
CHAPTER 2. CONDITIONING

The most commonly used measures of accuracy of evidence in

statistics are pre-experimental. A particular procedure is decided upon for

use, and the accuracy of the evidence from an experiment is identified with the

long run behavior of the procedure, were the experiment repeatedly performed.

This long run behavior is evaluated by averaging the performance of the proce-

dure over the sample space Z. In contrast, the LP states that post-experimental

reasoning should be used, wherein only the actual observation x (and not the

other observations i n % that could have occured) is relevant. There are a

variety of intermediate positions which call for partial conditioning on x and

partial long run frequency interpretations. Partly for historical purposes,

and partly to indicate that the case for at least some sort of conditioning is

compelling, we discuss in this chapter various conditioning viewpoints.

2.1 SIMPLE EXAMPLES

The following simple examples reveal the necessity of at least sometimes

thinking conditionally, and wi l l be important later.

EXAMPLE 1. Suppose X, and X2 are independent and

PΘ(XΊ = θ-1) = PQ(X. = θ+1) = ±, i = 1,2.

Here - «> < θ < °° is an unknown parameter to be estimated from X, and X
2
 It is

easy to see that a 75% confidence set of smallest size for θ is

c(x
v
x

2
) =

the point yίXj+Xg) if X
1
 f

the point X^l if X
1
 =

5
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Thus, if repeatedly used in this problem, C(X,,X
2
) would contain θ with

probability .75.

Notice, however, that when x, f x« it is absolutely certain that

θ = -ίίXn+Xp), while when x^ = x~ it is equally uncertain whether θ = x-j-1 or

θ = x,+l (assuming no prior knowledge about θ). Thus, from a post-experimental

viewpoint, one would say that C(x
1 9
x

2
) contains θ with "confidence" 100% when

x, f x
2
, but only with "confidence" 50% when x, = x

2
 Common sense certainly

supports the post-experimental view here. It is technically correct to call

C U pXo) a 75% confidence set, but, if after seeing the data we know whether it

is really a 100% or 50% set, reporting 75% seems rather silly.

The above example focuses the issue somewhat: does it make sense

to report a pre-experimental measure when it is known to be misleading after

seeing the data? The next example also seems intuitively clear, yet is the key

to all that follows.

EXAMPLE 2. Suppose a substance to be analyzed can be sent either to a

laboratory in New York or a laboratory in California. The two labs seem

equally good, so a fair coin is flipped to choose between them, with "heads"

denoting that the lab in New York will be chosen. The coin is flipped and

comes up tails, so the California lab is used. After awhile, the experimental

results come back and a conclusion must be reached. Should this conclusion

take into account the fact that the coin could have been heads, and hence that

the experiment in New York might have been performed instead?

This, of course, is a variant of the famous Cox example (Cox (1958)-

see also Cornfield (1969)), which concerns being given (at random) either an

accurate or an inaccurate measuring instrument (and knowing which was given).

Should the conclusion reached by experimentation depend only on the instrument

actually used, or should it take into account that the other instrument might

have been obtained?

In symbolic form, we can phrase this example as a "mixed experiment"
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in which with probabilities -̂  (independent of θ) either experiment E, or

experiment Ep (both pertaining to θ) will be performed. Should the analysis

depend only on the experiment actually performed, or should the possibility of

having done the other experiment be taken into account?

The obvious intuitive answer to the questions in the above example

is that only the experiment actually performed should matter. But this is

counter to pre-experimental frequentist reasoning, which says that one should

average over all possible outcomes (here, including the coin flip). One could

argue that it is correct to condition on the coin flip, and then use the

frequentist measures for the experiment actually performed, but the LP dis-

allows this and is (surprisingly) derivable simply from conditioning on the

coin flip plus sufficiency (see Chapter 3).

EXAMPLE 3. For a testing example, suppose it is desired to test HQ: Θ = -1

versus H : θ = 1, based on X ̂  7?(θ,.25). The rejection region X >_ 0 gives a

test with error probabilities (type I and type II) of .0228. If x = 0 is

observed, it is then permissible to state that H
Q
 is rejected, and that the

error probability is
 α
 = .0228. Common sense, however, indicates that the

data x = 0 fails to discriminate at all between H
n
 and H . Any sensible

u a
person would be equally uncertain as to the truth of H

n
 or H (based just on

u a

the data x = 0 ) . Suppose on the other hand, that x = 1 is observed. Then

(pre-experimentally) one can s t i l l only reject at α = .0228, but x = 1 is four

standard deviations from Θ = - 1 , so the evidence against HQ seems overwhelming.

