
CHAPTER 5. IMPLEMENTATION OF THE LIKELIHOOD PRINCIPLE

5.1 INTRODUCTION

The LP strikes us as correct, and behaving in violation of it

would be a source of considerable discomfort. Yet the LP does not tell one

what to do (although insisting on methods based on the observed likelihood

function certainly reduces the possibilities). It can indeed be argued that

there is sometimes no sensible method of behavior which is completely consis-

tent with the LP.

This raises a yery important distinction which is often misunder-

stood in foundational matters. "Foundations" usually proceeds by formulating

properties of desirable behavior, and then seeing what can be deduced from

these properties. The quintessential example is that from (very reasonable)

axioms of "consistent" or "rational" behavior, it can be deduced that any

"consistent" analysis corresponds to some Bayesian analysis. This does not

imply, however, than any particular form of consistent (Bayesian) analysis is

necessarily satisfactory, since, as C.A.B. Smith said in Savage, et. al. (1962),

"Consistency is not necessarily a virtue:

one can be consistently obnoxious."

And there is no guarantee that a nonobnoxious consistent way of behaving exists.

(See Berger (1984e) for further discussion.) Thus foundational arguments

(including the LP) can logically be considered irrelevant from an operational

perspective.

This is certainly overstating the case, somewhat, in that, at the

very least, foundational arguments can be invaluable in giving direction to
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our efforts. Thus the "consistency" theory strongly suggests that truth lies

in a Bayesian direction, and the LP strongly suggests that truth lies in the

direction of methods based on determination and utilization of the likelihood

function (for the observed x). Luckily (or inevitably) these two directions

are compatible.

To show that the LP is not irrelevant, we must argue that a

sensible method of analysis exists which is compatible with it. This is simply

too much to ask; it would involve demonstrating that such a methodology works

well "across-the-board" in statistics. Instead, we will content ourselves to

arguing for what, we feel, this methodology must be, namely robust Bayesian

analysis. We start out, however, with a very brief description of non-Bayesian

likelihood methods. Until Section 5.4, we will assume that the likelihood

function iΛe) (for the observed x) exists.

5.2 NON-BAYESIAN LIKELIHOOD METHODS

It should first be mentioned that there are classically based

likelihood methods such as maximum likelihood estimation and likelihood ratio

testing. Although these are usually given evidential interpretations in

frequentist terms, the concepts themselves are clearly of great importance in

likelihood methods. The literature on these subjects is too vast to even

attempt mentioning.

Since the LP states that all evidence about θ is contained in

&
v
(θ)> one conceivable solution to the problem of what to do is simply tox

report %
χ
(θh leaving its use and interpretation "to the user" (c.f., Fisher

(1956a) and Box and Tiao (1973)). This is not necessarily unreasonable, as

"eyeballing" a likelihood function often reveals most things of interest, at

least when Θ is low dimensional. Many people probably could learn to usefully

deal with likelihood functions as the basic elements of statistics (and indeed

many now do). Even a Bayesian should encourage reporting of likelihood func-

tions. Thus Good (1976) says
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"If a Bayesian is a subjectivist he will

know that the initial probability density

varies from person to person and so he will

see the value of graphing the likelihood

function for communication. A Doogian will

consider that even his own initial probability

density is not unique so he should approve

even more".

Nevertheless, reporting of I (θ) can not be considered to be the end of the
x

s t a t i s t i c i a n ' s j o b ; properly using a (θ) can be d i f f i c u l t and c r u c i a l . Also,

the natural visual i n t e r p r e t a t i o n t h a t w i l l be ascribed to i ( θ ) by most users
x

is that of a probability distribution for θ, an interpretation needing careful

handling.

Most of the likelihood methods that have been proposed are

dependent on the interpretation that ϋ
v
(θ,)/fi, (θ

9
) measures the relative

X I X C.

support of the data for θi and θp Extensive development of this idea can be

found in Hacking (1965) and Edwards (1972). Other likelihood developments can

be found in Fisher (1956a), Barnard, Jenkins and Winsten (1962), Birnbaum

(1962a), Barnard (1967a), Sprott and Kalbfleisch (1969), Kalbfleisch and Sprott

(1970), Andersen (1970, 1971, 1973), Kalbfleisch (1971, 1978), Barndorff-Nielsen

(1971), Sprott (1973a, 1973b), Cox and Hinkley (1974), Cox (1975), Tjur (1978),

Hinkley (1978, 1979, 1980, 1982), Grambsch (1980), Barnett (1982), and many of

the references given in Chapter 2. "Plausibility Inference" (c.f. Barndorff-

Nielsen (1976)) is also related. (Not all of these authors necessarily

subscribe to the LP, of course.)

