CHAPTER 11

Type III Problems: Global Slice

In Type III problems there is, as in Type I problems, a group H such that $K=G H$ is a group transitive over X but not all items of Assumption 8.11 are satisfied. All assumptions except 8.11(ii) are rather mild and can be expected to hold in applications. On the other hand, Assumption 8.11(ii) turns out to be fairly strong and can easily fail. Inspection of the examples in Chapter 9 reveals that in Section 9.2, Case 1, 8.11(ii) holds because G and H commute (and therefore G_{0} and H commute), whereas in all other examples the validity of 8.11 (ii) is a consequence of $G_{0}=\{e\}$. If neither G_{0} and H commute nor $G_{0}=\{e\}$, then 8.11 (ii) is likely to fail. In that case $z=H x_{0}$ need no longer be a cross section and it seems as though the additional structure provided by the group H is useless. However, it turns out that H and Z can still be useful provided a different kind of group structure exists. Consider:
11.1. Assumption. Let Assumption 8.11 be satisfied except that 8.11(ii) is changed to
(ii) $g H_{0} g^{-1}=H_{0}$ for every $g \in G$,
and in addition assume

$$
\text { (iii) } g H^{-1}=H \text { for every } g \in G \text {. }
$$

Thus, Assumption 11.1 is Assumption 8.11 with G and H interchanged (note that in 8.11 all assumptions except (ii) are symmetric in G and H), and in addition H is assumed to be normal in K.

The normality of H in K is actually quite common, as the examples in Chapter 9 show. We shall see that the consequences of Assumption 11.1 are as follows: the set $Z=H x_{0}$, although not a cross section, is transformed into itself by G_{0} and G_{0} acts on \mathcal{Z}; the intersections of the G-orbits in X with \mathcal{Z} (which for a cross section would be exactly one point per orbit) are precisely the G_{0}-orbits in Z; there is a 1-1 correspondence between the open G-invariant subsets of X and the open G_{0}-invariant subsets of \mathcal{Z} so that the structure of the integrals of G invariant functions on X according to the Bourbaki theory is the same as that of G_{0}-invariant functions on \mathcal{Z}; given a probability distribution on X it is possible to write down (in integral form) a probability distribution on \mathcal{Z} such that the probabilities of corresponding G-invariant subsets of X and G_{0}-invariant subsets of \mathcal{Z} coincide. Then a maximal invariant on \mathcal{Z} under G_{0}, together with its distribution, is a solution of the original problem. In this way the original problem, with space X and group G, has been reduced to a (presumably) simpler problem with the smaller space Z and smaller group G_{0}. As in the case of Type I and II problems we shall usually represent \mathcal{Z} by $\mathcal{T}=H / H_{0}$. It should be emphasized that under Assumption 11.1 there is not an obvious function $X \rightarrow Z$ that preserves probabilities of invariant sets and that can be used to induce a distribution on Z from one on X. (This point was overlooked in Theorem 8.1 of Wijsman (1986); also the present Assumption 11.1(ii)' was erroneously omitted.) The usefulness of the structure that Assumption 11.1 provides was first shown by Woteki and Mayer (1976) in several examples.
11.2. Lemma. Let Assumption 11.1 be satisfied and define $\mathcal{Z}=$ $H x_{0}, \mathcal{T}=H / H_{0}$. Then (i) G_{0} acts on the left of \mathcal{Z} and of \mathcal{T}; (ii) for any $z \in \mathcal{Z}, \mathcal{Z} \cap G z=G_{0} z$. Thus, there is a 1-1 correspondence between the G-orbits in X and the G_{0}-orbits in \mathcal{Z}.