Clearly, the actual intuitive evidence conveyed by x can be quite

different from the pre-experimental evidence. This has led many frequentists

to prefer the use of P-values to fixed error probabilities. The P-value

(against HQ) would here be P _^(X _> x ) , a measure of evidence against HQ with

much more dependence on the actual observation, x, than mere rejection at

α = .0228. (Even P-values can be crit icized from a conditional viewpoint,

however - see Section 4.4.)
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Note that there is nothing logically wrong with reporting error

probabilities in Example 3; it just seems to be an inadequate reflection of the

evidence conveyed by the data to report α = .0228 for both x = 0 and x = 1.

Pratt (1977) (perhaps somewhat tongue-in-cheek) thus coins

THE PRINCIPLE OF ADEQUACY. A concept of statistical evidence is (very)

inadequate if it does not distinguish evidence of (very) different strengths.

EXAMPLE 4a. Suppose X is 1, 2, or 3 and θ is 1 or 2, with P
θ
(x) given in the

following table:

po

P l

1

.009

.001

X

2

.001

.989

3

.99

.01

The test, which accepts P
Q
 when x = 3 and accepts P, otherwise, is a most

powerful test with both error probabilities equal to .01. Hence, it would be

valid to make the frequentist statement, upon observing x = 1, "My test has

rejected P
Q
 and the error probability is .01." This seems very misleading,

since the likelihood ratio is actually 9 to 1 in favor of P
Q
, which is being

rejected.

EXAMPLE 4b. One could object in Example 4a, that the .01 level test is

inappropriate, and that one should use the .001 level test, which rejects only

when x = 2. Consider, however, the following slightly changed version:

po

P l

1

.005

.0051

X

2

.005

.9849

3

.99

.01

Again the test which rejects P
Q
 when x = 1 or 2 and accepts otherwise has error

probabilities equal to .01, and now it indeed seems sensible to take the

indicated actions (if we suppose an action must be taken). It still seems
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unreasonable, however, to report an error probability of .01 upon rejecting PQ

when x = 1, since the data provides yery l i t t l e evidence in favor of P-,.

EXAMPLE 5. For a decision theoretic example, consider the interesting Stein

phenomenon, concerned with estimation of a p-variate normal mean (p >_ 3) based

on X ^7? (θ,I) and under sum of squares error loss. The usual pre-experimental

measure of the performance of an estimator 6 is the risk function (or expected

loss)

R(θ δ) = E0 j ( θ Γ ό . ( X ) ) 2 .

The classical estimator here is 6 (x) = x, but James and Stein (1960) showed

that

δ
J-S ( x ) = ( 1 _ B z | )f

has R(θ,ό " ) < R(θ,ό ) = p for a l l θ. One can thus report 6 " as always be-

ing better than ό from a pre-experimental viewpoint. However, i f p = 3 and

x = (0,.01,.01) is observed, then

6J"S(x) = (0,-49.99,-49.99),

which is an absurd estimate of Θ. Hence δ " can be terrible for certain x.

Of course the positive part version of 6 " ,

6J-s+(x, = ( i . fi=|,+

Xi

Σ X τ
corrects this glaring problem, but the point is that a procedure which looks

great pre-experimentally could be terrible for particular x, and i t may not

always be so obvious when this is the case.

Confidence sets for θ can also be developed (see Casella and

Hwang (1982)) which have larger probabilities of coverage than the classical

confidence ell ipsoids, are never larger in size, and for small |x|

consist of the single point {0}. Indeed, these sets are of the simple form
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{Θ: !θ-δ
J
~

S +
(x)|

2
 < χp(l-α)} if |x| > ε

C(x) =

{0} if |x| < ε,

2
where x (1-α) is the 1-αt/z percentile of the chi-square distribution with p

degrees of freedom, and ε is suitably small. Although this confidence proce-

dure looks great pre-experimentally, one would look rather foolish to conclude

when p = 3 and x = (0,.01,.01) that θ is the point {0} with confidence 95%.