We do not detail these developments for several reasons. First,

the space requirement would simply be prohibitive. Second, many of the

techniques proposed, while valuable, are either designed only for a narrow class

of problems, and hence do not provide a basis for a general likelihood based

theory, or attempt generality but fall prey to counterexamples. (See Birnbaum
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(1962a), the discussion in Kalbfleisch and Sprott (1970), Plante (1971), Basu

(1975), Hill (1973, 1975), and Levi (1980) for some such counterexamples.)

Finally, and most importantly, we will argue in the next section that there

are compelling reasons for utilizing £ (θ) through Bayesian analysis, and hence

that non-Bayesian likelihood techniques are inherently limited. Such techniques

can offer substantial improvements over classical methods, however, and should

be useful for those unwilling to accept a Bayesian approach. Also, many of

the technical developments in these articles can be useful even to a Bayesian.

5.3 ARGUMENTS FOR BAYESIAN IMPLEMENTATION

Savage, in the discussion of Birnbaum (1962a), said

"...I suspect that once the likelihood

principle is widely recognized, people will

not long stop at that halfway house but will

go forward and accept the implications of

personalistic probability for statistics."

It would be inappropriate here to present the full range of arguments for

Bayesian analysis. Instead, we will concentrate on indicating how sensible

use of the likelihood function seems possible only through Bayesian analysis.

5.3.1 General Considerations

First, believers in the LP should, it seems,be especially wary of

what Good (1976) called 'adhockeries
1
. These are superficially reasonable

methods of analysis which, however, have no firm foundational basis. Careful

investigation of adhockeries always seems to reveal a flaw. Non-Bayesian use

of likelihood functions virtually always proceeds by developing an adhoc

method of dealing with involved situations. No adhoc method ever seems to be

sufficient. Indeed, the rationality or consistency justification for Bayesian

analysis gives a strong indication that no adhoc method will ever prove

foolproof.
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An example of the problems faced by non-Bayesians is that,

discussed in Section 3.5, of dealing with informative nuisance parameters.

Such nuisance parameters are part of the likelihood function, yet need to

essentially be eliminated before progress can be made. The Bayesian approach

provides a natural (though maybe difficult) way of doing this; determine a

prior distribution and integrate out the nuisance parameter (after multiplying

the likelihood function and the prior). Simple alternatives, such as maximizing

over the nuisance parameter, are simply too crude to give general hope of

success (see Lindley in the discussion of Birnbaum (1962a)), although fairly

sophisticated methods (such as those in Hinde and Aitken (1984)) may often

work reasonably well.

The only situations in which pure likelihood methods are completely

convincing are simple ones (such as testing two simple hypotheses), where they

in fact correspond to Bayes procedures. Thus Birnbaum (1962a) says (and

supports with examples)

"And, at least for such simple problems,

one might say that (LP) implies (Bayes)

in the \/ery broad and qualitative sense

that use of statistical evidence as

characterized by the likelihood function

alone entails that inference - or decision-

making behavior - will be externally indis-

tinguishable from (some case of) a Bayesian

mode of inference."

The above arguments will not be \/ery compelling to most non-

Bayesians, so let us turn to the key issue - that % (θ) need make little sense

unless interpreted through a Bayesian filter. If π is a prior (density for

convenience) on Θ , then a Bayesian believing π is reasonable or plausible would

view i (θ) through the posterior distribution

π(θ|x) = A
y
(θ)π(θ)//π(θH (θ)dθ,
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which essentially corresponds to viewing A (θ) as a probability density w.r.t.
x

the (properly normalized version of) π. The prior π need not be proper, and

indeed those wanting "objectivity" might desire to use a "noninformative" prior

π as the basis of the normalizing measure. In any case, the key to the

Bayesian approach is to treat * (Θ) as an actual probability density - and it is
x

reasonable to do so only when it is considered a density w.r.t. the presumed

prior measure for Θ.

A number of justifications for this view have been advanced. First

is the quite persuasive argument that probability is the language of

uncertainty, so the uncertainty about θ, reflected in £ (θ), should be
x

expressed probabilistically. Second, it usually is necessary to compare or

relate one subset of % to another, and some method of averaging over ί,
χ
(θ) is

then needed. Indeed, Basu (1975) presents reasonable arguments that &
χ
(θ)

should be "additive" when Θ is discrete. (His argument, however, that in

reality Θ is always discrete, is much less convincing than the corresponding

argument that % is discrete; we measure X to only a certain accuracy, but θ

could still be anything.)