Proof. (i) Let $z=h x_{0}(h \in H)$ be an arbitrary point of Z and g_{0} an arbitrary element of G_{0}. Then $g_{0} z=h^{\prime} x_{0}$, where $h^{\prime}=g_{0} h g_{0}^{-1} \in$ H. This shows that G_{0} transforms \mathcal{Z} into itself, and since G_{0} acts on the left of X it follows that G_{0} acts on the left of \mathcal{Z}.
(ii) Obviously, $G_{0} z \subset Z \cap G z$. In order to show $Z \cap G z \subset G_{0} z$ let
$z_{1} \in \mathcal{Z} \cap G z$ so that $z_{1} \in \mathcal{Z}$ and there exists $g \in G$ such that $z_{1}=g z$. For some $h, h_{1} \in H, z=h x_{0}, z_{1}=h_{1} x_{0}$. Then $h_{1} x_{0}=g h x_{0}$. Since H is normal in $K, g h=h_{2} g$ for some $h_{2} \in H$. Therefore, $h_{2}^{-1} h_{1} x_{0}=g x_{0}$. By Assumption 8.11(i) both members of the last equation must equal x_{0}. This implies $g \in G_{0}$ so that $z_{1}=g_{0} z \in G_{0} z$.

The 1-1 correspondence between the G-orbits in X and the G_{0} orbits in \mathcal{Z} provides a 1-1 correspondence between the G-invariant subsets of X and the G_{0}-invariant subsets of \mathcal{Z} since an invariant set is a union of orbits. We shall show now that this correspondence preserves open sets.
11.3. Lemma. Under Assumption 11.1 there is a $1-1$ correspondence between the G-invariant open subsets of X and the G_{0}-invariant open subsets of \mathcal{Z}.

Proof. Since Assumption 11.1 implies Assumption 8.11 with G and H interchanged, Theorem 8.12 applies with G and H interchanged. Therefore, define $\varphi^{*}: G / G_{0} \times H / H_{0} \rightarrow X$ by

$$
\begin{equation*}
\varphi^{*}\left(g G_{0}, h H_{0}\right)=h g x_{0}, \tag{11.1}
\end{equation*}
$$

then φ^{*} is a homeomorphism. Put $y=G / G_{0}, \mathcal{T}=H / H_{0}$, then φ^{*} is a homeomorphism of $y \times \mathcal{T}$ and X. Equivalently,

$$
\begin{equation*}
\varphi^{* *}\left(g G_{0}, h H_{0}\right)=h g K_{0} \tag{11.2}
\end{equation*}
$$

is a homeomorphism of $y \times \mathcal{T}$ and K / K_{0}. This homeomorphism is even analytic, by Theorem 5.9 .9 with G and H interchanged. By Lemma 11.2 there is a $1-1$ correspondence between the G-invariant subsets of X and the G_{0}-invariant subsets of Z, where to $A \subset X$ corresponds $A \cap \mathcal{Z} \subset \mathcal{Z}$, and to $B \in \mathcal{Z}$ corresponds $G B \subset X$. We have to show (i) if $A \subset X$ is G-invariant and open, then $A \cap \mathcal{Z}$ is open in z; and (ii) if $B \subset \mathcal{Z}$ is G_{0} invariant and open in \mathcal{Z}, then $G B$ is open in X. Part (i) follows from the homeomorphism between $y \times \mathcal{T}$ and X, and between \mathcal{T} and \mathcal{Z} (but note that the action of G on \mathcal{T} is not trivial so that $\varphi^{*-1}(A)$ is not a product set). Then (i) reduces to
the statement that if A is an open subset of the product space $y \times \mathcal{T}$ endowed with the product topology, then $A \cap \mathcal{T}$ is open in \mathcal{T}. This is an immediate consequence of the definition of product topology, for A can be written as a union of open product sets. In order to show (ii) it is sufficient to show that if B_{1} is an open subset of \mathcal{T}, then $G B_{1}$ is open in $y \times \mathcal{T}$, or, equivalently, open in K / K_{0} which is homeomorphic to $y \times \mathcal{T}$ (note that the action of G on $y \times \mathcal{T}$ is derived from the action of G on X). Let $G \times H$ be endowed with the product topology and define $f_{1}: G \times H \rightarrow K / K_{0}$ by $f_{1}(g, h)=h g K_{0}$. Similarly, f_{2} by $f_{2}(g, h)=g h K_{0}$. Since $B_{1}=\left\{h H_{0}: h \in B_{2}\right\}$ for some open $B_{2} \subset H$, it suffices to show that f_{2} is an open mapping. Now f_{1} is the composition of the open orbit projection $G \times H \rightarrow y \times \mathcal{T}$ and the homeomorphism $\varphi^{* *}$ given by (11.2). Therefore, f_{1} is open. Consider the function $f_{3}: G \times H \rightarrow G \times H$ defined by $f_{3}(g, h)=\left(g, g h g^{-1}\right)$, where we have used Assumption 11.1(iii). Obviously, f_{3} is continuous, and its inverse $f_{3}^{-1}\left(g, h^{\prime}\right)=\left(g, g^{-1} h^{\prime} g\right)$ is also continuous so that f_{3} is a homeomorphism. Then observe that $f_{2}=f_{1} \circ f_{3}$ and conclude that f_{2} is open.
11.4. Theorem. Let Assumption 11.1 be satisfied and let $P^{X}(d x)$ $=p(x) \lambda(d x)$ be a probability distribution on X, with λ relatively invariant with respect to K with multiplier χ. Define the following probability distribution on $\mathcal{T}=H / H_{0}$:

