
Chapter 5

Higher order asymptotic theory

for independent replications

1 Introduction
In this chapter we review some basic higher order asymptotic theory for analytic

models. As mentioned in the introduction to Chapter 4 we confine ourselves to the
case of independent replications to avoid the technical complications that arise in
connection with the Cramer condition for characteristic functions, cf. Lemma 2.2,
for more general cases. The moment conditions required to derive higher order
asymptotic expansions would be fulfilled for any sequence of models for which the
index tends to zero.

The purpose of the chapter is not to develop the higher order asymptotic theory
as such, but to justify the claim made earlier, cf. the preface and the introduction
to Chapter 2, that the analytic models are 'regular' in the sense that they fulfil the
regularity conditions employed to prove standard asymptotic results. Therefore it
is not attempted to give a review of the vast amount of literature on higher order
asymptotic results. For likelihood based inference in parametric models some
references giving accounts of, at least, parts of this theory, are McCullagh (1987),
Amari (1985), Pfanzagl (1982) and Pfanzagl (1985). Many important results, such
as the existence of the Bartlett correction factor to the log likelihood ratio test,
are outside the scope of the present chapter, although they are exactly the kind of
results that were the motivation for the development of the present theory.

Certain modifications may have to be made to adapt theorems to our framework;
for example, Bhattacharya and Ghosh (1978) in their proof of the validity of the
Edgeworth expansions for the local maximum likelihood estimator, assume that
the observations belong to a finite-dimensional real vector space. While this may
be convenient for applications it does not fit in very well with our framework,
where it has been completely avoided to specify the type of the sample space,
because the importance is the structure of the parameter space. The difference is
unimportant, because the log-likelihood differentials, which are sufficient as shown
in Section 2.8, will be elements of finite-dimensional real vector spaces. However,
the different setup requires a minor change in the assumptions. Apart from such
minor differences only two further assumptions are needed for an analytic model
to derive the higher order expansions, namely the Cramer condition mentioned
above, or another continuity condition on the distribution, and the condition that
the Fisher information is positive definite.
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142 SECTION 5.1 Introduction

At the end of this section we describe the basic setup and the notation to be
used throughout the chapter. In Section 2 we briefly review the definition of the
Edgeworth expansions and then demonstrate the validity of these expansions for
any finite sequence of log-likelihood differentials. The expansions for these statis-
tics are, not surprisingly considering their sufficiency or approximate sufficiency
as discussed in Sections 2.7 and 2.8, the basis of most higher order expansions of
relevance to likelihood based statistical inference.

The conditions provided by Bhattacharya and Ghosh (1978) for the validity of
the Edgeworth expansions for the local maximum likelihood estimator are verified
in Section 3 as the main example of regularity conditions satisfied by the ana-
lytic models. Given the theory developed so far, and the theory of Edgeworth
expansions, it would not be hard to prove the validity of these expansions directly,
but, as argued above, the purpose here is to demonstrate that these models sat-
isfy commonly used conditions. Of course, many other results and variations of
the conditions could equally well have been chosen, but to a large extent the ba-
sic conditions are the same, namely conditions of uniform integrability of certain
derivatives of the log-likelihood function.

In Section 4 we turn to the problem of the consistency of the maximum likelihood
estimator for a compact parameter space, although this is not an asymptotic result
of higher order. The proof, essentially due to Wald (1949), although various minor
improvements have been given later, does, however, require the observations to be
independent and identically distributed and therefore we include the verifications
of the conditions for this result in the present chapter.

Throughout the chapter we will be working with sequences of models as de-
scribed in the remainder of the present section.

Consider a model

); Λ(y;/J);/?e5CV} (1.1)

parametrized by β taking values in the finite-dimensional real vector space V. Let
the point βo £ int(ϋ?) be fixed and assume that the model is analytic at this point.
Let Y\,..., Yn be independent and identically distributed random variables on Ey

each with density fι(y β), where β is still the (unknown) parameter. Thus, the
model for Y(n> = (Yx,..., Yn) is

{fin)(y{n);β);βeBcv}, (1.2)

where

is the density on the product space at the point yW = (j/i,...,y n). It follows from
Theorem 2.5.2 that the model (1.2) for Y<n) is analytic at the point β0.

