
New Developments and Applications in Experimental Design
IMS Lecture Notes - Monograph Series (1998) Volume 34

SOME RECENT ADVANCES IN MINIMUM ABERRATION DESIGNS

B Y HEGANG CHEN AND A. S. HEDAYAT1
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The objective of this article is to review recent advances in the theory of characteriz-
ing minimum aberration designs in terms of their complementary designs. The approach
is very powerful for identifying minimum aberration designs whose complementary de-
sign sizes are small. Using this theory and some designs from Chen, Sun and Wu (1993),
we identify all minimum aberration 2n~m designs whose complementary design size is
less than 64.

1. Introduction and definitions. Fractional factorial designs have a long history
of successful use in many scientific investigations. A 2n~m fractional factorial design is a
2~m fraction of the 2n design, it has n factors but 2n~~m runs. Each factor is represented
by one of the numbers 1,2, ...,n, which are called letters. A product (juxtaposition)
of a subset of these letters is called a word. The number of letters in a word is called
its length. Associated with every regular 2n~rn fractional factorial design is a set of
m words, W\, W2, . ,Wm, called generators. The set of distinct words formed by all
possible products involving m generators gives the defining relation of the fraction.
The resolution of such a design is defined as the length of the shortest word in the
defining relation [Box and Hunter (1961)]. Resolution is a commonly used criterion
for selecting regular fractional factorial designs. In a design of resolution r, no c-factor
effect is confounded with effects involving less than r — c factors. Let D(2n~m) be a
regular 2n~m fractional factorial design, the vector W(D) = (Ai(£>), A2{D),..., An{D))
is defined as the wordlength pattern of D(2n~m), where Ai(D) is the number of words of
length i in its defining relation. For related additional information concerning fractional
factorial designs, see Raktoe, Hedayat and Federer (1981).

In situations where there is little prior knowledge about the possible greater impor-
tance of factorial effects, often experimenters prefer to use a design with the highest
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possible resolution. However using resolution alone may mislead the selection process
in some situations because all fractional factorial designs with the maximum resolution
are not equally desirable. Fries and Hunter (1980) introduced the minimum aberration
criterion for discriminating among all 2 n " m designs with the same resolution. For two
2n~m designs dι and d2 with wordlength patterns W{d\) and W(d2) respectively, dγ is
said to have less aberration than d2 if As(d\) < As(d2) where s is the smallest integer
such that As(dι) φ As(d2) A 2n~m design has minimum aberration if no other 2n~m

design has less aberration. Franklin (1984) extended this criterion to p n ~ m fractional
factorial designs, where p is a prime power. Both resolution and minimum aberration
are defined under the assumption: (a) lower order interactions are more important
than higher order interactions, and (b) interactions of the same order are equally im-
portant. The criterion of minimum aberration sequentially minimizes Aι, A2, ^3,..,
and can rank-order almost any two designs. Minimizing the numbers of short-length
words generally leads to the estimability of more lower-order interactions. For example,
if we assume that three-factor and higher-order interactions are negligible, designs of
maximum resolution IV with minimum number of words of length four may provide
more estimable two-factor interactions. This can be best illustrated by the following
example from Fries and Hunter (1980).

EXAMPLE 1. There are precisely three non-isomorphic 2 7 " 2 fractional factorial
designs with resolution IV,

dx: 1 = 1236 = 2347 = 1467,
d2: I = 1236 = 1457 = 234567,
d3: I = 4567 = 12346 = 12357.

It can be shown that IV is the maximum attainable resolution for a 27~2 design. Their
wordlength patterns are

W(d1) = (0,0,0,3,0,0,0),
W(d2) = (0,0,0,2,0,1,0),
W(d3) = (0,0,0,1,2,0,0).

Looking through these wordlength patterns, clearly cί3 has minimum aberration. By
comparing with other two designs, we can see that d$ has the smallest number of two-
factor interactions confounded with each other, i.e., it provides the largest number of
estimable two-factor interactions when three-factor and higher-order interactions are
negligible.

The minimum aberration criterion plays a fundamental role in practical selection of
factorial designs (Wu and Chen (1992)), characterization of such designs is an impor-
tant problem in design theory. For catalogues of some minimum aberration designs,
see Franklin (1984), Chen and Wu (1991), Chen (1992) and Chen, Sun and Wu (1993).
Meanwhile the criterion may also lead to other good overall properties. Krouse (1994)
studied optimal first order 2n~m designs which are locally robust to misspecification of
the prior distribution parameter. These designs turn out to have minimum aberration.
Cheng, Steinberg and Sun (1998) studied the performances of minimum aberration

187



designs under two different criteria quantifying the notion of model robustness, esti-
mation capacity and the expected number of suspected two-factor interactions. They
showed that minimum aberration is a good surrogate for both of these criteria.

