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A data-set consists of independent observations taken at the nodes of a

grid. An unknown boundary partitions the grid into two regions: All the obser-

vations coming from a particular region share a common distribution, but the

distributions are different for the two different regions. These two distributions

are entirely unknown, and the grid is of arbitrary dimension with rectangular

mesh. In this scenario, the boundary can be consistently estimated.

The boundary estimate is selected from an appropriate collection T of can-

didate boundaries which must be specified by the user. The candidate boundaries

must satisfy certain regularity assumptions, including a "richness" condition. In

practice, one may be faced with a T that is not sufficiently "rich". Is the es-

timator "robust" with respect to such misspecification of T? This question is

addressed via a.s. results comparing the asymptotic error of the estimator with

the smallest possible error in T.

Because the boundary estimator requires a search (through T) and calcu-

lation over the whole data grid, efficient computation is a practical necessity. An

algorithm is presented which reduces the computational burden by an order of

magnitude relative to the naive approach.

A graphical bootstrap procedure is proposed for studying the variability

of the boundary estimator. Simulations of this procedure indicate that it does

accurately reflect the true sampling behavior of the boundary estimator.

1. Introduction.

1.1. The Boundary Estimation Problem. We observe a collection of

independent rv's {X/}, indexed by nodes i of a finite d-dimensional grid /

within the d-dimensional unit cube Ud := [0, ί]d. The unknown boundary Θ

is a (d — l)-dimensional surface that partitions Ud into two regions, Θ̂  and Θ_.
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All observations Xf made at nodes i £ Θ are from distribution F, while all

observations Xf made at nodes i £ 0. are from distribution G. The distri-

butions F and G are entirely unknown; the only distributional assumption is

that F φ G. The objective is to estimate the unknown boundary Θ, using the

observed data {Xf : i £ /}.

The grid is generated by divisions along each coordinate axis in Ud Along

the jth axis (1 < j < d), there are rij divisions which are equally spaced

at l/nj,2/nj, ,nj/τij. Observations are made at the resulting grid nodes

i := (ii/ni,i2/ri2)' ',id/n>d) € %? where ij £ {1,2, ,nj}. The collection

of all nodes i is denoted by / , and the total number of observations is | / | :=

Πj=i nr I n a n y s e t ^ ^ %» ^ e number of observations (i.e., grid nodes) is

\A\ι := #{i β A}.

The notion of a boundary in lid is formulated in a set-theoretic way: the

unknown boundary Θ is identified with the corresponding partition (Θ,Θ.) of

Ud- The sample-based estimate of Θ will be selected from a finite collection

7} of candidate boundaries, with generic element Γ. Again, each candidate T

is identified with its corresponding partition (Γ,Γ) of lid- The total number

of candidates considered is |7/| := #{Γ £ 7}}.

J.2. The Boundary Estimator. Our tool for selecting an estimate Θj from

7/ is the empirical cumulative distribution function (ecdf). Let I{ } denote

the indicator function. For a candidate boundary T £ 7}, compute the ecdf's

and hjτ{x) •=

and consider the differences d^ := |ΛT(JΓ/) —Λy(JSΓ/)| for each i £ /. Now com-

bine these differences d^ using a "mean-dominant norm" £Ί/|(dfl9 dj2 ' " " > ^/|/|)

[see Carlstein (1988)], i.e., a function *SΊ/|( ) : B*V ^ E-+ satisfying the follow-

ing definition:

(D.a) [Symmetry] £|/|( ) is symmetric in its |/| arguments;

(D.b) [Homogeneity] S\I\(αduαd2,-'',θίd\I\) = αS|/|(di,d2, ,d|/|)

whenever α > 0;

(D.c) [Triangle Inequality] £|/|(di+di, d2+d'2, , d|/|+dj7|) < 5Ί/|(cίi, cί2,

(D.d) [Identity] 5 m ( l , 1, ., 1) = 1;
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(D.e) [Monotonicity] S\I\{d1,d2, ,d|j|) < S^d'^d1^- -,df^ when-

ever d{ < d\ Vz;