Non-Bayesian averaging of ι (β) has the severe problem that

reparameterization can change the answer. One can make a change of variables

η = ψ(θ), where ψ is a 1-1 function, and the resulting likelihood function for

η, namely £
χ
(ψ (η)), could look completely different. Adhoc averaging methods

will virtually always give different conclusions for the reparameterized

likelihood function (as will many other intuitive likelihood techniques), a

very disturbing prospect. Of course, the interpretation of a (θ) as a

probability density w.r.t. the prior measure is immune to this problem, since

a reparameterization simply introduces a Jacobian in the transformed prior.

In some situations, it is clearly imperative to determine and in-

troduce π. One such situation is that of Section 4.5.2, in which the likeli-

hood function itself conveys almost no information unless θ is severely

restricted through π (i.e., a suitable model for the population is introduced).

Indeed the nonparametric situation discussed in Section 3.6.1 is the general
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prototype for this situation, in that the likelihood function is very difficult

to use unless θ is substantially restricted a priori, corresponding to proposing

a model (or class of models) for the distribution of X. The "generalized

inverse" problems discussed in Jaynes (1981) also have this same flavor.

The failure of the likelihood function to provide clearly inter-

pretable information, when Θ is huge, is sometimes deemed a criticism of the

LP. Instead, we view it as an indication that prior information must be used

in such situations. (See also the discussion in Section 4.5.)

5.3.2 The Fraser-Monette-Ng, Stone, and Stein Examples

Next, we turn to three important examples which have been viewed

as counterexamples to the LP, but instead are viewed by us as indications that

a Bayesian (rather than intuitive) interpretation of the likelihood function is

needed. The first is an example from Fraser, Monette, and Ng (1984). (See

also Evans, Fraser, and Monette (1986) and the discussion therein for

additional development.)

EXAMPLE 34. Suppose X= Θ = {1,2,...}, and

θ/2,2θ,2θ+l when θ is even

(5.3.1) f
Ω
(x) = ifor x = (θ-l)/2,2θ,2θ+l when θ f λ is odd

1,2,3 when θ = 1.

The likelihood function is easily seen to be

x/2,2x,2x+l when x is even

a
χ
(θ) = \ for θ = (x-l)/2,2x,2x+l when x f 1 is odd

1,2,3 when x = 1.

Thus, for any x, the data intuitively gives equal support to the three

possible θ compatible with that observation. On solely likelihood based

grounds, therefore, any of the three θ would be a suitable estimate. Consider,

therefore, three possible estimators, δ-j, δ
2
, and 6

3
, corresponding to using

the first, middle, and last possible θ, respectively: thus
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x/2 when x is even

(x-D/2 when x M is odd

1 when x = 1,

6
2
(x) = 2x, and δ

3
(x) = 2x+l.

Now

P
θ
(θ

2
(X) = θ) = P

Θ
(X = θ/2)

and

P
Θ
(<*

3
(X) = θ) = P

Q
(X = (θ-l)/2) =

while, amazingly,
P

Ω
({1,2,3}) = 1

1/3 when θ is even

0 otherwise,

1/3 when θ t 1 is odd

0 otherwise,

when θ = 1

(5.3.2) Pθ(ό Ί(X) = θ) =

PΩ({2θ,2θ+l}) = 2/3 otherwise.

Even more surprising is that the confidence set C-j(x) = {2x,2x+l} seems twice

as good from a "pure likelihood" viewpoint as Cp(x) = ί δ , ( x ) } , and yet

0 when θ = 1

P
Ω
(C

Ί
(X) contains θ) =

1/3 otherwise

while

P
Q
(C

0
(X) contains θ) =

1 when θ = 1

2/3 otherwise.

Of course, the measures here are frequentist measures, but the decision-

theoretic or coherency evaluation arguments of Section 3.7 can be applied to

indicate substantial inferiority of 6
?
, 6

3
, or C, in repeated use.

Let us now consider what happens when &
χ
(θ) is passed through a

Bayesian filter. A Bayesian has a prior density IT for θ, and his posterior

density will be
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&x(e)π(e) π ( θ ) I { ΰ Ί ( x ) , ό 2 ( x ) , 6 3 ( x ) } ( θ )

ύftΓ~ = π(61(x))+π(δ2(x))+π(δ3(x)) '

Thus, indeed, the data conveys nothing to the Bayesian except that Θ is

<5 |(x), 6
2
(x), or ό

3
(x). Is the Bayesian indifferent between δ-,(x), δp(x),

and δ J x ) , however? He is only if π(δ,(x)) = π(δ
2
(x)) = π(δ

3
(x)), which cannot

hold for all x (when π is a proper density). Indeed it will typically be

the case, at least for densities which are monotonically decreasing for large

θ, that π(δ,(x)) > π(δ
2
(x)) + π(δ

3
(x)). Thus a Bayesian would never always use

δ
2
> δ

3
, or C,, and would, in fact, tend to use δ,. The Bayesian thus avoids

the danger inherent in pure likelihood reasoning.