For factor screening experiments in many scientific investigations, regular 2n~m de-
signs with resolution III or IV are widely used. The study of minimum aberration
designs with low resolution has a direct impact on practical experimentation. Chen
(1993), Chen and Hedayat (1996) and Tang and Wu (1996) proposed a method for char-
acterizing minimum aberration 2n~m designs in terms of their complementary designs.
Suen, Chen, and Wu (1997) extended the method to identify minimum aberration pn~m

designs. This method is very powerful for identifying minimum aberration designs with
low resolution. In this paper, we review recent advances in the theory of characterizing
minimum aberration designs. For simplicity, we focus entirely on two-level designs,
even though some of the results can be generalized to the case where the number of
levels is a prime power. In Section 2, we study the representation of a fractional facto-
rial design and its complementary design in terms of finite geometry. Some theorems
and rules for characterizing minimum aberration designs are stated in Section 3. Using
these rules and some designs from Chen, Sun, and Wu (1993), we identify all minimum
aberration 2 n " m designs whose complementary design size is less than 64 in Section 4.

2. Prel iminaries. First, we discuss a geometric interpretation of regular fractional
factorial designs by using techniques of finite projective geometry [see Bose (1947) for
a detailed discussion].

Let D(2n~m) be a regular 2n~m fractional factorial design. A word in the defining
relation of D(2n~m) can be represented by a binary row vector. Let G be an m x n
matrix of rank m over the finite field GF(2) whose rows are m generators of D, that
is, Wi,...,Wm. Each treatment combination in D is viewed as a row vector x which
satisfies the equation ΎLG' = 0. The subspace generated by the rows of G is the defining
relation of D(2n~m). Let Bn be an (n — m) x n matrix whose n — ra rows form a basis
of the solution space of the equation xG' = 0. Following the notation and concepts in
Chen and Hedayat (1996), a D(2n~m) can be represented as row vectors as follows:

(2.1) D(2n-m) = {x : x = u f l n , u G EG(n - ra, 2)},

where EG(n — m, 2) is the Euclidean geometry of dimension n — m over GF(2) and u is
represented by a column vector. Bn is called the factor representation of the fractional
factorial design D(2n~m). One such matrix Bn can be obtained by writing down the
coordinates of n points of PG(n — ra — 1, 2) as columns, where PG{v, 2) is the projective
geometry of dimension v over GF(2). Then a regular fractional factorial design as in
(2.1) is determined by a set of n points of PG(n — m — 1,2). The factor representation
can be viewed as a subset of n points of PG(n — m — 1, 2).

Let k = n — m and a 2n~^n~k>j design with resolution III or higher be determined
by a subset of n distinct points of PG(k — 1, 2). Let Bn — {ai,..., a n } be a subset of n
distinct points of PG(k — 1,2). Such a subset can be obtained by deleting 2k — 1 — n
points from PG(k — 1,2). Without loss of generality, we can represent all points of
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PG(k-1,2) as

(2.2)

B n ~Bn

where the first n points are all points of jBn, and Bn denotes all points of PG(k —
1, 2)\i3n = {an+1,..., a2fc_i}. The set Bn contains the remaining n points in PG(k —
1,2), where n = 2k — I - n. Let D and D be the two fractional factorial designs
corresponding to Bn and Bn as their factor representations respectively. 15 is called
the complementary design of D. Since the defining relation of D consists of all those
words w, w / 0, for which Bnw = θ', a word of length I corresponds to I points of J3n,
say a^, a^,..., ain such that a ^ + a ^ + . . + a ^ O . We illustrate these concepts through
the following example. For convenience, a point of PG(k — 1,2) is denoted by iιi2 - -iι
if the iith, z2th,...,^th coordinates of this point are 1 and all others are zeros.

EXAMPLE 2. Let d be a 2 4 " 1 fractional factorial design with the factor represen-
tation £?4, where

/ 1 0 0 1

B 4 = 0 1 0 1
V 0 0 1 0

The factor representation 5 4 can be considered as a subset {1,2,3,12} of PG(2,2),
and it can be obtained by deleting B3 = {13,23,123} from PG(2,2),

1,2,3,12,13,23,123.

BA B3

The complementary design d corresponds to B3 as its factor representation. The
wordlength pattern of d is

W(d) = (0,0,1,0).

The wordlength pattern of d is

W(d) = (0,0,0).

Bose (1947) studied the problem of determining the maximum number of factors
that can be accommodated in a regular fractional factorial design when interactions
up to a given order are left unconfounded. For 2k~ι < n < 2k — l(k = n — m), the
maximum resolution of any 2n~m design is equal to III. Therefore, the complementary
design of a minimum aberration 2n~m design with resolution III has relatively small
number of factors. It is by far much easier to handle the wordlength pattern of a
small complementary design than that of a large 2n~m design. However, the impor-
tant question is how to link the wordlength pattern of a 2n~m design with that of its
complementary design.

