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NONPARAMETRIC CHANGE-POINT TESTS
OF THE KOLMOGOROV-SMIRNOV TYPE
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University of Giessen

We consider a triangular array X", ,X£, n € IN, of row-wise indepen-
dent random elements with values in a measurable space {X, B). Suppose there
exists a θ £ [0,1] such that X", , X[nθ] have distribution i/i and X^β^n '"> Xn

have distribution i/2. We construct tests for H^ : θ £ {0,1} versus H[^ : θ £

(0,1), H™ : θ = 0o, 0o £ (0,1), versus H[2) : θ φ θ0 and # ( 3 ) : θ £ θ 0 versus

ifi3^ : 0 ^ θo, where θo is a closed subset of (0,1). The tests, which are based on

[/-statistics type processes, are shown to be asymptotic level-cv tests and consis-

tent on a large class of alternatives. For H^ versus H[^ a careful investigation

of the power function is provided. The results are part of the author's (1991)

dissertation written under the supervision of Professor Stute. Proofs and more

detailed information will be published elsewhere.

1. Introduction and Main Results. Let X]1, , X^, n £ INi be row-
wise independent random elements defined on a probability space (Ω,*4,P)

with values in a measurable space (X,B). Suppose there exists θ £ [0,1) such

that X™, , XFnQλ have distribution v\ and -X"£Λ+ 1, , X™ have distribution

j / 2 φ vι, where both v\ and ι/2 as well as the change-point θ are unknown. In

the standard test problem H5 ' : θ = 0 versus H{ ' : θ £ (0,1) we ask whether

there is a change at all, whereas in the nonstandard test situation, we want to

know if a change has taken place at a certain point (or within a certain time

interval) or not. Formally, we are interested in testing HQ : θ = ΘQ^ΘQ £ (0,1),

versus H[2) : θ φ θ0 and ^ 3 ) : θ £ Θo versus J5r{3) : θ £ Θo, where Θo C (0,1),

respectively. All tests we recommend are based on a stochastic process first

introduced by Csδrgδ and Horvath (1988) in the case of real-valued data:

n [nt]

rn(t) = n-2 2 £jφtf,x;), 0 < * < 1,
i=[nt]+l j = l
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where K : X2 —• IR is a measurable kernel. In what follows K is assumed to be

bounded. This guarantees the existence of all integrals under no assumptions

on the underlying distributions. For the motivation of our test the following

result of Ferger and Stute (1992) turns out to be very useful:

Ίogn

0<ί<l
sup \rn(t) - r(t)\ = 0

0 < <

ί log
\ n

1/2"

(1)

with probability one (w.p.l) V θ £ [0,1), where

ί tμ{θ - t) + ίλ(l - 0), 0 < t < θ

(1 _ t)\θ + (1 - t)τ(t - θ), θ < t < 1
with μ = J Kdv\ ® j ^ , r = / Kdv2 ® V2 and λ = J Kdu2 ® ̂ i. We will only

consider antisymmetric kernels K : K(x,y) = -K(y,x) V i , | / G Λ'. Note

that in this case μ = r = 0 and therefore r = ΓΛ,0 vanishes on the whole unit

interval, if θ = 0. Thus by (1) we have that with probability one

1/2 I m | ί = 0 ( ( l θ g n ) / 2 ) , i f ^ h o l d s

» ' sup | r n ( ί ) | < (2)
0<<<i [ > const n 1/ 2, if J ί } υ holds with λ φ 0.

So, large values of the left hand side in (2) indicate a change in the distribu-

tion. In the case X = Et, Csδrgδ and Horvath (1988) proved that (n1/2rn)n G]N

converges in distribution to σBo under HQ \ where Bo denotes a Brownian

Bridge and σ2 = σ2{K,v<ι) = j [j K(x, y)v2(dx)] U2(dy). Their invariance

principle can be extended to arbitrary measurable spaces. We note that some-

times σ2 = σ 2 (iί, u2) is known. For example, if X = IR, K(x, y) = sign(a; - y)

and ί/2 is continuous, then σ2 = 1/3. However, in general, σ2 is not known.

