
CHAPTER 11

Type III Problems: Global Slice

In Type III problems there is, as in Type I problems, a group H
such that K = GH is a group transitive over X but not all items
of Assumption 8.11 are satisfied. All assumptions except 8.11(ii) are
rather mild and can be expected to hold in applications. On the
other hand, Assumption 8.11(ii) turns out to be fairly strong and can
easily fail. Inspection of the examples in Chapter 9 reveals that in
Section 9.2, Case 1, 8.11(ii) holds because G and H commute (and
therefore GQ and H commute), whereas in all other examples the
validity of 8.11(ii) is a consequence of Go = {e}. If neither GQ and
H commute nor Go = {e}, then 8.11(ii) is likely to fail. In that case
Z = Hx0 need no longer be a cross section and it seems as though the
additional structure provided by the group H is useless. However, it
turns out that H and Z can still be useful provided a different kind
of group structure exists. Consider:

11.1. ASSUMPTION. Let Assumption 8.11 be satisfied except that

8Λl(ii) is changed to

(ii) gH^g-1 = Ho for every g £ G,

and in addition assume

(Hi) gHg~1 = H for every g E G.

Thus, Assumption 11.1 is Assumption 8.11 with G and H inter-
changed (note that in 8.11 all assumptions except (ii) are symmetric
in G and H), and in addition H is assumed to be normal in K.
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The normality of H in K is actually quite common, as the examples
in Chapter 9 show. We shall see that the consequences of Assump-
tion 11.1 are as follows: the set Z = HxQ, although not a cross section,
is transformed into itself by Go and Go acts on £; the intersections of
the G-orbits in X with Z (which for a cross section would be exactly
one point per orbit) are precisely the G0-orbits in Z] there is a 1-1 cor-
respondence between the open G-invariant subsets of X and the open
Go-invariant subsets of Z so that the structure of the integrals of G-
invariant functions on X according to the Bourbaki theory is the same
as that of Go-invariant functions on Z] given a probability distribution
on X it is possible to write down (in integral form) a probability distri-
bution on Z such that the probabilities of corresponding G-invariant
subsets of X and G0-invariant subsets of Z coincide. Then a maximal
invariant on Z under Go, together with its distribution, is a solution
of the original problem. In this way the original problem, with space
X and group G, has been reduced to a (presumably) simpler problem
with the smaller space Z and smaller group Go. As in the case of
Type I and II problems we shall usually represent Z by 7 = H/HQ.
It should be emphasized that under Assumption 11.1 there is not an
obvious function X —> Z that preserves probabilities of invariant sets
and that can be used to induce a distribution on Z from one on X.
(This point was overlooked in Theorem 8.1 of Wijsman (1986); also
the present Assumption ll.l(ii)' was erroneously omitted.) The use-
fulness of the structure that Assumption 11.1 provides was first shown
by Woteki and Mayer (1976) in several examples.

11.2. LEMMA. Let Assumption 11.1 be satisfied and define Z =
HxQ, 7 = H/Ho. Then (i) Go acts on the left of Z and of 7; (ii)
for any z G Z, Z Π Gz = Goz. Thus, there is a 1-1 correspondence
between the G-orbits in X and the GQ-orbits in Z.

PROOF, (i) Let z = hxQ (h G H) be an arbitrary point of Z and
g0 an arbitrary element of G o . Then goz = h'xQ, where h' — gohg^x G
H. This shows that Go transforms Z into itself, and since Go acts on
the left of X it follows that Go acts on the left of Z.

(ii) Obviously, GQz C ZΠGz. In order to show ZΠGz C Goz let
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zΎ G Z Π Gz so that zλ G Z and there exists g £ G such that zx = gz.
For some h,hλ £ H, z = hxQ, zλ = /i-̂ Q. Then /i1^0 = g/i^0 Since H
is normal in if, gh = /i2# for some /ι2 G iϊ. Therefore, /î Γ1 hλx0 = gxQ.
By Assumption 8.11(i) both members of the last equation must equal
xQ. This implies g G Go so that z2 = gro2r G G02. •

The 1-1 correspondence between the G-orbits in X and the Go-
orbits in Z provides a 1-1 correspondence between the G-invariant
subsets of X and the G0-invariant subsets of Z since an invariant set
is a union of orbits. We shall show now that this correspondence
preserves open sets.

11.3. LEMMA. Under Assumption 11.1 there is a 1-1 correspon-
dence between the G-invariant open subsets o/X and the G0-inυariant
open subsets of Z.