3. Characterization of minimum aberration designs in terms of their
complementary designs. Suen, Chen, and Wu (1997) studied the relationship be-
tween the wordlength patterns of a regular fractional factorial design and its comple-
mentary design. By applying the techniques in coding theory, they obtained explicit
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identities between the wordlength pattern of a 2n m design and that of its comple-
mentary design. These identities provide a powerful tool for characterizing minimum
aberration 2n~m designs in terms of their complementary designs.

THEOREM 1 [Suen, Chen and Wu(1997)]. Let W(D) and W(D) be the wordlength
patterns of a 2n~m design D and its complementary design D, respectively. Then

(3.1) Ai{D) = d + Ci0 + ΣCijAjiD) + (-l)VLiCD), for i = 3, ...,n,

where, withk = n-m, d = 2-k[Pi(0;n)-Pi(2k-1;n)}, andPi(j n) =
1 Λ\*l 3 \ I n

s=0 * S

and Qj = (-1) ' 2

ί n \
Note that Ai(D) in (3.1) are 0, for i > n. We extend the definition of I to allow

\ s )
n and s to be any integers:

( n ( n - l ) ( n - s + l)

φ _ 1 } . . t l for pontive s
1 for 5 = 0
0 for negative s.

The identities in (3.1) have explicit forms so that the wordlength pattern of a 2n~m

fractional factorial design can be readily calculated from that of its complementary
design. Using these equations, some rules for identifying minimum aberration 2n~m

designs in terms of their complementary designs can be easily established.

R U L E 1. A 2n~m design D* with D* as its complementary design (of size n) has
minimum aberration if
(i) A3(D*) is the maximum among all complementary designs of size n,
(ii) D* is the unique design satisfying (i).

R U L E 2. A 2n~m design D* has minimum aberration if
(i) A3(D*) is the maximum among all complementary designs of size n,
(ii) A±(D*) is the minimum among all complementary designs of size n whose number
of words of length three equals A$(D*),
(iii) D* is the unique design satisfying (ii).

More generally, by noting the relation

Ai(D) = (-iyAi(D) + lower order terms,

we can develop similar rules for identifying minimum aberration designs if it is necessary
to minimize the numbers of words of length i(> 5).
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The following example illustrates the application of these rules for identifying min-
imum aberration designs.

EXAMPLE 3. All points of PG(2, 2) can be represented as

PG(2,2) - {1,2,3,12,13,23,123}.

Any 24"1 design of resolution III or higher can be determined by a subset of four distinct
points of PG(2, 2). The factor representation of its complementary design consists of
the remaining three points of PG(2,2). Up to isomorphism (Pu (1989)), there are
two different complementary designs d\ and d2 corresponding to factor representations
B\ = {13,23,123}, and B\ = {12,13,23} respectively. The wordlength patterns of
these complementary designs are W{d\) = (0,0,0) and W(d2) — (0,0,1). Let d\ and
d2 be two 24"1 designs corresponding to factor representations which result in deleting
B\ and B\ from PG(2,2) respectively. Since d2 has the maximum number of words of
length three between d\ and d2, the design d2 has minimum aberration. By (3.1), we
have the identities,

A3(D) =l-As(D),
M{D) =A3(D).

The wordlength patterns of dι and d2 can be calculated from those of their comple-
mentary designs,

W(di) = (0,0,1,0),
W(d2) = (0,0,0,1).

Whenever a 2n~m design of resolution three or higher has minimum aberration, its
number of words of length three must be minimized, i.e., its complementary design
has the maximum number of words of length three among all complementary designs
of size n. For n = 2k — 1 — n = 2r + q (0 < q < 2r), the factor representation of
the complementary design is an n-subset of PG(k — 1,2). Let rank of an n-subset
of PG(k — 1,2) be the maximum number of independent points in the subset. The
rank of any n-subset of PG(k — 1, 2) is at least r + 1. In Example 3, the 3-subset J3f
containing the maximum number of words of length three has the minimum rank two,
while the rank of B\ with no word of length three is three. Chen and Hedayat (1996)
discovered that the factor representation of the complementary design D of size 2Γ + q
(0 < q < 2r) containing the maximum number of words of length three must have
the minimum rank r + 1. Furthermore, Chen and Hedayat (1996) obtained one factor
representation of the complementary design containing the maximum number of words
of length three.