The above examples, though simple, indicate most of the intuit ive

reasons for conditioning. There are a wide variety of other such examples.

The Uniform (θ-α,θ+β) distribution (α,3 known) provides a host of examples

where conditional reasoning differs considerably from pre-experimental reason-

ing (c.f . Welch (1939) and Pratt (1961)). The Stein 2-stage procedure for
2

obtaining a confidence interval of fixed width for the mean of a ??(θ,σ ) dis-
2

tribution is another example. A preliminary sample allows estimation of σ ,

from which it is possible to determine the sample size needed for a second

sample in order to guarantee an overall probability of coverage for a fixed

width interval. But what if the second sample indicates that the preliminary
2

estimate of σ was woefully low? Then one would really have much less real

confidence in the proposed interval (c.f. Lindley (1958) and Savage et. al.

(1962)). Another example is regression on random covariates. It is common

practice to perform the analysis conditionally on the observed values of the

covariates, rather than giving confidence statements, etc., valid in an

average sense over all covariates that could have been observed. Robinson

(1975) also gives extremely compelling (though artificial) examples of the

need to condition. Piccinato (1981) gives some interesting decision-theoretic

examples.

A final important example is that of robust estimation. A con-

vincing case can be made that inference statements should be made conditionally

on the residuals; if the data looks completely like normal data, use normal

theory. Barnard (1981) says
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"We should recognise that 'robustness
1
 of

inference is a conditional property - some

inferences from some samples are robust.

But other inferences, or the same inferences

from other samples, may depend strongly on

distributional assumptions."

Dempster (1975) contains wery convincing discussion and a host of interesting

examples concerning this issue. Related to conditional robustness is large

sample inference, which should often be done conditionally on shape features

of the likelihood function. Thus, in using asymptotic normal theory for the

maximum likelihood estimator, θ, one should generally use I(θ)~ , the inverse

of observed Fisher information, as the covariance matrix, rather than I(θ)~ ,

the inverse of expected Fisher information. For extensive discussion of

these and related issues see Jeffreys (1961), Pratt (1965), Andersen (1970),

Efron and Hinkley (1978), Barndorff-Nielsen (1980), Cox (1980), and Hinkley

(1980a,1982).

2.2 RELEVANT SUBSETS

Fisher (c.f. Fisher (1956a)) long advocated conditioning on what he

called relevant subsets of X (also called "recognizable subsets", "reference

sets", or "conditional experimental frames of reference"). There is a con-

siderable l iterature on the subject, which tends to be more formal than the

intuit ive type of reasoning presented in the examples of Section 2.1. The

basic idea is to find subsets of X (often determined by statist ics) which,

when conditioned upon, change the pre-experimental measure. In Example 1, for

instance,

X = {x: x̂  = x^} U {x: x1 t x 2 h

and the coverage probabilities of C U ^ ^ ) conditioned on observing X in the

"relevant" subsets {x: x
Ί
 = x

2
) or {x: x

]
 f x

2
> are 1 and .5, respectively.

In Example 2, the two outcomes of the coin flip determine two relevant subsets.

In Examples 3, 4, and 5 it is not clear what subsets should be considered
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relevant, but many reasonable choices give conditional results quite different

from the pre-experimental results.

Formal theories of relevant subsets (c.f. Buehler (1959)) proceed

in a fashion analogous to the following. Suppose C(x) is a confidence procedure

with confidence coefficient 1-α for all θ, i.e.,

(2.2.1) P
Ω
(C(X) contains θ) = 1-α for all θ.