(D.f) [Mean Dominance] S\I\{d1,d2, ,rf|/|) > Σi<ί<|/| d*7MΊ

Finally, we standardize 5j/|(#) by a multiplicative factor to account for the

inherent instability in the ecdf. The boundary estimator Θj is defined as the

candidate boundary in 7/ which maximizes the criterion function Dχ{T) :=

(|Γ|//|/|)(|Γ|j/|/|) Sw(tfv<ίϊ2, ,tfw) over aU T G T7. Formally, θ/ :=

The intuitive motivation for this estimator is given by Carlstein and Kr-

ishnamoorthy (1992) [referred to as C&K from here on]. A literature review

comparing 0/ to other related methods is provided in C&K, as is an extensive

discussion of examples in the d = 1 and d = 2 cases (including the change-point

problem, the epidemic-change model, linear bisection of the plane, templates,

and Lipschitz boundaries).

1.3. Performance of the Boundary Estimator. In order to assess the

performance of Θ/, we must quantify the notion of "distance" between two

boundaries (say, T and Θ). Our "distance" measure is the pseudometric

d(T, Θ) := min{λ(Γo Θ), λ(Γo Θ)}, where o denotes set-theoretic symmetric

difference, i.e., (A o B) := (A Π Bc) U (Ac Π 5), and λ( ) is Lebesgue measure

over Ud

Consider the following set-theoretic regularity conditions on the bound-

aries:

REGULARITY CONDITION (R.I): [Non-trivial Partitions] For each T € 7}?
0 < λ(Γ) < 1 and 0 < |Γ|//|/| < 1. Also, 0 < λ(Θ) < 1.

REGULARITY CONDITION (R.2): [Richness of 7}] For each /, 3ϊ> e 7}

such that the sequence {Tj} satisfies: 5(Θ,Γ/) —• 0 as |/| —> oo.

REGULARITY CONDITION (R.3): [Cardinality of 7/] For each 7 > 0,

exp{-7 -1/|} — 0 as |/| — 00.

REGULARITY CONDITION (R.4): [Smoothness of Perimeter] Denote T\ :=

{Θ,Γ :T <Ξ T/} and Vi(A) := {C e C/ : C Π A φ φ and C Π Ac φ φ}, where

Ci is the collection of \I\ "rectangular" cells C induced by the grid partition

of Ud, and where A C %. We require supAG^r/ λ(P/(Λ)) —> 0 as |/| -^ 00.
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In C&K, these regularity conditions are seen to be intuitively natural

are explicitly checked for several examples. Moreover, R.1-R.4 are shown to

imply strong consistency of the boundary estimator Θj, i.e., #(Θ,Θj) —^ 0

as |/| —> oo.

1.4. Some Practical Considerations in Boundary Estimation.

Model-Robustness: Condition R.2 requires 7} to contain some candidate

boundary Γ/ that "gets close" to the true Θ. If no such "ideal" candidate were

available, we could not possibly hope to statistically select an estimator Θ/

from 7} in such a way that consistency holds. Yet, in practice, the collection

7/ may be misspecified by the user and may be incompatible with the true

unknown boundary Θ. Even though R.2 is violated, one still hopes that Θj

will contain some useful information about Θ. The performance of the esti-

mator Θj when faced with misspeciήcation ofTj is called "model-robustness"

(as opposed to "distributional-robustness", which focuses on the effects of,

e.g., heavy-tailed distributions). In Section 2, this model-robustness issue is

quantified by comparing the error of Θj with the minimal possible error in 7};

theoretical results are given in terms of a.s. asymptotic behavior and in terms

of probability of error.

Efficient Computation: Condition R.3 restricts the number of candidate

boundaries relative to the sample size, but still allows for extremely large |7/|;

if the user is concerned about violating R.2, then caution should be exercised

in attempting to reduce |7/|. And, for higher dimensional data-sets (d > 2),

|/| tends to be large. Therefore, since the estimator requires calculations over

all i G / and over all T G 7/, it behooves us to develop efficient computational

schemes. In Section 3, an algorithm is presented which improves dramatically

on the naive approach.

Bootstrapping: Although Θj is a consistent estimator of Θ (in the sense

described above), it is difficult to characterize the sampling variability of the

boundary estimator - especially in cases where the boundary is not readily

expressible as a parametric function. Therefore, in Section 4, we suggest a

graphical bootstrap procedure for visually assessing the sampling variability

of Θ/; this procedure was simulated, yielding encouraging results.

