-77.
[DJO] E. Date, M. Jimbo and M. Okado, Crystal base and q-vertex operators, Commun. Math. Phys. 155 (1993) 47-69.
[DMN] H. J. de Vega, L. Mezincescu and R. I. Nepomechie, Thermodynamics of integrable chains with alternating spins, Phys. Rev. B49 (1994) 13223-13226.
[HKKOTY] G. Hatayama, A. N. Kirillov, A. Kuniba, M. Okado, T. Takagi and Y. Yamada, Character formulae of $\widehat{s l}_{n}$-modules and inhomogeneous paths, Nucl. Phys. B536 [PM] (1998) 575-616.
[HKOTY] G. Hatayama, A. Kuniba, M. Okado, T. Takagi and Y. Yamada, Remarks on fermionic formula, Contemporary Mathematics 248 (1999) 243-291.
[HKMW] J. Hong, S-J. Kang, T. Miwa and R. Weston, Vertex models with alternating spins, math.QA/9811175.
[Kac] V. G. Kac, Infinite dimensional Lie algebras, 3rd edition, Cambridge Univ. Press. Cambridge (1990).
[KK] S-J. Kang and M. Kashiwara, Quantized affine algebras and crystals with core, Commun. Math. Phys. 195 (1998) 725-740.
[KKM] S-J. Kang, M. Kashiwara and K. C. Misra, Crystal bases of Verma modules for quantum affine Lie algebras, Compositio Math. 92 (1994) 299-325.
[KMN1] S-J. Kang, M. Kashiwara, K. C. Misra, T. Miwa, T. Nakashima and A. Nakayashiki, Affine crystals and vertex models, Int. J. Mod. Phys. A 7 (suppl. 1A) (1992) 449-484.
[KMN2] S-J. Kang, M. Kashiwara, K. C. Misra, T. Miwa, T. Nakashima and A. Nakayashiki, Perfect crystals of quantum affine Lie algebras, Duke Math. J. 68 (1992) 499-607.
[K1] M. Kashiwara, On crystal bases of the q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991) 465-516.
[K2] M. Kashiwara, Crystal bases of modified quantized enveloping algebra, Duke Math. J. 73 (1994) 383-413.
[Ku] A. Kuniba, Thermodynamics of $U_{q}\left(X_{r}^{(1)}\right)$ Bethe ansatz system with q a root of unity, Nucl. Phys. B389 (1993) 209-244.
[NY] A. Nakayashiki and Y. Yamada, Kostka polynomials and energy functions in solvable lattice models, Selecta Mathematica, New Ser. 3 (1997) 547-599.

Goro Hatayama
Institute of Physics
Graduate School of Science
University of Tokyo
Komaba, Tokyo 153-8902
Japan
Yoshiyuki Koga
Department of Mathematics
Graduate School of Science
Osaka University
Toyonaka, Osaka 560-0043
Japan

Atsuo Kuniba
Institute of Physics
Graduate School of Arts and Sciences
University of Tokyo
Komaba, Tokyo 153-8902
Japan
Masato Okado
Department of Informatics and Mathematical Science
Graduate School of Engineering Science
Osaka University
Toyonaka, Osaka 560-8531
Japan
Taichiro Takagi
Department of Mathematics and Physics
National Defense Academy
Yokosuka 239-8686
Japan