Then B is called a relevant subset of % if, for some ε > 0, either

(2.2.2) P
Q
(C(X) contains θ|X € B) <_ (1-α) - ε for all θ

or

( 2 . 2 . 3 ) P Ω ( C ( X ) c o n t a i n s θ|X € B) > ( 1 - α ) + ε f o r a l l θ .
Ό

When ( 2 . 2 . 2 ) or ( 2 . 2 . 3 ) holds and x G B is observed, i t is questionable whether

( 2 . 2 . 1 ) should be the measure of evidence reported. This formed the basis of

Fisher's objection (Fisher (1956b)) to the Aspin-Welch (1949) solution to the

Behrens-Fisher problem (see also Yates (1964) and C o r n f i e l d ( 1 9 6 9 ) ) . Another

example fol lows. (For more examples, see Cornfield ( 1 9 6 9 ) , Olshen ( 1 9 7 7 ) , and

Fraser ( 1 9 7 7 ) . )

EXAMPLE 6. (Brown ( 1 9 6 7 ) , with e a r l i e r r e l a t e d examples by Stein (1961) and

p
Buehler and Fedderson ( 1 9 6 3 ) ) . I f X-,,...,X n is a sample from a 7?(θ,σ )

d i s t r i b u t i o n , both Θ and σ unknown, the usual 100(l-α)% confidence i n t e r v a l f o r

θ is

C(x.s) = ( x - t α / 2 ^ * + t α / 2 ^

where x and s are the sample mean and standard deviation, respectively, and

t i2 is the appropriate c r i t i c a l value for the t-distribution with n-1 degrees

of freedom. For n = 2 and α = .5 we thus have

P 2(C(X,S) contains Θ) = .5 for al l θ,σ2,
θ 9σ

but Brown (1967) showed that

P
 2

(C(X,S) contains θ |X|/S <_ 1 + /2) >_ f for all θ,σ
2
,
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and hence the set

B = {(x
r
...,x

n
): |x|/s <. 1 + /2}

forms a relevant subset.

There is a considerable literature concerning the establishment of

conditions under which relevant subsets do or do not exist (c.f. Buehler (1959),

Wallace (1959), Stein (1961), Pierce (1973), Bondar (1977), Robinson (1976,

1979a, 1979b), and Pedersen (1978)). Though interesting, a study of these

issues would take us too far afield. (See Section 3.7.3 for some related mater-

ial, however.) Also, much of the theory is still based on frequentist (though

partly conditional) measures, and hence violates the LP. Of course, many

researchers in the field study the issue solely to point out inadequacies in

the frequentist viewpoint, and not to recommend specific conditional frequentist

measures. Indeed, it is fairly clear that the existence of relevant subsets,

such as in Example 6, is not necessarily a problem, since when viewed completely

conditionally (say from a Bayesian viewpoint conditioned on the data (x,s)), the

interval C(x,s) is very reasonable. Thus the existence of relevant subsets

mainly points to a need to think carefully about conditioning.

2.3 ANCILLARITY

The most common type of partial conditioning advocated in

statistics is conditioning on an ancillary statistic. An ancillary statistic,

as introduced by Fisher (see Fisher (1956a) for discussion and earlier refer-

ences), is a statistic whose distribution is independent of θ. (For a

definition when nuisance parameters are present, see Section 3.5.5.) Thus, in

Example 1, S = |Xi-Xj is an ancillary statistic which, when conditioned upon,

gives "conditional confidence" for C(X) of 100% or 50% as s is 1 or 0,

respectively. And, in Example 2, the outcome of the coin flip is an ancillary

statistic. The following is a more interesting example.

EXAMPLE 7. Suppose X
1
,...,X

n
 are i.i.d. Uniform (θ - p θ + ^ ) . Then

T = (U,V) = (min X., max X.) is a sufficient statistic, and S = V-U is an
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ancillary statistic (having a distribution clearly independent of θ). The

conditional distribution of T given S = s is uniform on the set

X = {(u,v): v-u = s and θ - - 2 < u < θ + 2"-s}.

Inference with respect to this conditional distribution is straightforward.

For instance, a 100(l-α)% (conditional) confidence interval for θ is

C(U,V) = 1(U+V) ± l ( l - α ) O - s ) ,

one of the solutions proposed by Welch (1939). This conditional interval is

considerably more appealing than various "optimal" nonconditional intervals,

as discussed in Pratt (1961).