2. Model-Robustness.

2.1. Motivation. Knowledge about the form of the boundary Θ (e.g.,
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rectangular template, Lipschitz function, etc.) has been assumed in the for-

mulation of Θ/. This information is used to construct "rich enough" collections

7/ (see R.2), so that boundaries which are "close" to the true boundary Θ are

available as possible estimates. Thus, if the user has knowledge that Θ defines

a circle, then 7} is constructed to include only circles. If further information is

available on the location of Θ (say the center of the circle is known to be in the

left half of U<ι), then a smaller set 7} of circles can be constructed which will

still satisfy R.2. Smaller |7}| means easier computability (see Section 3) and

sharper bounds on the error probability (see Theorem 2 of C&K). Therefore,

there are practical incentives for small 7}. It is, however, possible for 7/ to be

too small if it violates R.2. This may happen due to overzealousness in reduc-

ing the computational burden, or due to incorrect prior information. Thus, a

question of practical interest is: What is the price paid if the collections 7/

do not satisfy R.2? A useful illustration to keep in mind is the case where the

true Θ is a circle, but 7/ contains only squares.

Formally, let Θj := arg min^T} #(Θ,T) be the element in 7/ closest to Θ.

Then d(Θj, Θ) is the minimal error that we can expect to make in estimating

Θ; if the error of our estimator, d(Θ/,Θ), is of the same order as #(Θj, Θ)

we shall be reasonably satisfied, i.e., Θj is "model-robust". We will study the

asymptotic behavior of #(Θj, Θ) and compare it to the asymptotic behavior

of #(Θj,Θ). Notice that Θ'7 is not necessarily unique: There might well be a

class of candidates Θj that are closest in terms of the pseudometric d, but each

of them might yield a different value of #(Θ/,Θj). Because of this possible

ambiguity the study of #(Θ/, Θj) is not appropriate here. Also note that

alternative formulations of the original boundary estimation problem (Section

1.1) could allow the "true" boundary to depend on the grid /, yielding better

compatibility with 7/.

2.2. Asymptotic Target Error. Assume that R.I holds. Given Θ and the

candidate family {7/ : V/}, define the asymptotic target error, 77, as follows:

η:= ΠE mind(Θ,Γ) = Πm

We want to study the model-robustness of Θ/ with respect to violation of

R.2. The quantity η is the natural parameter for measuring the severity of the

failure of R.2, because:

PROPOSITION 1. R.2 <& η = 0.
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This also justifies the use of lim rather than lim in 77's definition, since the

latter could yield zero even if R.2 fails and hence does not adequately quantify

the departure from our conditions. We will assess the model-robustness of Θj

by comparing #(Θj, Θ) to the target 77.

Another quantity which arises naturally in the model-robustness analysis

is:

p(T) := |λ(Γ Π Θ)λ(T) - λ(ΓΠ Θ)λ(T)|.

The difference p(Θ) — p{T) behaves similarly to #(Θ,T), as formalized by:

PROPOSITION 2. For 7 > 0,

) , T ) > 7 = > ρ ( θ ) - p ( Γ ) > σ 7 > 0 ,

where σ := min{λ(Θ), λ(θ)}. it follows that:

p(θ) - p(T) < d(Θ,T) < [p(Θ) - p{T)]/σ.

When the partition defined by Θ is "baianced", i.e., σ = \, we find d(Θ,T) =

2[p(Θ)-p(T)}.

[Proofs of results are given in Section 2.4 below.] When R.2 does hold,

then

(Πm Sύn{p(Θ)-p(T)} = 0.

However, unlike θ(Θ,T), the quantity p(Θ) - p{T) is not a pseudometric; in

fact, it is not even symmetric in its arguments. Nevertheless, to analyze the

model-robustness of Θj, it is useful to define the analog of η for p(Θ) — p(T):

η* := Em" min{p(Θ) - p{T)} = M [p(Θ) - p(Θ'})},
| / | T e T \I\—>-oo

where Θ" := argminτ€r7{/>(©) - p(T)}. The relationship between η and η* is

given by:

PROPOSITION 3. 0 < η* < η < η*/σ.

Notice that R.2 <& η = 0 <£• 77* = 0; also, when the partition defined by

Θ is balanced, the third inequality becomes an equality.
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2.3. Model-Robustness Results. Assume now that: F φ G; 0/ is based

on a mean-dominant norm; regularity conditions R.I, R.3, R.4 hold. The main

result provides an a.s. bound on Θ/'s error that is linear in the target error.