As a final comment on this example, note that a (sophisticated)

noninformative prior Bayesian obtains a reasonable (objective) answer to this

problem. Although one might naively give θ a constant (improper) prior density,

resulting in the ill-advised π(θ|x) = λ
γ
(θ), it is clear from (5.3.1) that θ

x

is approximately a scale parameter. This would lead a noninformative prior

Bayesian to use the Jeffrey's (1961) prior density for a scale parameter,

namely π(θ) = θ . With this noninformative prior, not only is δ,(x) again the

clear choice for θ, but the posterior probability that θ = δ,(x) is

approximately 2/3 for large x. (This, incidentally, provides a conditional

just i f icat ion for the frequentist report in ( 5 . 3 . 2 ) . )

Thus, either a proper prior Bayesian or a careful noninformative

prior Bayesian wi l l easily arrive at a sensible likelihood-based conclusion in

this example. We have seen no pure likelihood methods which can make the same

claim.

EXAMPLE 35. Stone (1976) (see also H i l l (1981) for a discussion similar to

the following) considers a very interesting example in which a drunken soldier,

starting at an intersection 0 in a city (which has square blocks), staggers

around on a random path t r a i l i n g a taut strong. Eventually the soldier stops

at an intersection (after walking at least one block) and buries a treasure.

Let θ denote the path of the string from 0 to the treasure. Letting N, S, E,
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and W stand for a path segment one block long in the indicated direction, θ can

be expressed as a sequence of such letters, say

θ = N N E S W S W W .

(Note that NS, SN, EW, and WE cannot appear, as the taut string would just be

rewound. In expressions below, however, we allow such combinations to appear

for notational convenience, although they are to be understood to cancel.)

After burying the treasure, the soldier randomly chooses one of

the four possible directions and walks one block in that direction (still

keeping the string taut). Let X denote this augmented path, so that X is one

of the paths {θN, θS, θE, θW}, with probability ^ each. We observe X, and are

to find the treasure.

Note first that, for given X = x, the only possible values of Θ

are {xN, xS, xE, xW}, and since the probability that X = x when each of these θ

obtains is j, we have the likelihood function

»
X
(Θ) = J

for each of the four possible Θ.

Stone uses this example to indicate a problem with use of the

"noninformative" prior
 π
(θ)

 s
 1 for all possible paths Θ, since an easy

calculation then shows that the posterior probability of each of the four

possible Θ. given x, is j. This supposedly conflicts with the intuition that,

given Θ, X is three times as likely to extend the path as to backtrack (there

are 3 directions to extend the path and only one to backtrack), so that x

"most likely" arose from the one θ (among the four possibilities) for which x is

an extension. Fraser, in the discussions of Stone (1976) and Hill (1981),

indicates that this strikes him as a conclusive counterexample to the LP itself,

the "likeli

viewpoint.

the "likelihoods" of ̂ seeming absurd from a frequentist (conditional on Θ)

To us, this example again serves to indicate that the likelihood

function can really be utilized only through Bayesian analysis. For instance,

forget for a moment the amusing structure of Stone's example, and just consider
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the statist ical problem involving θ and X. Suppose θ was in actuality generated

according to the (prior) distribution

1/ (2 3 n - l ) i f length of θ <_ n

π ( θ ) =

0 i f length of θ > n,

and that a path x of length < n is observed. Then a Bayesian analysis is

certainly correct, and the posterior probability of each of the possible θ

given x is indeed j. Returning to the example of the soldier, this makes clear

that i f θ is f e l t to have essentially a uniform prior in the neighborhood of x,

then the analysis decried by Stone and Fraser is correct.

The diff iculty here is that i t was never described "why" the

soldier stopped at a given intersection and buried the treasure, i . e . , how θ

was generated. We, in fact, would doubt that θ was locally uniform at any x.

Far more reasonable would be to assume that the soldier stops after a path of

length n, with some probability p n , and that al l paths of length n (there are

Nn = 4 3 of them when n _>!) have equal probability of occurring. Then, i f θ

is a path of length n,

w(β) = Pn/Nn.