There are a number of diff icult ies in the definition and use of

ancillary statistics (c.f. Basu (1964) and Cox (1971)). Nevertheless, condi-

tioning on ancillaries goes a long way towards providing better conditional

procedures. A few references, from which others can be obtained, are Fisher

(1956a), Anderson (1973), Barnard (1974), Cox and Hinkley (1974), Cox (1975),

Dawid (1975, 1981), Efron and Hinkley (1978), Barndorff-Nielsen (1978, 1980),

Hinkley (1978, 1980), Seidenfeld (1979), Grambsch (1980), Amari (1982),

Barnett (1982), and Buehler (1982).

2.4 CONDITIONAL FREQUENTIST PROCEDURES

An ambitious attempt to formalize conditioning within a frequentist

framework was undertaken by Kiefer (1977). (See also Kiefer (1975, 1976),

Brown (1977), Brownie and Kiefer (1977), and Berger (1984c, 1984d).) The

formalization was in two distinct directions, which Kiefer called conditional

confidence and estimated confidence.

2.4.1 Conditional Confidence

The basic idea of conditional confidence is to define a partition

W $ : s €<£} of x (the sets in the partition are the relevant subsets of %)>

and then associate with each set in the partition the appropriate conditional

frequency measure for the procedure considered. In Example 1, the partition

would be into the sets X^ = {x: x̂  = x«} and X^ = {x: x-j t x2) I n
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Example 2, the part i t ion would be into the sets where heads and ta i l s are

observed, respectively.

When dealing with a confidence procedure {C(X)}, the conditional

frequency measure that would be reported, i f x € X were observed, is

r (θ) = P_(C(X) contains θ|X <E z).

EXAMPLE 7 (continued). Let the partition be {z
$
: 0 <_ s <_ 1} (see Example 7).

Then, for the procedure {C(U,V)},

r
s
(θ) = P

Θ
(C(U,V) contains θ|(U,V) € £ $) Ξ 1-α.

In Examples 1, 2, and 7 it is relatively clear what to condition

on. In Examples 3, 4, 5, and 6, however, there is no clear choice of a

partition. In a situation such as Example 3, the following choice is attrac-

tive.

EXAMPLE 3 (continued). Let z
$
 = {-s,s} (i.e., the two points s and -s) for

s > 0. (We will ignore x = 0, since it has zero probability of occurring.)

The "natural" measure of conditional confidence in a testing situation is the

conditional error probability function, determined here by

(2.4.1) r
s
(l) = r

s
(-l) = P_-,(Rejecting|z

s
)

P_
]
(X=s)

=
 P_

1
(X=s)+P_

1
(X=-s)

One would thus -report the test outcome along with the conditional error

probability (1+e l x ' ) ~ . This conditional error probability has the appealing

property of being close to 1/2 i f |x| is near zero, while being very small i f

|x| is large. Thus i t sat isf ies Pratt 's "Principle of Adequacy."

The reason (from a frequency viewpoint) for formally introducing

a p a r t i t i o n is to prevent such "abuses" as conditioning on "favorable11 relevant

subsets, but ignoring unfavorable ones and presenting the unconditional

measure when x is in an unfavorable relevant subset.
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2.4.2 Estimated Confidence

An alternative approach to conditioning, which can be justified

from a frequentist perspective (c.f. Kiefer (1977) or Berger (1984c)), is to

present a data dependent confidence function. If a confidence set procedure

C(x) is to be used, for instance, one could report l-α(x) as the "confidence"

in C(x) when x is observed. Providing

(2.4.2) EΠ-α(X)) < P
Ω
(C(X) contains θ) for all θ,

θ Θ

this "report" has the usual frequentist validity that, in repeated use, C(X)

will contain θ with at least the average of the reported confidences. Thus,

in Example 2, one could report l-α(x) = 1 or j as x, ^ x
2
 or x- = x

2
>

respectively. Estimated confidence (or, more generally, estimated risk) can

be very useful in a number of situations where conditional confidence fails

(see Kiefer (1977) or Berger (1984c)).

2.5 CRITICISMS OF PARTIAL CONDITIONING

The need to at least sometimes condition seems to be well

recognized, as the brief review in this chapter has indicated. The approaches

discussed in Sections 2.2, 2.3, and 2.4.1 consider only partial conditioning,

however; one still does a frequency analysis, but with the conditional distri-

bution of X on a subset. There are several major criticisms of such partial

conditioning. (The estimated confidence approach in Section 2.4.2 has a quite

different basis; criticism of it will be given at the end of this section.)