The log-likelihood differentials from (2.2.1) for the model (1.1) for the ith ob-
servation Y;, are denoted

Yi β), (1.4)
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while the corresponding differentials for the model (1.2) for Y^ are denoted

Din\β) = Dk

βlogf^(Y^;β). (1.5)

For the model (1.1) for a single observation we denote the Fisher information from
(2.3.16), the cumulants of the log-likelihood differentials from (2.3.15), and the
index from Definition 2.5.1, by /(/?), Xkλ-fcm(/3), and λ(/3), respectively, while the
corresponding quantities are denoted

= nl(β), (1.6)

(i 7)

(1.8)

for the model (1.2) for Y<n), cf. (2.5.11).

We let ( , •) denote an arbitrary pre-given inner product on V, and || || the
corresponding norm. The same notation is used for the dual inner product and
the corresponding norm on the dual space V*. By || | | n we denote the Fisher
information semi-norm on V, i.e.,

\\v\\2

n = I^(βo)(v2), veV, (1.9)

and we use the same notation for the corresponding norm induced by the inner
product l(n\β0)~ι on V*, whenever I^n\βo) is positive definite.

We adopt the previously used standard that if the argument β is omitted, eval-
uation at βo is understood.

Notice that with the only reservation that the Fisher information is positive
definite, all the results from Sections 4.3 and 4.4 hold for the models considered
here. This is easily seen by verification of Conditions 4.2.1, and is mainly due to
the result (1.8) taken from Theorem 2.5.2, which shows that the index tends to
zero as n tends to infinity. Thus, there is no need to consider first order asymptotic
results here, except the consistency of the maximum likelihood estimator verified
in Section 4.
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2 Edgeworth expansions for the log-likelihood differentials

In this section we give conditions for the validity of an Edgeworth expansion to
any order of the joint distribution of (Dι\. . . ,D^'} for any K G N. The only
extra condition needed, beside the assumption that the model is analytic at /30, is
a continuity condition on the distribution, or an assumption that the distribution
is a lattice distribution. Since the statistic considered is a sum of independent and
identically distributed random variables the result follows immediately from the
'classical' theory of Edgeworth expansions, an account of which may be found in
Bhattacharya and Rao (1976), and proofs are therefore not given here. Because
the model is analytic, the statistic considered has moments of all orders. Hence
it follows from the theory of Edgeworth expansions that such are valid for the
density if an integrability condition is imposed on the characteristic function, for
the probabilities of 'regular sets', see (2.6) below, if Cramer's condition is required
instead, and for the point probabilities if the distribution is a lattice distribution.

Below we briefly review the construction of the Edgeworth approximations. A
more comprehensive account, using a notation similar to the one used here, may
be found in Skovgaard (1986b), and a fairly short review, using a more traditional
notation, in Bhattacharya and Ghosh (1978).

Let Xij... ,Xn be independent and identically distributed random variables on
a finite-dimensional real vector space W, and assume that Xj has moments of all
orders. Denote the cumulants of Xj by

Kfc = cumk(Xj), k G N, (2.1)

and suppose that the variance Γ = K2 is positive definite. Recall the definition of
the characteristic function of Xj, as the function

ξi(t) = Eexp{it(Xj)}, t e W. (2.2)

We want an expansion of the distribution of

the leading term of which is, of course, the normal distribution with mean zero
and variance Γ. The logarithm of the characteristic function ξ^ of Un has the
Taylor series expansion

(2.3)

as r —» 0, where r = 1/y/n. On expansion of the exponential of the sum on the
right hand side in powers of r, we obtain an expansion of the form

M-i \

it:{κi}))+O(τM) (2.4)€<">(«) = exp | - | r ( ί 2 ) | (l + Σ
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as T —• 0, where M 6 N, and Pk(it : {KJ}) is the fcth Cramer-Edgeworth poly-
nomial in (iί), cf. Bhattacharya and Rao, Section 7. The polynomial Pjς has
coefficients depending on κ 3 , . . . , Kk+2 > and it is of degree 3k.