PROOF. Since Assumption 11.1 implies Assumption 8.11 with
G and H interchanged, Theorem 8.12 applies with G and H inter-
changed. Therefore, define φ* : G/GQ x H/Ho —> X by

(11.1) Ψ*(gG0,hHQ) = hgx0,

then φ* is a homeomorphism. Put ^ = G/Go, 7 = H/HQ, then φ* is
a homeomorphism of ^ x 7 and X. Equivalently,

(11.2) Ψ**(gG0,hH0) = hgK0

is a homeomorphism of ^ x 7 and K/Ko. This homeomorphism is
even analytic, by Theorem 5.9.9 with G and H interchanged. By
Lemma 11.2 there is a 1-1 correspondence between the G-invariant
subsets of X and the Go-invariant subsets of X, where to A C X
corresponds A Π Z C Z, and to B G Z corresponds GB C X. We have
to show (i) if A C X is G-invariant and open, then A Π £ is open in
Z] and (ii) if B C Z is Goinvariant and open in £, then GB is open
in X. Part (i) follows from the homeomorphism between ^ x 7 and
X, and between 7 and Z (but note that the action of G on 7 is not
trivial so that φ*~1(A) is not a product set). Then (i) reduces to
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the statement that if A is an open subset of the product space ^ x T

endowed with the product topology, then A (Ί 7 is open in 7. This is

an immediate consequence of the definition of product topology, for A

can be written as a union of open product sets. In order to show (ii)

it is sufficient to show that if Bι is an open subset of T, then GBλ is

open in ^ x T, or, equivalently, open in K/KQ which is homeomorphic

to ^ x 7 (note that the action of G on ^ x 7 is derived from the

action of G on X). Let G x H be endowed with the product topology

and define fλ : G x H —> K/Ko by fι(g^h) = hgKQ. Similarly, / 2

by ΛCflS^) = QhK0. Since Bλ = {/iiί0 : /ι G £?2} f° r some open

B2 C if, it suffices to show that f2 is an open mapping. Now fΎ is

the composition of the open orbit projection G x H —* ^ x 7 and the

homeomorphism (£>** given by (11.2). Therefore, fλ is open. Consider

the function f3:GxH->GxH defined by f3(g,h) = (g,ghg~ι),

where we have used Assumption 11.1 (in). Obviously, / 3 is continuous,

and its inverse f^1{g-)h
l) = {g-,g~1h'g) is also continuous so that / 3

is a homeomorphism. Then observe that / 2 = fλ o / 3 and conclude

that / 2 is open. D

11.4. THEOREM. Let Assumption 11.1 be satisfied and let Px(dx)

= p(x)X(dx) be a probability distribution on %, with λ relatively in-

variant with respect to K with multiplier χ. Define the following prob-

ability distribution on 7 = H/Ho:

(11.16) PT(dt) = cχ(t)μ<j(dt) J p(ghxo)χ(g)μG(dg), [h] = ί,

with suitable c > 0, in which μ7 and μG have the same meaning as in

Theorem 8.14- Then the distribution on X/G induced by Px is the

same as the distribution on 7/G0 induced by Pτ.

PROOF. Since there is a homeomorphism between 7 and Z =

Hx0, we may and shall switch back and forth between (7,7/G0) on

one hand and (£, Z/Go) on the other. Since by Lemma 11.2 there is

a 1-1 correspondence between the G-orbits in X and the GQ-orbits in

Z we may identify X/G and Z/Go as point sets. By Lemma 11.3 this

correspondence is a homeomorphism, so that we may identify X/G
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and Z/GQ as I.e. spaces. By Lemma 11.2 there is also a 1-1 corre-

spondence between G- in variant functions X —• R and Go -invariant

functions Z —> i2, obtained by equating the functions on correspond-

ing orbits. Write this correspondence as / 0 = α(/), / = α~ 1 (/ 0 ),

for / on X, / 0 on Z. Let J^Q] be the family of G-invariant func-

tions X —> R [GQ -invariant functions Z —> R] that are continuous and

bounded. Then the 1-1 correspondence between the invariant open

sets shown by Lemma 11.3 guarantees that a is a 1-1 correspondence

between 3 and 3^. Now the distribution on X/G induced by Px is

determined by the values of the expectations J fdPx, / £ 3. Sim-

ilarly, for any probability distribution Pz on £, the distribution on

Z/Go induced by Pz is determined by the values of J fodPz, / 0 6 ίF0.