First, the choice of a relevant subset or an ancillary statistic

or a partition {z
$
: s e S) can be yery uncertain. Indeed, it seems fairly

clear that it is hard to argue philosophically that one should condition on a

certain set or partition, but not on a subset or subpartition. (After all, it

seems somewhat strange to observe x, note that it is in, say, % , and then for-

get about x and pretend only that χ
%
 is known to have obtained.) Researchers

working with ancillarity attempt to define "good" ancillary statistics to con-

dition upon, but, as mentioned earlier, there appear to be no completely

satisfactory definitions. Also, ancillary statistics do not exist in many
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situations where it seems important to condition, as the following simple

example shows.

EXAMPLE 8. Suppose Θ = [0, ]•), and

' θ with probability 1-θ

X =

0 with probability θ.

(An instrument measures θ exactly, but will erroneously give a zero reading

with probability equal to θ.) Consider the confidence procedure C(x) = {x}

(the point x). Here P
Q
(C(X) contains θ) = 1-θ. It is clear, however, that one

wants to condition on {x: x > 0}, since C(x) = {θ} for sure if x > 0. But

there is no ancillary statistic which provides such a conditioning.

In situations such as Examples 3, 4, 5, and 6, the selection of a

partition for a conditional confidence analysis seems quite arbitrary. Kiefer

(1977) simply says that the choice of a partition must ultimately be left to

the user, although he does give certain guidelines. The development of

intuition or theory for the choice of a partition seems very hard, however

(see also Kiefer (1976), Brown (1977), and Berger (1984c)).

Even more disturbing are examples, such as Example 4(b), where it

seems impossible to perform the indicated sensible test and report conditional

error probabilities reflecting the true uncertainty when x = 1 is observed.

(A three points cannot be partitioned into two nondegenerate sets, and on a

degenerate set the conditional error probability must be zero or one.) Any

theory which cannot handle such a simple example is certainly suspect.

The situation for estimated confidence theory is more ambiguous,

because it has not been very extensively studied. In particular, the choice

of a particular estimated confidence or risk is very difficult, in all but the

simplest situations. And, in situations such as Examples 3 and 4(b),

estimated confidence functions will have certain undesirable properties. In

Example 3, for instance, any estimated error probability, α(x), which is
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decreasing in |x| and satisfies the frequentist validity criterion (similar to

(2.4.2))

E
Ω
 α(X) > P

Ω
(Test is in error) for all θ,

must have α(0) > A (since P
τ
 (Test is in error) = j). It seems strange,

however, to report an error larger than j (which could, intuitively, be

obtained by simple guessing). For more extensive discussion of estimated

confidence, see Berger (1984c).

The final argument against partial conditioning is the already

alluded to fact that the most clearcut and "obvious" form of conditioning

(Example 2) implies (together with sufficiency) the LP, which states that

complete conditioning (down to x itself) is necessary. Since this would

eliminate the possible application of frequency measures, new measures of

evidence would clearly be called for.

It should be mentioned that certain other forms of statistical

inference are very conditional in nature, such as fiducial inference developed

by Fisher (see Hacking (1965), Plackett (1966), Wilkinson (1977), Pedersen

(1978), and Dawid and Stone (1982) for theory and criticisms), structural in-

ference developed by Fraser (c.f. Fraser (1968, 1972, 1979)), and pivotal in-

ference developed by Barnard (c.f. Barnard (1980, 1981) and Barnard and Sprott

(1983)). (Barnett (1982) gives a good introduction to all of these approaches.)

The similarities among these methods (and also "objective Bayesian" analysis and

frequentist "invariance" analysis) are considerable, but the motivations can be

quite different. These methods rarely result in unreasonable conclusions from

a conditional viewpoint, and hence do have many useful implications for

conditional analysis. Space precludes extensive discussion of these

approaches. (Some discussion of structural and pivotal analysis will be given

in Sections 3.6 and 3.7, in the course of answering a specific criticism of the

LP.) Suffice it to say that they are based on "intuitive" principles which can

be at odds with the LP (and Bayesian analysis), and hence leave us doubting

their ultimate truth.