By Fourier inversion of the right hand side of (2.4), disregarding the error term,
we get the approximate density

which will be referred to in the sequel as the Edgeworth approximation of order
M to the density of Un. Here, D denotes the differential operator and Pk(—D :
{KJ}) is the same polynomial as Pk above, except that the argument is (-D)
instead of (it). Thus, any power of (-D) is supposed to operate on the normal
density function <̂ o,r? with mean 0 and variance Γ, such that the result becomes
a differential of a certain order of this density. The resulting density therefore
becomes a linear combination of such differentials, i.e., a polynomial multiplied by
the normal density function.

The approximation gM,n(u ' {κ>j}) involves the cumulants to order M + 1, i.e.,
including KM+I For example, the second order Edgeworth approximation is based
on the first three cumulants.

It is important to notice that given the first M + 1 cumulants of any statistic we
can always write down the Edgeworth approximation of order M; just take n = 1
in (2.5) and insert the cumulants in the formula. In the case of a standardized
sum of independent and identically distributed random variables, as Un above, this
approach leads to the same expression as (2.5), because the powers of r will be
'inherent' in the cumulants of Un. The quality of the approximation (2.5), or even
the existence of the exact density, is a quite different matter which is the theme of
the theorems of Edgeworth expansions.

The measure with the density (2.5) will be referred to as the Edgeworth mea-
sure (of order M) based on the first M + 1 cumulants of J7n, and it is denoted
QM,T('){KJ}) It is a finite signed measure assigning measure one to the entire
set W. It is not in general a probability measure, since it may assign negative
measure to some sets. An important fact in connection to the applications of the
Edgeworth approximations is that when W is one-dimensional it is a trivial matter
to integrate the density in (2.5) explicitly.

In many cases the 'cumulants' on which an Edgeworth approximation is based
are not cumulants of any probability distribution, but only approximations to such
cumulants. For these cases we may still use the expression from (2.5), and we still
speak of the Mth order Edgeworth approximation based on these 'cumulants'.

Whenever the mean κι is non-zero, the Edgeworth approximation is assumed to
be the approximation obtained as above (with κ\ = 0) translated by the amount

Excluding the lattice case and assuming the existence of all moments, there
are two main versions of the Mth order Edgeworth expansion of a probability
distribution. One gives an expansion for the density with an additive error of order
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O(τM) uniformly in u G W as n —> oo. This implies that the expansion of the
distribution by the Edgeworth measure also gives a uniform additive error of the
same order of magnitude uniformly over all Borel sets, cf. Skovgaard (1986b). The
other version holds under a weaker continuity condition and requires the technique
of smoothing to be used, thereby leading to an expansion of the measure, giving
an error which is again O(τM), but this time uniformly only over any class A of
Borel sets satisfying the condition

sup{Φ0,r ([0A]e) : Ae A} = O(e) as €-+0, (2.6)

where Φo,r is the normal distribution with mean 0 and variance Γ, and [dA]€ is the
e-boundary of A, see Bhattacharya and Rao (1976), Section 1, and Bhattacharya
and Ghosh (1978), Theorem 1. It may be noted that the class of convex sets
satisfies (2.6), cf. Bhattacharya and Rao (1976), Section 2.