Therefore, if / fdPx = J a(f)dPz for every / 6 J , then the distribu-

tion on X/G induced by Px equals the distribution on Z/Go induced

by Pz. Now switch to (0", Pτ) and consider the functions f0 of ίF0 to

be on T rather than on Z. Then with Px and Pτ of the hypotheses

of the theorem it is to be shown that

(11.17) JfdPx = Ja(f)dPτ, /eS .

Here <x(f) is obtained from / by equating the two functions on Z.

Since z G Z is of the form z = hz0, h 6 H, we have

(11.18) <*(f)(hx0) = f(hx0), heH.

Write down (8.24) for λ-integrable /; this only uses the first part of

Assumption 8.11. Combine this with (7.6.6), valid for H normal in

if, and get

(11.19) j f(x)\(dx) = c j f(ghxo)χ(g)χ(h)μG(dg)μH(dh).

Now replace / by fp, with / £ 7 and p the density with respect to λ

oίPx. Then

(11.20) ί f(x)p(x)λ(dx)

= c f(ghxo)p(ghxo)χ(g)χ(h)μG(dg)μH(dh).
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Use the invariance of / : f(ghx0) = f(hxQ), and write the right-hand
side of (11.20) as an iterated integral:

(11.21) ί f(x)p(x)\(dx)

= c f(hxo)χ(h)μH(dh) / p(ghxQ)χ(g)μG(dg).

The left-hand sides of (11.17) and (11.21) agree, and so do the right-
hand sides, using (11.16) and (11.18), when the integration over 7
in (11.17) is carried back to an integration over H. D

11.5. REMARK. Under Assumption 11.1, the set Z is in general
not a cross section but it is a so-called global slice for the group G.
As defined by Palais (1961), a global slice at xQ G X is a set Z C X
containing x0 such that (i) GZ = X, and (ii) there is an equivariant
continuous function / : X —> G/Go such that f~~1(G0) = Z. A (global)
cross section is a global slice with the additional property that it has
exactly one point in common with each orbit. In our case the function
/ can be defined by f(hgx0) = gGQ, which is well-defined because of
the 1-1 function φ* of (11.1). This also shows that f(x) = Go if and
only if x is of the form hx0, i.e., x £ Z. Therefore, f~1(G0) = Z.
The equivariance follows from the following computation: if x = hgx0

and gλ £ G then by the normality of if, gλhg^λ = hx £ H so that

f(9i*) = f(9ih9xo) = f(hi9i9^o) = #i#Go = 9if(x) τ h e continuity
of / follows from the homeomorphism φ* of (11.1) by writing / =
pτ1 o^?*"1 where prj is the projection of ^ x ϋ o n ^ ; then observe that
both pr2 and φ*~λ are continuous. D

Theorem 11.4 shows that if we start with a space X and probabil-
ity distribution of the form Px(dx) = p(x)λ(c/x), then the problem of
giving an explicit expression for the distribution of a maximal invari-
ant under the action of G may be replaced by the analogous problem
where the space is T, the group is Go, and the distribution is Pτ given
by (11.16). Note that in contrast with Type I or II problems we don't
have a factorization result such as (8.10) or (8.22). Consequently, for
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obtaining the constant c in (11.16) the method that was used in Chap-
ters 9 and 10, and which consisted in obtaining, by differentiation, an
explicit factorization at a special point or points (as in Example 8.7),
is not available here. Below we shall give an example of the use of
Theorem 11.4.

11.6. EXAMPLE. Suppose we have a sample from a p-variate
population that is partitioned into three pΓvariate subpopulations,
where pλ + p2 + p 3 = P At first we shall assume that the population
is multivariate normal. Suppose it is given that the first subpopulation
is independent of the third and we want to test that the first is also
independent of the second (as in Das Gupta, 1977, Problem(ii) (with 2
and 3 interchanged) and in Marden, 1981, Problem P 2). Let inference
depend only on the sample covariance matrix 5. Thus, X = PD(p).
We take λ to be Lebesgue measure on X. Partition S into 3 x 3 blocks
according to the three subpopulations. The group G of invariance
transformations may be chosen to consist of all matrices C of the
form

(11.22) s-i B
An

in which A{ E GL^t), i — 1,2,3, and B E M(p2,p3). For H we take
the group of all matrices