$$
\begin{equation*}
P^{T}(d t)=c \chi(t) \mu_{\mathcal{T}}(d t) \int p\left(g h x_{0}\right) \chi(g) \mu_{G}(d g), \quad[h]=t \tag{11.16}
\end{equation*}
$$

with suitable $c>0$, in which $\mu_{\mathcal{J}}$ and μ_{G} have the same meaning as in Theorem 8.14. Then the distribution on X / G induced by P^{X} is the same as the distribution on \mathcal{T} / G_{0} induced by P^{T}.

Proof. Since there is a homeomorphism between \mathcal{T} and $\mathcal{Z}=$ $H x_{0}$, we may and shall switch back and forth between ($\left.\mathcal{T}, \mathcal{T} / G_{0}\right)$ on one hand and $\left(\mathcal{Z}, \mathcal{Z} / G_{0}\right)$ on the other. Since by Lemma 11.2 there is a 1-1 correspondence between the G-orbits in X and the G_{0}-orbits in Z we may identify X / G and Z / G_{0} as point sets. By Lemma 11.3 this correspondence is a homeomorphism, so that we may identify X / G
and \mathcal{Z} / G_{0} as l.c. spaces. By Lemma 11.2 there is also a $1-1$ correspondence between G-invariant functions $X \rightarrow R$ and G_{0}-invariant functions $Z \rightarrow R$, obtained by equating the functions on corresponding orbits. Write this correspondence as $f_{0}=\alpha(f), f=\alpha^{-1}\left(f_{0}\right)$, for f on \mathcal{X}, f_{0} on \mathcal{Z}. Let $\mathcal{F}\left[\mathcal{F}_{0}\right]$ be the family of G-invariant functions $X \rightarrow R\left[G_{0}\right.$-invariant functions $\left.Z \rightarrow R\right]$ that are continuous and bounded. Then the 1-1 correspondence between the invariant open sets shown by Lemma 11.3 guarantees that α is a $1-1$ correspondence between \mathcal{F} and \mathcal{F}_{0}. Now the distribution on X / G induced by P^{X} is determined by the values of the expectations $\int f d P^{X}, f \in \mathcal{F}$. Similarly, for any probability distribution P^{Z} on Z, the distribution on Z / G_{0} induced by P^{Z} is determined by the values of $\int f_{0} d P^{Z}, f_{0} \in \mathcal{F}_{0}$. Therefore, if $\int f d P^{X}=\int \alpha(f) d P^{Z}$ for every $f \in \mathcal{F}$, then the distribution on X / G induced by P^{X} equals the distribution on Z / G_{0} induced by P^{Z}. Now switch to (\mathcal{T}, P^{T}) and consider the functions f_{0} of \mathcal{F}_{0} to be on \mathcal{T} rather than on \mathcal{Z}. Then with P^{X} and P^{T} of the hypotheses of the theorem it is to be shown that

$$
\begin{equation*}
\int f d P^{X}=\int \alpha(f) d P^{T}, \quad f \in \mathcal{F} \tag{11.17}
\end{equation*}
$$