THEOREM 1. [Model-Robustness]

η< EΪΓ d(Θ,Θ/)a< η*/σμ,
|/|-κx>

where μ := μFλ(Θ) + μGλ(Θ) and μF := /_°̂  \F(x) - G(x)\dF(x), μG :=

JTQO \F(X) ~ G(x)\dG(x). When the partition defined by 0 is balanced,

xv a.s.

η< Km 0(0,0/) < 17/μ.
|J|-^oo

Notice that σμ > 0 (by R.I and Lemma 7 of C&K). The left inequalities in

Theorem 1 hold always, while the right inequalities hold a.s. The upper bounds

in Theorem 1 show that the model-robustness of 0/ is favorably influenced

by two intuitively natural factors: (i) balance between the amount of data in

θ versus 0., as measured by σ; (ii) disparity between the two distributions F

and G, as measured by μ.

Example. Let F be the distribution with point mass at the origin, and let

G be the Uniform[0,1] distribution. Then direct calculations yield μp + μo =

| . Therefore, in the case of a balanced partition (0,0.), we obtain

/s a.s. 4

η< ΰm 0(0, θ/) < -η.
|/|—>-OO O

Finally, we bound the probability of 0/ behaving in a nonrobust way (as

compared to the rhs of Theorem 1).

THEOREM 2. [Bound on Error Probability]. For any 0 < α < 1 and

Q<€< e(α),

Ψ{d(Θ, θ/) > (T?* + e)/σμ(l - α)} < K - |T/| exp{-iΓ . e2 |/|}

for \I\ sufficiently large, where K and K are positive constants.

The probability of nonrobustness decreases exponentially as a function

of sample size. However, this effect is counterbalanced by the number of

candidate boundaries considered (i.e., for fixed target error, it is easier to
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grossly mislead Θj when the collection 7} is larger). The bound in Theorem

2 explains why the joint growth of |/| and |7/| must be controlled via R.3.

Lastly, notice that the bound does not depend on the actual target error, i.e.,

it is unaffected by the severity of the R.2 violation.

2A. Proofs.

PROOF OF PROPOSITION 1. Immediate from the definitions. I

PROOF OF PROPOSITION 2. Note that

p(e)-p(T) = min{λ(ΘnΓ)λ(Θ)+λ(ΘnΓ)λ(Θ),λ(ΘnT)λ(Θ)+λ(ΘΠT)λ(Θ)}.

Comparing this expression to the definition of #(Θ,T), the first implication

is clear. For the second implication, write #(Θ,T) = min{# + x',y + y'} and

p(Θ)-p(T) = min{Γθfay),Γθ(y,y')}, where x : ^ λ ( 0 Π T ) , x' := λ(ΘΠΓ),

y := λ(ftnΓ), y' := λ(θ fiΓ), and TΘ(z,z') := X(Θ)z + \(&)z'. Then

d(θ,T) > 7 =* x + x' > 7 and y + y1 > η

=Φ- σ(x + xι) > ση and σ(y + yf) > ση

=» ΓΘ(a;, x1) > ση and ΓΘ(y, y1) > ση =» p(θ) - p(Γ) > σ7

The final two assertions of Proposition 2 are now immediate. |

PROOF OF PROPOSITION 3. Since Θj, Θj G 7r, we have by definition and

by Proposition 2 that

0 < p(e) - P(&i) < p(θ) - pίθj) < 5(0, ΘJ) < Θ(Θ, Θ'ί) < [p(Θ) - p(Θ'ί)]/σ.

Now take limi/^oo throughout. |

PROOF OF THEOREM 1. For 0 < a < 1 and 0 < e < 6(α), we have by

Theorem 2 and R.3 that

Σm]P{0(θ, Θ/) > (r/* + e)/σμ(l - α)} < <x>;

hence by the Borel-Cantelli Lemma P{d(Θ, Θ/) > (τ7* + 6)/σμ(l~α) infinitely

often [|/|]} = 0. For otk = \ and ek = min{£, e(ak)}, k > 1, 3 a null set A* s.t.