Let us return now to the distribution of (U^ , . . . , D^') from the analytic model
(1.2). Let W denote the vector space spanned by the distribution of

Xi = (JDi,i-χi,...,/?κ,ί -XK),

the dependence on K being notationally subpressed. Let κi,K2,..., denote the
cumulants of Xt G W. By construction the mean κ\ is zero and the variance Γ = κ2

is positive definite. We want an expansion of the distribution of X^ = Y^Xi, or
equivalently of the standardized version U^ = X^

Lemma 2.1. Assume that some power of the characteristic function of Xi is
absolutely integrable. Then, for sufficiently large n, the density g^n\u) of U^
exists, and for any M G N we have

\9in)(u)-gM,n(u:{κj})\ = O(τM) (2.7)

as n -» oo uniformly in u G W, where r = 1/y/n. Also, we have the distributional
expansion

\γ{U(n) e A } _ QMn(A . {κ . } ) | = 0{τM} ( 2 8 )

as n —> oo uniformly over all Borel sets A C W.

Proof. From the fact that the model is analytic we know that all moments
of Xi are finite. Hence the assumptions of Theorem 19.2 in Bhattacharya and
Rao (1976) are fulfilled, and consequently the Edgeworth expansion to any order
is valid as stated in the lemma. The fact that we obtain the error 0{rM) instead of
just o(τM~ι) is a simple consequence of the fact that also the Edgeworth to next
order, i.e., the expansion of order M + 1, is valid. From that expansion the error
is o(τM) and since the difference between the two expansions is of order O(rM)
the result follows.
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Lemma 2.2. Assume that Cramer's condition is satisfied for the characteristic
function

}» teW, (2.9)

i.e., that
| | < | | > c } < l (2.10)

for some, and hence for any, c > 0. Then, for any M E N, we have the distribu-
tional expansion

F{U(n) e A }

as n —• oo uniformly over A in any class A satisfying (2.6).

Proof. Here we use Corollary 20.4 from Bhattacharya and Rao (1976) and note
again that the error becomes O(τM) because the Edgeworth expansion to the next
order is also valid. |

We omit the corresponding result for the case of lattice random variables. The
result is an expansion for the point probabilities similar to the one for densities
obtained in Lemma 2.1, except for the appearance of a normalizing factor. This
result is, however, less useful for inferential purposes because a (non-linear) trans-
formation of a lattice distribution generally leads to a discrete, but non-lattice,
distribution. For such transformations there are great technical difficulties in ob-
taining expansions beyond the first order results and therefore the expansions for
the log-likelihood differentials are not easily transformed to expansions for other
statistics, such as the local maximum likelihood estimator as considered in the
next section for the continuous case.

3 Edgeworth expansions for the local maximum likelihood esti-
mator

We now turn to Edgeworth expansions of the distribution of the local max-
imum likelihood estimator (LMLE). We use the results from Bhattacharya and
Ghosh (1978) and verify these by proving that their conditions hold for the mod-
els considered here, except for minor modifications discussed in connection with the
theorem given below. First we give a very brief heuristic summary of the method
of proof used, since the same scheme may be employed to derive expansions for
other estimators or statistics.

The first step is to derive an Edgeworth expansion for a certain number of the
log-likelihood differentials, as we did in the previous section. Since these are ap-
proximately sufficient, cf. Section 2.7, it follows that to the order of approximation
considered, the statistic, here the LMLE, is a function of such a finite number
of differentials. Hence the next step is to transform the Edgeworth expansion of
these differentials to an expansion of some smooth function of these. In Bhat-
tacharya and Ghosh (1978) a general theorem of such transformations was given
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as Theorem 2. This transformation result was generalized to the non i.i.d. case in
Skovgaard (1981). For the case of the LMLE we know from Section 4.3 that for
sufficiently large n the LMLE is a unique solution to the likelihood equation

0 = D[n) + D{n\βn - β0) + \Din\βn -βof + (3.1)

within some neighbourhood of βo. This equation gives βn implicitly as a function of
the log-likelihood differentials (D\n', D2 >•••)• A Taylor series expansion around
the point given by βn — βo and D)™' = χ^ for all k then leads to an expansion
of βn - β0 as a polynomial in the log-likelihood differentials. From this expansion
we may then formally calculate approximations to the cumulants of βn - /?o, by
the so-called delta method, keeping only terms of the desired order of magnitude.
On the basis of these 'formal cumulants' we may then write down an Edgeworth
expansion for βn — βo To avoid specifying the approximate cumulants, we denote
the Mth order Edgeworth expansion for the distribution of βn obtained in this
way by QM.