Here $\alpha(f)$ is obtained from f by equating the two functions on \mathcal{Z}. Since $z \in \mathcal{Z}$ is of the form $z=h z_{0}, h \in H$, we have

$$
\begin{equation*}
\alpha(f)\left(h x_{0}\right)=f\left(h x_{0}\right), \quad h \in H . \tag{11.18}
\end{equation*}
$$

Write down (8.24) for λ-integrable f; this only uses the first part of Assumption 8.11. Combine this with (7.6.6), valid for H normal in K, and get

$$
\begin{equation*}
\int f(x) \lambda(d x)=c \int f\left(g h x_{0}\right) \chi(g) \chi(h) \mu_{G}(d g) \mu_{H}(d h) . \tag{11.19}
\end{equation*}
$$

Now replace f by $f p$, with $f \in \mathcal{F}$ and p the density with respect to λ of P^{X}. Then

$$
\begin{align*}
\int f(x) p(x) & \lambda(d x) \tag{11.20}\\
= & c \int f\left(g h x_{0}\right) p\left(g h x_{0}\right) \chi(g) \chi(h) \mu_{G}(d g) \mu_{H}(d h)
\end{align*}
$$

Use the invariance of $f: f\left(g h x_{0}\right)=f\left(h x_{0}\right)$, and write the right-hand side of (11.20) as an iterated integral:

$$
\begin{align*}
& \int f(x) p(x) \lambda(d x) \tag{11.21}\\
& \quad=c \int f\left(h x_{0}\right) \chi(h) \mu_{H}(d h) \int p\left(g h x_{0}\right) \chi(g) \mu_{G}(d g) .
\end{align*}
$$

The left-hand sides of (11.17) and (11.21) agree, and so do the righthand sides, using (11.16) and (11.18), when the integration over \mathcal{T} in (11.17) is carried back to an integration over H.
11.5. Remark. Under Assumption 11.1, the set Z is in general not a cross section but it is a so-called global slice for the group G. As defined by Palais (1961), a global slice at $x_{0} \in X$ is a set $Z \subset X$ containing x_{0} such that (i) $G Z=X$, and (ii) there is an equivariant continuous function $f: X \rightarrow G / G_{0}$ such that $f^{-1}\left(G_{0}\right)=\mathcal{Z}$. A (global) cross section is a global slice with the additional property that it has exactly one point in common with each orbit. In our case the function f can be defined by $f\left(h g x_{0}\right)=g G_{0}$, which is well-defined because of the 1-1 function φ^{*} of (11.1). This also shows that $f(x)=G_{0}$ if and only if x is of the form $h x_{0}$, i.e., $x \in \mathcal{Z}$. Therefore, $f^{-1}\left(G_{0}\right)=\mathcal{Z}$. The equivariance follows from the following computation: if $x=h g x_{0}$ and $g_{1} \in G$ then by the normality of $H, g_{1} h g_{1}^{-1}=h_{1} \in H$ so that $f\left(g_{1} x\right)=f\left(g_{1} h g x_{0}\right)=f\left(h_{1} g_{1} g x_{0}\right)=g_{1} g G_{0}=g_{1} f(x)$. The continuity of f follows from the homeomorphism φ^{*} of (11.1) by writing $f=$ $\operatorname{pr}_{1} \circ \varphi^{*-1}$ where pr_{1} is the projection of $y \times \mathcal{T}$ on y; then observe that both pr_{1} and φ^{*-1} are continuous.

Theorem 11.4 shows that if we start with a space \mathcal{X} and probability distribution of the form $P^{X}(d x)=p(x) \lambda(d x)$, then the problem of giving an explicit expression for the distribution of a maximal invariant under the action of G may be replaced by the analogous problem where the space is \mathcal{T}, the group is G_{0}, and the distribution is P^{T} given by (11.16). Note that in contrast with Type I or II problems we don't have a factorization result such as (8.10) or (8.22). Consequently, for
obtaining the constant c in (11.16) the method that was used in Chapters 9 and 10 , and which consisted in obtaining, by differentiation, an explicit factorization at a special point or points (as in Example 8.7), is not available here. Below we shall give an example of the use of Theorem 11.4.
11.6. Example. Suppose we have a sample from a p-variate population that is partitioned into three p_{i}-variate subpopulations, where $p_{1}+p_{2}+p_{3}=p$. At first we shall assume that the population is multivariate normal. Suppose it is given that the first subpopulation is independent of the third and we want to test that the first is also independent of the second (as in Das Gupta, 1977, Problem(ii) (with 2 and 3 interchanged) and in Marden, 1981, Problem P_{2}). Let inference depend only on the sample covariance matrix S. Thus, $X=P D(p)$. We take λ to be Lebesgue measure on X. Partition S into 3×3 blocks according to the three subpopulations. The group G of invariance transformations may be chosen to consist of all matrices C of the form