For a given x of length m ̂  1, three of the possible θ are of length m+1 while

one is of length m-1. The posterior probabilities of these are

(
WW

 p

+«V/V>
(for the θ of length m+1) and

(for the θ of length m-1). I f p + 1 = Pm. i> then these probabilities are y^-

and j , respectively, indicating that i t certainly is sensible to presume that

the treasure is buried at that Θ for which x is an extension of the path.

(This analysis is yery similar to that of Dickey in the discussion of Stone

(1976) and to the analysis in Hi l l (1981) using a f i n i t e l y additive prior on n).
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The above considerations can be reinforced by considering a second

model proposed by Fraser in the discussion of Hi l l (1981). Fraser's model is

that the observation X is generated from θ according to the following scheme,

where xQ denotes a given particular path and 0 the origin:

W = i and f e ( 0 ) = 1 when θ € {xoN>xoE'xos'xoW}

f
θ
(0) = 1 when θ = x

Q
,

f (θ) = ̂  and f
Q
(0) = | for the remaining θ.

(The soldier trails an elastic string, and after burying the treasure at the

end of θ / x
Q
 he passes out and has a 75% chance of being snapped back to 0; the

end of x
Q
, however, is very slippery, so if the soldier buries the treasure

there and passes out he will be snapped back to 0 for sure. There also happens

to be a good Samaritan who walks the streets within one block of a shelter at

x
Q
, and if the soldier passes out at x

Q
N, X Q S , X

Q
W , or x~E and doesn't get

snapped back to 0, the good Samaritan will take him back to x
Q
.) Suppose

now that the observation from this model just happens to be x
Q
, so that the

likelihood function for Θ is the same as that obtained from Stone's model for

the observation x
Q
. The LP says that the conclusions in each case should be

the same, and we concur. Since Θ is still the path generated by the drunken

soldier, the prior defined by π(θ) = P
n
/N

n
 is still appropriate, and the

resulting Bayesian analysis sensible. (Alternatively, if θ had been generated

in such a way that the prior was felt to be locally uniform near x
Q
 - note

that any proper prior could only be locally uniform near some of the possible

observations - the Bayesian analysis with π(θ) = K would be appropriate.)

This Bayesian reasoning is in conflict with frequentist reasoning,

which states in the situation of Stone that, conditional on Θ, X is three

times as likely to extend the path as to backtrack, while in the situation of

Fraser there is no reason to think this. Such reasoning seems to be the basis

of the claim by Fraser (in the discussion of Hill (1981)) that the situation

provides a counterexample to the LP. To us it instead provides yet another
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counterexample to frequentist reasoning. If there is doubt as to this,

imagine that θ really was generated according to one of the priors considered

here (and a compelling case can be made that the drunken soldier actually does

generate θ according to π(θ) = P
n
/N

n
), in which case there seems little doubt

that the two models give the same answer. (See also Berger (1984a).)

This example again shows the possible error in attempting to base

an analysis solely on £ (θ), and shows how the Bayesian perspective resolves
x

the d i f f i c u l t i e s . One interesting feature of this example is that the natural

noninformative prior density is constant, and results in the ill-advised

π(θ|x) = -ξ, for the four possible θ. The diff iculty with the noninformative

prior approach here is that the parameter space can be viewed as the free group

on two generators and, as shown by Peisakoff (1950), this group is too large

for group-based statist ical analyses to work. (Peisakoff discusses the

problem from the viewpoint of invariance theory, but invariance theory has a

very close relationship with noniformative prior Bayesian theory - c.f. Berger

(1980).) Bondar and Milnes (1981) provide extensive discussion concerning when

such groups are "too large."

EXAMPLE 36. Stein (1962) constructed the following example to show the

diff iculty in casually applying the LP. An unknown quantity θ > 0 can be

2 2
measured by X ^7j(θ,σ ) (σ known) or by Y having density

2
(5.3.3) f(y|θ) = cy"

1
 exp{- ̂  (1 - ̂ )

2
}I

( Q b θ )
( y ) ,

lo
iooo

where c is the appropriate normalizing constant, b is enormous (say, 10 ),

and d is large (say, 50). The likelihood functions i (θ) and a (θ) for the
x y

respective experiments would be (ignoring multiplicative constants and

recalling that θ > 0)

*
χ
(θ) = exp {- \ ( Θ - X )

2
} I

( 0 J O O )
( Θ ) ,

2

\
 ( 0 J O O )

2σ
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Suppose now that the observations are such that x = y = σd. Then

the only difference between lie) and i (θ) is the difference between the
x y

factors I
/ n N

(θ) and 1/
 /k
 J θ ) , which can be shown to be negligible because

(0,°°; \y/o><*>)

b is so huge. Thus the LP says that the given observations, x and y, provide

(essentially) the same information about θ. We agree with this entirely.