The theorem stating the validity of the resulting expansion for the LMLE is
stated below. As a, somewhat brief, proof we verify the conditions of Theorem 3
in Bhattacharya and Ghosh (1978), in a slightly modified form. We first list these
conditions and then, for each of these, comment on any changes made and verify
their validity in our case. It should be noted that Bhattacharya and Ghosh (1978)
state their result in the more general framework of minimum contrast estimators,
and that their formulation of the 'locality' of the estimator is slightly different
from our Definition 4.3.2 of the LMLE. However their result is easily seen to apply
to the LMLE as defined here, regardless of the value of δ chosen in the definition
of the LMLE. Furthermore, they proved the uniformity of the resulting error with
respect to the parameter point βo varying in a compact subset. While it would not
be difficult to do the same in our setting, by assuming the model to be analytic
throughout this compact set, we stick to the case of a single parameter point,
partly to avoid notational complications, and partly to demonstrate the result of
the assumption that the model is analytic at one particular point.

Theorem 3.1. Assume that the model {fι(β);β G B C V} is analytic at βo
and that the Fisher information I(βo) is positive definite. Let WM be the finite-
dimensional vector space spanned by the distribution of the statistic

XM,i = {Diάh)-χi{βo),...,DMAβo)-XM(βo)) (3.2)

and assume that for any M G N, some power of the characteristic function of this
distribution on WM is absolutely integrable.

Then, for any M G N, t ie Edgeworth expansion QM of the distribution of the
LMLE βn(δ) satisfies

βoiβn(δ) G 4 } ~ QM(A) = 0{n-M'2) (3.3)
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as n —• oo, uniformly over all sets A within any class ofBorel sets satisfying (2.6)
with Γ equal to the inverse Fisher information.

Proof. The conditions that we need to verify are the following ones, the numbers
referring to the corresponding number in Bhattacharya and Ghosh (1978). The
'missing' condition (A5) is not needed for our case.
(Al) There is a measurable subset E\ C E and a neighbourhood U(βo) C B of

A), such that Pβ(Eχ) = 1 for all β G U(β0), and such that log fi(y β) is
infinitely often differentiable with respect to β on E\ x ϊ/(/?o)

(A2) For any k G N we have

E Λ (\\Dkti(βo)\\) < oo,

and for any k G N an e > 0 exists, such that

Eβ0 (sup{ \\Dkιi(β)\\ : \\β - βo\\ < e j ) * " 1 < oo.

(A3) The mean χi(/?o) of £i,t(A)) is zero, and the matrices -%2(A)) and χn(/?o)
are both positive definite.

(A4) The functions /(/?), Xk(β), and Xkk(β) are all continuous in a neighbourhood
of βo which may not depend on k.

(A6) For any M, some power of the characteristic function of the distribution
of XM,% € W^M? from the statement of the theorem above, is absolutely
integrable.

We now go through this list of conditions, one by one, and comment on the
changes compared to the ones from Bhattacharya and Ghosh (1978), in the sequel
referred to as BG, and demonstrate that they are satisfied for any model fulfilling
the conditions of the theorem above.

The condition (Al) has been restricted to a neighbourhood U(βo) of β0 instead of
any compact set of parameters as in BG. This is entirely due to the restriction of our
theorem to the single parameter point βo, instead of proving the uniformity of the
error over any compact subset of /^-parameters. That we require infinitely many
derivatives to exist is because we have stated the validity of (3.3) for any M G N.
Finally, we do not require the set E\ to be open, because this condition was required
only for the use of Lemma 2.2 in BG to demonstrate the existence of an absolutely
continuous component of some convolution power of the distribution of XM,Ϊ- We
have instead imposed a continuity condition directly on the distribution of XM,%
as the condition (A6). The requirements in (Al) are immediate consequences of
the conditions for the model to be analytic at /?o, except for the positivity of the
density, required for the differentiability of its logarithm, which is a consequence
of Lemma 2.3.4.