Vω g A^ we have d(Θ, Θ/) < (ιy + ek)/σμ(l - αΛ) when |/| > i(k,ω). Thus,

for ω i Ufc>i A*, Πmi/^oo 5(Θ, Θ/) < r?*

PROOF OF THEOREM 2. A series of Lemmas will be presented, leading to

Theorem 2.
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LEMMA 1. Define T\ := {Θ,Θ;Γ,Γ,ΓnΘ,ΓnΘ,TnΘ,:ΓnΘ : T € 7"/}.
Then;

sup \X(A) - |A|/ / | / | | ^ 0 as | / | -* oo.

PROOF. Follows from R.4, using the same argument as in the proof of

C&K's Lemma 1. I

Define the following notation:

ητ(x) := [λ(ΓΠ θ)f(ar) + λ(Γ Π Θ)G(x)]/X(T),

ητ(x) := [X(TΠΘ)F(x) + X(TΠΘ)G(x)]/X(T),

«« := \ϊτ(Xft ~ Rτ(Xl)l Δ/(T) := X(T)X(T)S\n(δJi : i € I).

LEMMA 2. For \I\ > Ni(e),

P{ sup \Di(T) - Δ/(Γ)| > e} < JfχlT/1 exp{-ϋf2 e2

PROOF. Follows from Lemma 1 and Dvoretzky, Kiefer and Wolfowitz

(1956), using the same argument as in the proof of C&K's Lemma 2 (with

6 = 0). I

LEMMA 3. We can write Δ/(Γ) = ρ{T) Sw(δf{ : i € / ) .

PROOF. Exactly as in the proof of C&K's Lemma 3. I

LEMMA 4. For every Γ 6 T/, we have Δ/(Γ) < Δ/(Θ).

PROOF. Follows from Lemma 3, exactly as in the proof of C&K's Lemma

4 I

LEMMA 5. For |/| > JV2(e),

PROOF. By definition θ " € 7/ is the maximizer of />(•), and hence, by

Lemma 3, it is the maximizer of Δ/( ), over Ύj. Then by Lemma 4 we have

Δj(θ) > Δ/ίθ'/) > Δ/(Γ) VΓ € T/, and by definition we have I>/(Θ/) >

Dι(T) VΓ e T/. Now,

- Δ 7 (θ) | < | /(Θ/) /(§/)| + |2?/(θ/) Δ/(θ/)|

+ |Δ/(ΘJf)-Δ/(θ)|.
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The second modulus on the rhs is bounded by supT G T j \Dχ{T) - Δ/(Γ)|, be-

cause either 2Jj(θ/) > Δ/(Θ//) > Δ/(Θ/) or Δj(θ?) > £/(Θ/) > Di(&D-

The same bound applies to the first modulus on the rhs of (f). Using Lemmas

4 and 3, and properties (D.e) and (D.d) of S\j\, the third modulus on the rhs is

Δ/(θ) - Δ/(θ?) = [p(Θ) - p(ΘJf)]5|/|(^ : « ' € / ) < p(θ) - />(©'/). Therefore,

< 2 sup |D7(Γ) - Δ/(Γ)| + p{θ) -

For |/| sufficiently large, by the definition of 7?*, we have the deterministic

bound p(Θ) - />(©'/) < 7?* + c/3. Now combine this with the probabilistic

bound from Lemma 2. I

To prove Theorem 2, begin by applying Proposition 2, Lemma 4, Lemma

3 and property (D.f) of 5|/|, obtaining

d(Θ, T) > 7 =» |Δj(Θ) - Δ7(T)| =

whereίf : = Σ , € / ^ /m . Thus

, θ/) > (»/• + e)/σμ(l - a)} < P{|Δ/(Θ) -

> (77* + e)δf/μ(l - a)}

< P{|Δ/(Θ) - Δ/(θ/)| > 7?* + e} + Ψ{δf < μ(l - a)}.

The first probability on the rhs is immediately handled by Lemma 5. The

second probability on the rhs is bounded by IP{|£ p — μ\ > μa}. Denote

*/ : = Σ ; € Θ S?i I |Θ|/ a n d ύ := ΣieΘ δ?i I l^l/ί s o t h a t *? = */'
t?(\Q\i I \I\) Notice that

\tf-μ\<J! m + λ(θ)|ί?-μF|+ί?