$$
C=\left[\begin{array}{lll}
A_{1} & & \tag{11.22}\\
& A_{2} & B \\
& & A_{2}
\end{array}\right]
$$

in which $A_{i} \in G L\left(p_{i}\right), i=1,2,3$, and $B \in M\left(p_{2}, p_{3}\right)$. For H we take the group of all matrices

$$
C=\left[\begin{array}{ccc}
I_{p_{1}} & D & E \tag{11.23}\\
& I_{p_{2}} & \\
& & I_{p_{3}}
\end{array}\right]
$$

in which $D \in M\left(p_{1}, p_{2}\right), E \in M\left(p_{1}, p_{3}\right)$. The action of both G and H on X is defined by $S \rightarrow C S C^{\prime}$. Then $K=G H$ is a transitive group over X and H is normal in K. Take $x_{0}=\operatorname{diag}\left(I_{p_{1}}, I_{p_{2}}, I_{p_{3}}\right)$, then it is seen that H_{0} is trivial and G_{0} consists of all block-diagonal matrices $\operatorname{diag}\left(\Gamma_{1}, \Gamma_{2}, \Gamma_{3}\right), \Gamma_{i} \in O\left(p_{i}\right), i=1,2,3$. Here Assumption 8.11(ii) is violated but Assumption 11.1 is satisfied so that Theorem 11.4 applies. In (11.16), $\mathcal{T}=H$ since $H_{0}=\{e\}$. For $\mu_{\mathcal{T}}(d t)=\mu_{H}(d h)$ we may take
$(d D)(d E)$. The multiplier χ for both G and H is $\chi(C)=|C|^{p+1}$, by (9.1.4). But for $C \in H,|C|=1$ so that $\chi(h)=1$. On the other hand, for $C \in G$ we have $\chi(g)=\prod_{i=1}^{3}\left|A_{i}\right|^{p+1}$. To get an explicit expression for $\mu_{G}(d g)$ it is convenient to write G as $G_{1} G_{2}$, where G_{1} consist of all $\operatorname{diag}\left(A_{1}, A_{2}, A_{3}\right), A_{i} \in G L\left(p_{i}\right)$, and G_{2} of all matrices of the form (11.22) with $A_{i}=I_{p_{i}}$. Then G_{2} is normal in G, and we can use Corollary 7.6.2 (replace there K, G, H by G, G_{1}, G_{2} here) with the result $\int f(g) \mu_{G}(d g)=\int f\left(g_{1} g_{2}\right) \mu_{G_{1}}\left(d g_{1}\right) \mu_{G_{2}}\left(d g_{2}\right)$. Here $\mu_{G_{2}}\left(d g_{2}\right)$ can be taken as $(d B)$ and $\mu_{G_{1}}\left(d g_{1}\right)$ as $\prod_{i=1}^{3}\left|A_{i}\right|^{-p_{i}}\left(d A_{i}\right)$, by (7.7.1). Substitution of all this into (11.16) yields a formula for P^{T}, which we shall rename P_{1}^{T} for later use:

$$
\begin{equation*}
P_{1}^{T}(d t)=p_{1}(D, E)(d D)(d E), \tag{11.24}
\end{equation*}
$$

in which

$$
\begin{equation*}
p_{1}(D, E)=c \int p(S) \prod_{i=1}^{3}\left|A_{i}\right|^{p-p_{i}+1}\left(d A_{i}\right)(d B), \tag{11.25}
\end{equation*}
$$