In the condition (A2) in BG the suprema of the expectations over any compact
set of /?o's were considered, but again, since we are proving the result only at a
fixed point β0 we need only the weaker form stated above. The condition follows
trivially from Lemma 2.3.4 together with condition (iv) in Definition 2.2.1 of an
analytic model.
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The only change in condition (A3) is that we only require the condition to hold
at the single point βo because we only prove the result for this parameter value.
The two matrices are identical in our case and the condition is seen to follow from
Lemma 2.3.5, cf. (2.3.14) and (2.3.15), and from the assumption that the Fisher
information is positive definite at βo.

In condition (A4) we have, for brevity, imposed the continuity condition on
the first two cumulants of the log-likelihood differentials, instead of on the second
moment. For reasons mentioned under the discussion of (Al) we only need it to
hold in a neighbourhood of /3Q, instead of throughout the parameter space. This
condition follows trivially from Lemma 2.3.5.

The condition (A5) in BG states that the mapping β *-> Pβ is continuous with
respect to the total variation norm on the space of finite signed measures. While it
follows from Section 2.7 that this is true at any point where the model is analytic,
this condition is not required for our case since we are not claiming the uniformity
of the error bound with respect to a set of /?o-ρoints.

The condition (A6) is the one which differs most from the corresponding one
in BG. Bhattacharya and Ghosh impose a continuity condition directly on the
distribution of YJ, which they assume takes values in a vector space, and then
prove the corresponding continuity condition for some convolution power of the
distribution of XM,% by use of their Lemma 2.2. This condition of the existence of
an absolutely continuous component of the convolution power of the distribution of
XM,% follows trivially from the assumption we have made. Thus, we have essentially
picked out this assumption from a later stage of their proof. There is no verification
of this condition in our case and we have stated the condition directly as a condition
in the theorem. I

Notice that it is condition (A6) that rules out the lattice case from the result.

4 Consistency of the maximum likelihood estimator

Although the consistency of the maximum likelihood estimator is an asymp-
totic property of first order we include this result in the present chapter because
it is confined to the framework of independent replications as mentioned in the
introduction, and generalizations of the result outside this framework become
much more complicated. We base the theorem on the classical result from the
paper by Wald (1949), refined and developed in several papers, cf. Kiefer and Wol-
fowitz (1956), Perlman (1972) and references therein. We only treat the case of
consistency within a compact parameter space, first of all because the conditions
for a model to be analytic are local conditions which do not suffice to prove the
result for a non-compact parameter space. To deal with that case various kinds of
global uniformity conditions have been proposed, either in the form of a compact-
ification of the parameter space, cf. Assumption 2 in Kiefer and Wolfowitz (1956),
or in the form of some uniform bound over a non-compact space, cf. Wald (1949)
and the discussion in Perlman (1972). While such an assumption can certainly
be added to the conditions of the theorem below, we take the viewpoint that this
is a somewhat separate matter that does not have much to do with the present
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(local) theory of analytic models. Thus the point of the present section is to show
that analytic models satisfy the local regularity conditions required to prove the
consistency of the maximum likelihood estimator.

The theorem below is based mainly on that in Wald (1949) with generalizations
as described in Kiefer and Wolfowitz (1956). In the latter paper the result covered
the more general setting with an infinite sequence of nuisance parameters, but
their conditions are trivially simplified to the present case. In the numbering of the
conditions discussed in the proof of the theorem below we refer to the assumptions
listed in the paper by Kiefer and Wolfowitz.

Notations and setup from the introduction to this chapter is used in the sequel.
The probability measure with density f\(y,β) from (1.1) will be denoted Pβ, and
the maximum likelihood estimator (MLE) βn{K), where K C B, is any function
of γ( n ) which maximizes the likelihood function

on the set K. From now on the notation βn(K) is used exclusively to denote the
MLE, although it formally is the same as the notation for the local maximum
likelihood estimator which is not considered in the present section. Notice that
while the maximum may not be unique, its existence is guaranteed in the theorem
below by the compactness of K and the requirement that the model is analytic on
K and hence that the likelihood function is continuous.