Next, Stein observes that the usual, say 95%, frequentist or

objective conditional confidence interval for θ when x is observed is

(5.3.4) (x-(1.96)σ, x+(1.96)σ)

(note that x/σ = d = 50, so the restriction to θ > 0 is essentially irrelevant),

and hence that application of the LP implies that the interval

(5.3.5) (y-(1.96)[y/dj, y+(1.96)[y/d])

should be used i f y is observed. Again we agree, providing the interval in

(5.3.4) is inappropriate.

Considering now the interval in (5.3.5) as a frequentist interval

(to be used for al l y ) , a calculation shows (see Berger (1980)) that

(5.3.6) PΩ(Y - UML < θ < Y + HψL) < 10-100.

This, to a frequentist, casts extreme doubt on the premise that the interval

in (5.3.5) contains θ, and seems to indicate a failure of the LP.

To a Bayesian, there is no real problem with this example. The

use of (5.3.5) was predicated on the validity of (5.3.4), which in turn follows

only if the prior is approximately locally uniform within several standard

deviations σ of the actual observation x (and is well behaved outside this

region). In reality, this will never be the case for all x and σ; any proper

prior will give substantially different results as x and particularly σ vary.

Indeed, note that it was assumed that x = y = σd in the above conditional

analysis, and since it can be shown that Y is almost certain to be enormous

(on the order of b in size), it follows that we must imagine that x and σ are

also enormous. The use of (5.3.4), when x and σ are enormous, will rarely be

conditionally sound. It is this use of (5.3.4), not the use of the LP, which

is in error. And if a very small y just happens to occur, then and only then
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is use of (5.3.4), and hence (5.3.5), indicated.

Two observations concerning a Bayesian analysis of this problem are

in order. The first is that clever Bayesian reasoning is not required to show

the inadequacy of the interval in (5.3.5) for all but very small y. Indeed,

for virtually any prior distribution, the interval in (5.3.5) will have

posterior probability near zero. The second observation is that a standard

noninformative prior Bayesian analysis does work well here. For the density

in (5.3.3), θ can easily be seen to be a scale parameter, and again the

standard noninformative prior density would be π(θ) = θ . A Bayesian analysis

with this improper prior gives wery sensible answers and shows the interval in

(5.3.5) to be seriously inadequate for all but yery small y.

It is worthwhile to summarize the three main points that are

illustrated in the above examples.

1. Intuitive utilization of likelihood functions can be misleading. In

Examples 34 and 35, for instance, the usual interpretation of a likelihood

function as a measure of the comparative support of the data for the various θ,

while formally correct, can lead to an erroneous conclusion if prior information

is not considered.

Example 36 also demonstrates that intuitive approaches which work

well in a certain situation should not be carelessly transferred to different

situations with a similar likelihood function. It is true that, when prior

information is vague in the normal mean situation, the "confidence" interval

(5.3.7) (x-(1.96)σ, x+(1.96)σ)

is a reasonable conditional procedure. Naively transferring this to the Y

situation fails, however, because (5.3.7) is reasonable only when σ is small

enough for the prior information to indeed be vague, and the Y problem involves

observations which will usually correspond to huge σ. This "error" is noted

and extensively discussed in Basu (1975).

2. While not directly related to our central thesis, these examples indicate

the care needed in the use of improper "noninformative" priors. When prior
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opinions are indeed reflected by a locally noninformative prior (in the region

of© for which the likelihood function is significant), the use of noninforma-

tive priors is reasonable as an approximation. (See also Box and Tiao (1973),

Dickey (1976), and Berger (1984e).) It appears, however, especially from

Example 35, that automatic use of noninformative priors can lead one astray.

This is not to say that use of noninformative priors is to be avoided; indeed

we feel that they are invaluable in obtaining relatively simple, good, and

"objective" statistical procedures.

3. These examples can be turned around and used as indictments of frequency

reasoning. Frequency reasoning in each example would correspond (at best) to

Bayesian analysis with respect to a certain, very special, prior. Quite

different answers were seen to obtain if other prior beliefs were held. This,

of course, is another general justification for the Bayesian position: a "good"

frequentist procedure is usually a Bayes procedure with respect to some prior,

and if the corresponding prior does not seem reasonable, use of the procedure

is suspect.