The first and third summands on the rhs are handled using Lemma 1. Consider

the second summand on the rhs (a similar argument holds for the fourth).

By equation (2.3) of Hoeffding (1963), we have ΊP{\δf - μF\ > μa/4} <

2 exp{-cα |θ|/}. Lemma 1 ensures that |Θ|j eventually exceeds |/|λ(Θ)/2

(say); therefore the bound from Hoeffding (1963) can be combined with the

earlier bound from Lemma 5, for e > 0 sufficiently small (given a). |

3. Efficient Computation. To calculate the boundary estimator Θ/

based on data {Xf : i 6 /}, we need to calculate the criterion function Di(T)
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for each candidate T G 7/. Let Cι denote the number of simple computations

(e.g., scalar addition, scalar multiplication, pairwise comparison of scalars,

etc.) required to calculate Θj. Essentially, we have

Cι « |7/| X #{computations for calculating Dj(T) on a single T}.

The number of computations for calculating a single Di(T) seems on first

thought to be of the order |/ |2, since we have to calculate |/| distinct d^ 's,

and each dj{ requires us to find the rank of X/ {% G /) relative to the subsets

{Xj :jeT} and {Xj : j G Γ}. This would yield

X |/|2,

where Cj denotes the number of computations required to calculate Θ/ using

the naive approach.

Algorithm. Notice that the calculation of the dj^s involves ranking the

X/'s within each individual candidate region, T and T. For fixed Γ, the

Λτ(X/)'s (1 < i < \I\) can be calculated from an ordered subsequence of the

ordered sequence {XL\ - 1 < r < |/|}; similarly for the Λy(X/)'s. Thus Θj is

a function only of {R(i),I{i G T} : i G /,Γ G 7}}, where Λ(<) is the rank of

X/ in the ordered sequence. The suggested computational algorithm exploits

this structure.

First sort the X/'s so that Xfa < X(

7

2) < < X(

7

r) < < Xfa^) <
Xnny Since 5|/|( ) is symmetric [property (D.a)], its arguments dj{ may be

entered according to rank order (r) rather than grid location i. The rank of

XL\ is r, and its original grid index is stored in INDEX(r). Now Θj is a

function only of {I{INDEX(r) G T} : 1 < r < |/ | ,Γ G T/}. Sorting of the

X/'s and calculation of the vector INDEX(r) together take at most order |/ | 2

computations.

The collection of ftτ(l/j)'s (and /^(X/m's) is now calculated recur-

sively, as follows. The quantity \T\ihτ(XLΛ is 1 if the smallest observation

X/χx comes from Γ, and 0 if it does not. Given |T|//χ(X/ A the quantity

\T\ihτ(Xf +1x) is one more than |T|//iτ(^£.)) if X(r+i) c o m e s from Γ, and the

same as \T\ihτ{XΪΛ if it does not. Formally,

= I{INDEX(1) G Γ},
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\T\ilί(X[r+1)) = |Γ|/4(^(/

r))+I{INDEX(r+l) e Γ}, for r = 1,2, , | J | -1 .

Also, iZUh^X1^) = r - | r |/^.(Jr (

7

r ) ). Although the symbols |Γ | j , |Γ|/, and

XLx are used in the explanation above, the recursive calculations (rhs) depend

only on I{INDEX(r) € T}. The numerical values of |Γ| j and |Γ|/ are obtained

"for free", since \T\r = iTl/fc^X^) and |Γ|/ = |/| - |T|/ Thus, for fixed

T € T/, calculation of J9/(Γ) requires us to go through {I{INDEX(r) € T} :

1 < r < \I\} exactly once.

Combining both phases of the algorithm, we find that the number of

computations required to calculate Θj is now

which is an order of magnitude less than the initial naive approach, i.e.,

CίlC°j « IT,!"1 + \I\-\

Examples. In most applications, |7}| is a function of |/|. Table 1 gives the

approximate number of computations Cj for several specific examples. [See

C&K for precise descriptions of 7/ in each case.]