Theorem 4.1 Assume that the model (1.1) is analytic in the open connected
set B C V and let K C B be any compact subset of B. Furthermore assume that
the identifiability condition

Pβi=Pβ2 =• 01=02 (4.1)

holds for β\,βi € B. Then any maximum likelihood estimator βn of the model
restricted to the parameter space K is strongly consistent, i.e.,

βn(K) -> βo almost surely (Pβo),

for any βo G K.

Proof. As in the proof of the theorem in the previous section we go through the
list of assumptions required to prove the theorem, comment on any changes for
our case, and verify that they are satisfied by any model fulfilling the requirements
stated in the theorem. Here we take the five assumptions from the paper by Kiefer
and Wolfowitz (1956), in the sequel referred to as KW, as the starting point, and
the numbers below correspond to their numbers. Occasionally we refer to the
similar assumptions from Wald (1949).

(1) As the first assumption in KW, the density is required to be a density
with respect to a σ-finite measure on a Euclidean space. As argued in the
previous section we do not wish to impose such a restriction on the sample
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space, and the importance for the proof is the log likelihood function and
its distribution. Since we have the local representation

l i β ύ k (4-2)

in a neighbourhood of any fixed point ft G ί , measurability of the like-
lihood function follows from the measurability of the ZVs. In fact, since
the differentials of the log likelihood are elements of real vector spaces, the
modification of the assumption here is quite trivial and unimportant.

(2) On a set of PβQ-probability one, the density function fι(y,β) is continuous
with respect to β in K.
This condition is stronger as stated here than in KW. First of all KW allow
(as Wald did) that the set of probability one may depend on the point at
which continuity is considered. We have no need of this generality since the
set E\ of probability one from Definition 2.2.1 of an analytic model, may be
chosen to be independent of the parameter point βo at which the model is
analytic. To see this, notice that the set E\ may be chosen independently of
the point β in some neighbourhood of any point βo G 5, cf. Lemma 2.3.4,
and hence it follows by a usual compactness argument that the set E\ may
be chosen as a fixed set throughout K. In fact, only σ-compactness is used
here, because it is sufficient to show that the 'global' set of probability
one may be represented as an intersection of a countable number of sets
of probability one. An important simplification of the condition as stated
above compared to the one in KW is that we have assumed the parameter
space considered to be compact whereas a compactification is considered in
KW.

(3) For any β\ G K and any δ > 0, the function

w(y; β1,δ) = suv{logf1(y;β):\\β-β1\\<δ}-log hfaβo) (4.3)

is measurable as a function of y G E\.
This measurability follows from the representation (4.2) and the continuity
of the function of which the supremum is taken, cf. the remark following
Condition 8 in Wald (1949). Compared to KW we have, for convenience,
used the log-density, instead of the density, and subtracted the log-density
at the point βo in the definition of the function w.

(4) For /?i,/?2 £ B, the identifiability condition

Pβi = Pβ2 => βl = ft

holds.
This is the same identifiability condition as stated in KW, although the
formulation is slightly different. The condition is stated directly in the
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theorem above. It must be imposed as a separate condition, as it does not
follow from the fact that the model is analytic.

(5) For any β\ G K we have

limE{w(F;/?!,<$} < oo.