In this case it is possible to define an estimator σ2 such that σ\ converges to

σ2 w.p.l, if HQ' holds. Moreover, we prove that under H[ ' σ2 -» σ2(K,vβ)

w.p.l, where VQ = θv\ + (1 — 0)̂ 2? if in addition if is continuous and X is

a separable metric space. Herewith we are in the position to generalize the

Csδrgδ-Horvath (1988) test. Let α denote the error of the first kind, then the

test is defined by

Ji) _ ,

where Ci(α) is the (1 — α)-quantile of the Kolmogorov-Smirnov distribution.

THEOREM 1. Let X be a separable metric space and let K be a bounded,

antisymmetric and continuous kernel Then liπ^^oo Po(*n,α = 1) = OL V θ £

(0,1] and Hindoo Pθ(t(nl = 1) = 1 V α G (0,1] V θ e (0,1) V uu v2 with XφO.
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Next, we are interested in the power of our test. Let 7^ (^,^1,^2) :==

θ,Ul ,v2 (yn}ct = 1) be the power function.

THEOREM 2. Under the same assumption as in Theorem 1,

oo 7n (rc~1//2, i/χj v2) = βσ{X)9 where σ2 = σ2{K, v2) and βσ{X) is an ana-

lytical completely known function. Furthermore, if (^2,n)ne]N converges weakly

to v\ in such a way that Xn = j Kdv2^n ® "1 ~ n'1/2, then limn_,oo ηt?'(0,1/1,

i ^ n ) = 1 - Λ M (ci(α)) V 0 € [0,1), where σ2 = σ2(K,iΊ) and hσ,θ(cι(α)) is a

certain boundary crossing probability of the Brownian Bridge.

We have determined the boundary crossing probability of Theorem 2

explicitly. For H^2) : θ = θ0 versus H[2) : θ φ ΘQ with 0 < θ0 < 1 given, we

proceed as in the standard case and propose the following test:

*Sα = 1{nl/2βup0< t<1 |rn(t)-rλ n f β b(t)|>c2(α)}

Here, λ n = rn(θo)/(θo(l - ΘQ)) and C2(α) is the (1 - α)-quantile of a centered

Gaussian process, which may be specified. Since these quantiles are, if at all,

not easily available, one has to replace them by a bootstrap approximation of

the exact critical value, namely the (1 - α)-quantile of n 1 / 2 s u p 0 < ί < 1 \rn(t) -

rχntθQ(t)\. We can prove consistency of these quantiles.

THEOREM 3. Let X be a measurable space and let K be a bounded and
(2)

antisymmetric kernel Then limn^oo Pθo(tn9α = 1) = α and

lim^oo Pθ(t(nl = 1) = 1 V θ φ θ0 V uu u2 with λ φ 0.

In the more general situation of JBΓQ : θ G Θo versus H[ . θ £ Θo, the
(2^

test tlt/α is not applicable, because it involves the quantities λ n and ΘQ, which

are now unknown. Indeed, neither under HQ nor under H[3' we know the

value ΘQ of the change-point. However, following Ferger and Stute (1992) we

can define an estimator θn such that θn - ΘQ = 0(n"1logn) w.p.l under H^
(3)

and θn —>• θι φ ΘQ w.p.l, if H\ ' holds. Therefore we suggest:

.(3) _ 1
Ln,α ~ 1 { n 1

where Xn = rn(θn)/(θn(l - θn)).

THEOREM 4. Assume ΘQ is closed and the assumptions of Theorem 3 are

satisfied. Then limn_>oo Pθ(t(nl = 1) = α V θ e Θo and limn^oo Pθ(t(nl = 1) =

1 V 0 £ Θo Vi/i,ί/2 with XφO.

REMARKS.

(1) We prefer to state our results for bounded kernels K, since in this case

the conditions are completely carried by the given K rather than by the
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unknown distributions v\ and V2 Moreover, tests induced by bounded
kernels will be robust against outliers. Nevertheless, boundedness of K
is not necessary and may be replaced by some moment conditions.

(2) Clearly, our approach raises the question, how to choose an optimal ker-
nel.

(3) In the standard framework Csδrgδ and Horvath (1988) proposed to deal
with weighted versions of rn(/), in order to obtain tests, which are more
sensitive in the tails.
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