5.4 ROBUST BAYESIAN ANALYSIS

We seem to have been inexolorably led to Bayesian analysis. Our

interpretation of the situation at this point is that we can best interpret

the information from the data, namely ί,
v
(θ), as a probability density on ©

x

w.r.t. some prior measure, π, reflecting our prior beliefs (or lack thereof)

concerning Θ. Thus one need only elicit his prior distribution, π
Q
, and

perform a Bayesian analysis.

Unfortunately, elicitation of π
Q
 is not easy, and indeed cannot be

done with complete accuracy in a finite amount of time. (We are thinking of

π
Q
 as the prior which would be the result of infinitely long reflection on

the problem.) It is not clear that writing down a quick guess at π
Q
 and

performing a Bayesian analysis with this guess is better than other non-

Bayesian methods of analysis. The fear is that the guess for π
Q
 might contain

features which would be deemed to be in error upon further reflection, and that



IMPLEMENTATION OF THE LIKELIHOOD PRINCIPLE 137

these features might have such an overwhelmingly detrimental effect on the

analysis that a classical analysis which ignores prior information might be

preferable.

The obvious method of alleviating such fears is to do robust

Bayesian analysis (see Berger 1984e, 1985, and 1987 for general surveys and

references), wherein one considers, instead of a single guess for τr
Ω
, a class r

of plausible prior distributions felt certain to contain π
Q
. From r (and the

likelihood function) one obtains a class of possible posterior distributions

to work with. (Note that, in this robust Bayesian sense, Ev(E,x) really is a

set of "evidences".) If the conclusion or action to be taken is essentially

the same for all such posteriors, then the problem is solved. Indeed, in a

sense this is the ovuίy situation in which there can be said to be an

unequivocal answer to a problem. (This holds true also when r is a class of

priors of various individuals who must come to a joint conclusion.)

It may happen, however, that the conclusion or action to be taken

is quite different for various posteriors in the class. When this is the

case there are four options: (i) Attempt further prior elicitation (resulting

in a narrowing of r); (ii) Obtain more data; (iii) Conclude that there is no

answer; and (iv) Choose among the possible answers according to some criteria

not involving further prior elicitation. Solutions (i) and (ii) are certainly

to be attempted, if possible, but limited time or resources may preclude such

solutions (an example of Good's Type II rationality). Note that solution

(i) may be somewhat simpler than it seems at first sight, since the observed

data may effectively rule out a large portion of r, meaning that further prior

elicitation can be concentrated on specific aspects of the problem. Solution

(iii) is certainly reasonable, and is in some sense the only truly honest

conclusion if (i) or (ii) cannot be pursued. But in many situations it is

necessary to proceed anyway and obtain an "intelligent" guess at the answer.
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This brings us to solution (iv), i.e., the use of alternate

criteria. There are many possibilities here, with the following five being

the most important:

1. Put a prior distribution on r itself, and carry out a formal Bayesian

analysis. (Note that this would be simply a formal prior distribution of

some sort, since the prior elicitation process has supposedly ceased.)

2. Use minimax type criteria on posterior measures (e.g., posterior expected

losses) for π e r.

3. Use frequentist measures to select a "good" procedure compatible with

π G Γ.

4. Use some measure of "information" to select a prior in r, such as a

"maximum entropy" prior (cf. Jaynes (1982)) or a "reference" prior

(cf. Bernardo (1979)).

5. Use Type II maximum likelihood methods (cf. Good (1965)), essentially

choosing the prior π G Γ which maximizes the marginal or predictive

density m(x|π) = E
π
[f

0
(x)] for the given data x (such a prior being the

"most plausible" prior in r in light of the data). This is a standard

adhoc Bayesian and empirical Bayesian technique.

Discussion and other references for these methods can be found in Berger

(1984e, 1985) and Berger and Berliner (1986). Of interest here is that two of

these methods, namely methods 3 and 4, can violate the LP. (Method 4 can

violate the LP because the selected prior will typically depend on all of E,

not just the observed likelihood function.) We will not enter into a discus-

sion of the relative merits of the five methods, but do note that there seem to

be statistical problems that are most amenable to solution by each of the meth-

ods. For instance, there are many high dimensional and nonparametric problems

where it is hard to find any reasonable prior distribution, much less do a robust

Bayesian analysis, and yet relatively simple frequentist procedures exist which

can be meaningful to a conditionalist in the sense of Example 16 in Section

4.1.3. Consider the following example, which we learned from Brad Efron.
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EXAMPLE 37. The experiment, E, consists of observing X,,...
f
X

1 5
, which are

i.i.d. observations from a completely unknown continuous density f on R
Ί
.