Due to the representation (4.2), or more directly because the model is ana-
lytic, infinite values of the log-densities or of the expectations of differences
between log-densities, as in (4.2), do not occur in our case. Therefore we
have not stated the condition in its weaker form as in KW, where only the
positive part of the function w is included. From the representation (4.2)
and the condition (iv) from Definition 2.2.1 we see that the inequality

/;/?) : \\β - βx\\ <δ}

k=l

holds on a set of probability one, where M(y βι) and p(β\) are the functions
from Definition 2.2.1. For S sufficiently small this bound is seen to have
finite expectation if we can prove that M(Y;βι) may be chosen such that
it has finite expectation with respect to Pβ0 for any βo G K. Before we go
on to the proof of this claim, notice that as a general result we know that
also the function

has finite Pβ0-expectation, and consequently it follows that the condition
(5) holds. In fact, this latter function has negative expectation because of
the identifiability condition, cf., e.g., the proof in KW.
Let us turn now to the proof that Eβ0M(Y;β\) is finite. In fact, we show
that M(Y;βι) may be chosen such that it has finite exponential moments
with respect to any Pβ0, βo G B. Consider the mixed cumulant condition
(v) from Theorem 2.4.2, and let c(β) and λ(/3), β G B, denote functions
satisfying this condition. As the first step we want to prove that it is possible
to choose these two functions such that they are both bounded on K.
Let c(β) and λ(β) be given as any functions satisfying the condition (v) in
Theorem 2.4.2. From Lemma 2.5.5 it is then seen that for any β\ G K, and
any β G B satisfying

\\β- βi\\ < \

the condition (v) holds at β with c(β) < 16c(/3x) and X(β) < 4λ(/3i), because

{l-2λ(β1)\\β-β1\\}-1<2

and the same bound applies to the left hand side if the factor 2 is omitted.
For any β\ G K consider the open ball centered at β\ and with radius
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{4\(βι)}~1. Since the compact set K may be covered by a finite number of
these balls, the argument above shows that X(β) and c(β) may be chosen
to be bounded on K, still satisfying the mixed cumulant condition (v) in
Theorem 2.4.2. In the sequel we assume these two functions to be chosen
in this way.

The next step is to notice, by use of Lemma 2.4.1 and Theorem 2.4.2, that
the condition (iv) from Definition 2.2.1 is satisfied for

p(β) = 1 + (2ey/p)\(β)

and
) + c(β)2

9 (4.4)

where 1 has been added to the expression for p(β) from Lemma 2.4.1 to
avoid problems related to the case X(β) = 0. Here H(y,β) is known from
Lemma 2.4.1 to satisfy the moment condition

Eβexφc(β)H(Y;β)} < oo

for any s < p{β)~ι. Hence, with M(y;β) chosen as in (4.4), it follows that
for any β\ G K and any β G B satisfying

we have

< Eβl exp I 2M(Y;β1)Σakp(β1)
k-1

= E A exp {M(Y;/?!)2α/(l - ap(β1))}

< 00.

Now, let βι G K be an arbitrary fixed point and consider the set of /?0's for
which M(Y;βχ)y defined in (4.4), has finite exponential moments, i.e., the
set

A = {β0 G K : Eβo exp{θM(y;^i)} < oo for some s > 0 }. (4.5)

Since βι G A, this set is not empty. Consider a point βo G A and let so > 0
be such that
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Notice that for any β G B satisfying ||/?-/?o|| < {^p(βo)}"1^ Cauchy-
Schwartz' inequality gives

dPβo(y)

{{f(Y;β)/f(Y;β0)}2)

< oo.

Hence it follows that for any βo G A, the set of /J's within a distance
{3p(/?o)}""1 from βo is also contained in A. Since this distance is bounded
away from zero, it follows by standard arguments that A = K. In fact, since
B is σ-compact, the result implies that M(Y;βι) from Definition 2.2.1 may
be chosen to have finite exponential moments with respect to any

This completes the proof of the fifth condition from KW.
Thus, it follows that all the assumptions from the paper by Kiefer and Wolfowitz

are fulfilled, and hence that the result holds as claimed in the theorem. |

That the strong consistency of the estimator is the result in the theorem should
not be taken to imply that this is more relevant than the weak consistency, i.e.,
the convergence in probability of the estimator towards the fixed point βo. In
fact, we take the point of view that the weak consistency is more likely to be of
statistical relevance, but it follows from the strong consistency which happens to
be a consequence of the assumptions.