where S, partitioned into the submatrices $S_{i j}, i, j=1,2,3$, with $S_{j i}=$ $S_{i j}^{\prime}$, depends on the matrices A_{i}, etc., as follows:

$$
\begin{align*}
& S_{11}=A_{1}\left(I+D D^{\prime}+E E^{\prime}\right) A_{1}^{\prime}, \quad S_{12}=A_{1}\left(D+E B^{\prime}\right) A_{2}^{\prime}, \\
& S_{13}=A_{1} E A_{3}^{\prime}, \quad S_{22}=A_{2}\left(I+B B^{\prime}\right) A_{2}^{\prime}, \tag{11.26}\\
& S_{23}=A_{2} B A_{3}^{\prime}, \quad S_{33}=A_{3} A_{3}^{\prime} .
\end{align*}
$$

We may now drop insistence that S be based on a sample from a multivariate normal distribution and let $p(S)$ be any probability density with respect to Lebesgue measure λ on $P D(p)$.

The space \mathcal{T} consists of the pairs of matrices $(D, E), D \in M\left(p_{1}\right.$, $\left.p_{2}\right), E \in M\left(p_{1}, p_{3}\right)$. The action of G_{0} on \mathcal{T} is given by $(D, E) \rightarrow$ $\left(\Gamma_{1} D \Gamma_{2}^{\prime}, \Gamma_{1} E \Gamma_{3}^{\prime}\right.$). A maximal invariant and its distribution can be obtained in two steps. First consider $(D, E) \rightarrow\left(D \Gamma_{2}^{\prime}, E \Gamma_{3}^{\prime}\right)$ with maximal invariant, say, $\left(S_{1}, S_{2}\right)=\left(D D^{\prime}, E E^{\prime}\right)$. This can be handled by Section 9.2 , using density p_{1} given by (11.25). In the second step G_{0} acts on $\left(S_{1}, S_{2}\right)$ by $S_{i} \rightarrow \Gamma_{1} S_{i} \Gamma_{1}^{\prime}, i=1,2$. A maximal invariant and its distribution can be handled by Section 10.6.
11.7. Remark. Although Example 11.6 is a good illustration of the use of Theorem 11.4 it is less fortunate in that the problem of Example 11.6 can also be solved by a succession of Type I and II problems, thereby avoiding the use of Theorem 11.4 altogether. The group G_{1} of matrices $\operatorname{diag}\left(A_{1}, A_{2}, A_{3}\right)$ can be further factored into $G_{1}=G_{0} G_{3}$, where G_{0} is as before and G_{3} consists of matrices of the form $\operatorname{diag}\left(T_{1}, T_{2}, T_{3}\right)$, with $T_{i} \in U T\left(p_{i}\right)$. This factorization follows, for each $i=1,2,3$ separately, from Section 7.7.4. Then a maximal invariant may be obtained in two steps: first under the group $G_{3} G_{2}=$ G^{\prime}, say (where G_{2} was defined in Example 11.6), and then under G_{0}. In the first step $G^{\prime} H$ is a transitive group over X and $G_{0}^{\prime}=\{e\}$. As a result, Assumption 8.11 is satisfied and therefore Theorem 8.14 can be used. A maximal invariant is again (D, E), as in the first step of Example 11.6, but its distribution, say P_{2}^{T}, is in general different from the distribution P_{1}^{T} defined by (11.24) and (11.25). The second step, reduction by G_{0}, is the same as in the second step of Example 11.6 and leads to the same final result even though P_{1}^{T} and P_{2}^{T} are in general different. The relation between these latter two distributions can be described by saying that P_{2}^{T} is P_{1}^{T} averaged with help of G_{0} (which is compact) so that-loosely speaking-the conditional distribution on each G_{0}-orbit becomes uniform. It is not known whether every Type III problem can be reduced to a succession of Type I and II problems. But even in cases where it can be done this may not be obvious by inspection. And, finally, even if one knows how to make this reduction (as in the problem of Example 11.6), it is not a priori clear which of the integrals in (8.23) and (11.16) is the easier of the two to work out.