Table 1: Number of Simple Computations

# of # of

Boundary Type Dimension Candidates Computations

Θ,Γ d \Tj\ Cj

Change-Point

Epidemic-Change

Template (Oriented Rectangle)

1

1

2

\i\

\i\2

\i\2

\i\2

\i\3

| / | 3

4. Bootstrapping. The boundary estimator Θj is applicable in a broad

range of situations: there are no restrictions on the distributions F and G\ the

class of boundaries (Θ, 7/) is quite general. In keeping with this omnibus spirit,

it is appropriate to use Efron's (1979) bootstrap for assessing the sampling

variability of Θ/. Dϋmbgen (1991) has studied bootstrap procedures for a

related class of estimators in the one-dimensional single change-point case.
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We now propose a graphical bootstrap procedure that is particularly useful in

the planar (d = 2) case.

The true underlying probability structure is determined by the unknown

triplet (F,G;Θ). Having estimated Θ with Θ/, the ecdf's constructed from

the two regions induced by Θj provide estimates of F and G:

Fj(x) := i

[Purer estimates of F and G can usually be obtained by excluding a buffer

region of grid points around Θj when constructing these ecdf's.] We now

have the estimated probability structure (Fj,Gr, Θj), from which bootstrap

samples can be drawn. Generate {Jf* : i G Θ/} as iid observations from Fι,

and {X* : i G Θ./} as iid observations from G/. From this bootstrap sample

{X* : i G /}, calculate ΘJ via the same formula as Θ/. By repeating this

process, say B times, we obtain bootstrap realizations {Θ/15 Θj2, - ,0^}

from (F/jG/; Θ/). These bootstrap realizations Θjfc are used to model the

sampling variability of Θj.

Each ΘJJ. determines a partition of the grid /. If each of these Θ^'s

were a number, we could look at the variance, percentiles, and histogram of

these numbers in order to assess the variability of Θj. But in some situations

(e.g., Lipschitz curves [see C&K]), the boundaries are not readily expressible

in terms of a fixed finite set of parameters. Moreover, in the two-dimensional

case it is natural to want a direct visual representation of Θ/'s variability in

Ẑ2 For this purpose we introduce the (l-α)100% bootstrap indifference zone,

defined as follows:

k=l

i.e., Zft \ excludes those points i G / which either belong to more than

(1 - α/2)100% of the ^ ' s or belong to more than (1 - α/2)100% of the

ft*
'-Ik s.
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The zone Zΐ1_Oί\ is conditional on the estimated probability structure

(-P/JGJ Θ/). A wide Z(ι_a\ typically indicates high spatial variability among

the Θj^'s, and similarly a nonexistent or narrow ^n_α) means that the Θ^'s

have little spatial variability. Furthermore, if the boundary Θ/ lies completely

inside Z1χ_Qιγ this suggests that the spatial "bias" of ΘJ (as an "estimator" of

Θ/) is small. Finally, by analogy, we pass these conclusions about the boot-

strap distribution of Θj (variability and bias) back to the sampling distribution

of Θ/.

In practice, the entire bootstrap procedure described above is imple-

mented on a single set of data {Xf : i £ /}.

Simulations. We simulated the entire bootstrap procedure 100 times for

the case of a linear bisecting boundary [see C&K] in a two-dimensional 15 X 15

grid; the true boundary Θ connects the points (0.67,0.00) and (0.40,1.00) in

Ẑ2 For each of these 100 simulations, we obtained first Θ/, then a picture of

Z/*90x, and the proportion (</*) of grid points falling inside ZT9Qy the bootstrap

procedure used B — 1000. Figures l.a, l.b, l.c show the results for three of

the 100 simulations; these were selected to represent the performance of the

bootstrap under "good", "average", and "poor" estimates Θj. Each figure

illustrates Θ/, ZT9Q^ and q*.

As a basis of comparison for judging the bootstrap, we generated 1000

realizations of Θj from the true (F, G; Θ). The true sampling variability of Θj

is thus measured by the analogous quantities Zt90\ and g, which are shown in

Figure 2 (along with Θ).

Notice that the bootstrapped zones ^Γ90\ in Figure 1 are reasonably

comparable in shape and size (q*) to the true Z(.9O) and q in Figure 2. Also

note that each ^Γ90) in Figure 1 contains its Θ/, as does Z(.9O) contain Θ

in Figure 2. So it seems that the proposed graphical bootstrap procedure is

useful for visually assessing the sampling behavior of Θj.
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Figure 1: Simulated Bootstrap Indifference Zones.
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Figure l.c
(q*=.22)
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Figure 2: Simulated Behavior of Θ/.
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