(11.23) s-i

D E

P3 J

in which D G Af(p1?p2)> & e M{pλ,pz). The action of both G and H
on X is defined by 5 —> CSC. Then K = GH is a transitive group
over X and H is normal in K. Take x0 = diag(J p i , Ip2,Ip3), then it is
seen that Ho is trivial and GQ consists of all block-diagonal matrices
d iag(Γ 1 ? Γ 2 ,Γ 3 ) , Γ G O(pJ, i = 1,2,3. Here Assumption 8.11(ii) is
violated but Assumption 11.1 is satisfied so that Theorem 11.4 applies.
In (11.16), 7 = H since HQ = {e}. For μ<j(dt) = μH(dh) we may take
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(dD)(dE). The multiplier χ for both G and H is χ(G) = \C\P+\

by (9.1.4). But for C G H, \C\ = 1 so that χ{h) = 1. On the other
hand, for C G G we have χ(flf) = Πi=i I^UP + 1 T o S e t a n explicit
expression for μG(dg) it is convenient to write G as GλG2, where Gλ

consist of all diag(A1, A2, A3), Ai G GL(p^), and G2 of all matrices of
the form (11.22) with Ai = I . Then G2 is normal in G, and we can
use Corollary 7.6.2 (replace there AT, G, i ϊ by G, G1 ? G2 here) with
the result J f(g)μG(dg) = J f(g1g2)μG1(

d9i)μG2(
d92)

 H ere/ i G 2 (^ 2 )
can be taken as (dB) and μGl{dgx) as Π?=i l^ iΓ^ 'C^Jϊ hY (7.7.1).
Substitution of all this into (11.16) yields a formula for PΊ', which we
shall rename P x

τ for later use:

(11.24) P?{dt) = Pl(D,E)(dD)(dE),

in which

r 3

(11.25) Pl(D,E) = c p(S)Y[\AiΓ^

where 5 , partitioned into the submatrices S^ , i,j = 1,2,3, with S ^ =

5 ^ , depends on the matrices A i ? etc., as follows:

Sn =AX(I + DD' + EE1)^, S12 = A1(D + EB')A'2,

(11.26) 5 1 3 = AjEΛ^ 5 2 2 = A2(I + BB')Af

2,

We may now drop insistence that S be based on a sample from a mul-
tivariate normal distribution and let p(S) be any probability density
with respect to Lebesgue measure λ on PD(p).

The space 7 consists of the pairs of matrices (D, £7), D G M(p1 ?

p2), E G M(p1,p3). The action of Go on T is given by (D,E) —>
(ΓjDΓ^, Γj-EΓ^). A maximal invariant and its distribution can be
obtained in two steps. First consider (D,E) —> (DT^ET^) with
maximal invariant, say, (SlyS2) = (DDf,EEf). This can be handled
by Section 9.2, using density pλ given by (11.25). In the second step
Go acts on ( S ^ ^ ^ by 52 —> ΓjS^Γ^, i = 1,2. A maximal invariant
and its distribution can be handled by Section 10.6. D
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11.7. REMARK. Although Example 11.6 is a good illustration

of the use of Theorem 11.4 it is less fortunate in that the problem

of Example 11.6 can also be solved by a succession of Type I and II

problems, thereby avoiding the use of Theorem 11.4 altogether. The

group Gλ of matrices diag(Λ1,^42?^3) c a n be further factored into

G1 = G0G3, where Go is as before and G3 consists of matrices of the

form diag(T1?Γ2,Γ3), with Ti G UT^^. This factorization follows,

for each i = 1,2,3 separately, from Section 7.7.4. Then a maximal

invariant may be obtained in two steps: first under the group GZG2 =

G', say (where G2 was defined in Example 11.6), and then under Go.

In the first step GΉ is a transitive group over X and G'Q = {e}. As

a result, Assumption 8.11 is satisfied and therefore Theorem 8.14 can

be used. A maximal invariant is again (D,E), as in the first step of

Example 11.6, but its distribution, say P^, is in general different from

the distribution P^ defined by (11.24) and (11.25). The second step,

reduction by Go, is the same as in the second step of Example 11.6 and

leads to the same final result even though P^ and P2 axe in general

different. The relation between these latter two distributions can be

described by saying that P2 is P^ averaged with help of GQ (which

is compact) so that—loosely speaking—the conditional distribution

on each G0-orbit becomes uniform. It is not known whether every

Type III problem can be reduced to a succession of Type I and II

problems. But even in cases where it can be done this may not be

obvious by inspection. And, finally, even if one knows how to make

this reduction (as in the problem of Example 11.6), it is not a priori

clear which of the integrals in (8.23) and (11.16) is the easier of the

two to work out. D