(Here we identify θ with the unknown f, so Θ is the set of all continuous

densities on R .) Of interest is ξ, the median of the unknown density. A

simple binomial calculation shows that a 96.5% frequentist confidence interval

for ξ is given by [X(
4
\.

 x
(π)l>

 w h e r e t h e X
(

Ί
 )
 a r e t h e o r d e r

 statistics.

Due to the extreme difficulty of constructing reasonable prior distributions

on β, a Bayesian might well choose to simply use [X/^v , X /
1 1
% ] , with the

interpretation provided by Example 16.

Thus, because of difficulties in performing a robust Bayesian

analysis, a conditionalist might formally violate the LP. Of course, this

could be viewed as merely a temporary condition due to the lack of development

of Bayesian theory; certainly greater effort has been expended by statisticians

on development of non-Bayesian theory. Also, the need to compromise should not

be viewed as providing legitimacy to the compromises, but should instead be

viewed as a forced stab in the dark. Thus Savage, in Savage et. al. (1962),

states

"I used to be bowed by critics who said,

with apparent technical justification, that

certain popular nonparametric techniques

apply in situations where it seems meaning-

less even to talk of a likelihood function,

but I have learned to expect that each of these

techniques either has a Bayesian validation or

will be found to have only illusory value as a

method of inference."

A second reason for possible violation of the LP, as discussed in

Section 4.1.3, is that many users of statistics will be unable to perform

careful robust Bayesian analyses. For these users we must provide simple

Bayesian procedures with "built in" robustness. In part, this robustness
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should be measured in a frequency sense, since the procedures will be used

repeatedly (i.e., for different X). Of course, good conditional performance

of these procedures should still be of paramount concern. Note, in particular,

that the noninformative prior or "objective" Bayesian procedures are usually

very good procedures from this perspective of use by nonspecialists, and may

formally violate the LP through dependence of the noninformative prior on E

(and not just the observed £
v
(θ)). In a similar vein, Hajek (1967, 1971) argues
x

that asymptotic theory (which can provide useful simple procedures for

nonspecialists in complicated situations) can sometimes be more difficult if

one is restricted to basing it only on the given likelihood function, and not

on E as a whole.

As a final comment concerning Bayesian analysis, it should be

mentioned that choice of a prior (or class r) will often have to wait until

after the data is at hand and ί,
χ
(θ) is available. Thus in Barnard, Jenkins,

and Winsten (1962) it is stated (where they refer to "weights
11
 instead of a

"prior")

"The advantage of looking first at the

likelihood function and then considering

the weights, lies in the fact that the

likelihood function will often be so near

zero over much of the range of θ that the

weights in these regions can be quickly

dismissed from consideration."

This "choosing the prior after seeing the data" strikes many as unsavory, but

it is absolutely essential when Θ is high dimensional or otherwise complicated.

It is less disturbing when viewed from the robust Bayesian viewpoint, where a

conclusion is deemed clearcut only when any reasonable prior passed over i (θ)

gives essentially the same answer. See Berger(1984e) for further discussion.
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5.5 CONCLUSIONS

At first sight, we seem to have come to the conclusion that the LP

is not always applicable, in that the only satisfactory method of analysis

based on the LP seems to be robust Bayesian analysis, which because of

technical difficulties may sometimes require use of techniques that formally

violate the LP. We emphatically believe, however, that the LP is always valid,

in the sense that the experimental evidence concerning θ is contained in ι
x
(θ).

Because of limited time and resources, however, interpreting or making use of

this evidence may involve use of measures violating the LP. Of course, whenever

such a measure is used one should make sure that it has not led to a

recognizably erroneous conditional conclusion.

Until now (in this section) we have assumed the existence of i (θ).

As mentioned in Sections 3.4 and 3.6.1, this assumption is (in a sense) always

valid, since the sample space is always finite in reality and then λ(θ)
x

always exists, even when the model is uncertain or unknown. Practical

considerations often call for the use of continuous approximations, however,

for which the likelihood function may be ill-defined or not exist. (Of course,

as mentioned in Section 3.6.1, even in many continuous nonparametric situations

the likelihood function can be considered to exist.) In any case, the RLP

always applies, and a good case can also be made that robust Bayesian analysis

is the only reasonable method of analysis consistent with it. More frequent

compromises may, however, be needed in these more difficult situations.

Even for those who find themselves unable to accept Bayesian

methods, the LP should not be ignored and the conditional viewpoint should be

kept in mind. If a classical procedure is being used, a quick check to make

sure that it is saying something which is at least sensible conditionally seems

only prudent. Statistics looks very bad when it recommends a conclusion that

clearly contradicts common sense.