THEOREM 2 [Chen and Hedayat(1996)]. Let n = 2*-l -n = 2r + q andO < q < 2r

(r < k). The maximum number of words of length three in the complementary design
of size n is

(32) ( y i ) ( y 2 )
yό ' ( 2 2 - l ) ( 2 2 - 2 )

191



One factor representation of the complementary design containing the maximum num-
ber of words of length three is

(3.3) PG{r - 1,2) U {a, a + a1?..., a + a j ,

where PG{r - 1,2) is an {r-I)-flat of PG{k - 1, 2 ) , a* e PG(r - 1 , 2 ) for i = l , . . . , g ,
and a € PG{k - 1,2) \ PG(r - 1 , 2 ) .

REMARK. The set (3.3) is one factor representation of the complementary design
containing the maximum number of words of length three, the structure is not unique
[see Chen and Hedayat (1996) for a detailed discussion].

Since the factor representation of the complementary design D of size 2r + q
(0 < q < 2r) containing the maximum number of words of length three must have
the minimum rank r + 1, the factor representation of the complementary design of
minimum aberration 2n~m design should be an n-subset of an r-flat of PG(k — 1,2)
which can be viewed as a copy of PG(r, 2) embedded in PG(k — 1,2). For simplicity,
it is stated as an n-subset of PG(r, 2). To search for minimum aberration 2n'm design
with its complementary design of size n = 2r + q (0 < q < 2r), we only need to con-
sider all n-subsets of PG(r, 2). The maximum number of words of length three in the
complementary design can be used to further narrow down possible candidates for the
complementary design of the minimum aberration design. This provides an efficient
way to identify minimum aberration designs in terms of their complementary designs.

4. Some families of minimum aberration 2n~m designs. The classification
rules discussed in Section 3 are very powerful for constructing minimum aberration
designs whose complementary design sizes are relatively small. Applying Rules 1 and
2, Chen and Hedayat (1996) constructed all minimum aberration 2n~m designs whose
complementary design size is less than 16. Using the complete catalogue of two-level
fractional factorial designs for 32 and 64 runs provided by Don X. Sun, a coauthor
of Chen, Sun, and Wu (1993) and these classification rules, we obtain the following
factor representations of the complementary designs of size n with the minimum rank
(16 < n < 63). Deleting these factor representations from any PG(k — 1,2) yield
subsets corresponding to minimum aberration designs. Hence we have constructed all
minimum aberration 2n~m designs whose complementary design size is less than 64.

ra = 16
Bw = {1,2,3,4,5,12,13,23,123,14,24,124,34,134,234,1234}

ή = 1 7
#17 = {1, 2,3,4, 5,12,13,23,123,14, 24,124,34,134, 234,1234,15}

ή=18

Biβ = {1,2,3,4,5,12,13,23,123,14,24,124,34,134,234,1234,
15,25}

ή = 1 9
B19 = {1,2,3,4, 5,12,13,23,123,14,24,124,34,134, 234,1234,
15,25,35}
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π = 20

B
20
 = {1,2,3,4,5,12,13,23,123,14,24,124,34,134,234,1234,

15,25,35,45}

ή = 21

B
21
 = {1,2,3,4,5,12,13,23,123,14,24,124,34,134,15,25,125,35,

135,45,145}

ή=22

B
22
 = {1,2,3,4,5,12,13,23,123,14,234,24,124,34,134,15,25,125,

35,135,45,145}

n = 23

B
23
 = {1,2,3,4,5,12,13,23,123,14,234,24,124,34,134,15,25,125,

35,135,45,235,145}

n = 24

B
24
 = {1,2,3,4,5,12,13,23,123,14,234,24,124,34,134,15,

25,125,35,135,45,235,145,245}

n = 25

B
25
 = {1,2,3,4,5,12,13,23,123,14,234,24,124,34,134,1234,15,

25,125,35,135,45,245,345,12345}

n = 26

B
26
 = {1,2,3,4,5,12,13,23,123,14,234,24,124,34,134,1234,

15,25,125,35,135,45,235,145,245,345}

n = 27

B
27
 = {1,2,3,4,5,12,13,23,123,14,234,24,124,34,134,1234,15,

25,125,35,135,45,235,145,245,345,12345}

π = 28

B
28
 = {1,2,3,4,5,12,13,23,123,14,234,24,124,34,134,1234,15,

25,125,35,135,45,235,145,245,345,2345,12345}

n = 29

B
29
 = {1,2,3,4,5,12,13,23,123,14,234,24,124,34,134,1234,15,

25,125,35,135,45,235,145,245,345,2345,1345,12345}

n = 30

B
30
 = {1,2,3,4,5,12,13,23,123,14,234,24,124,34,134,1234,15,

25,125,35,135,45,235,145,245,345,2345,1245,1345,12345}

= 32

B
32
 = {1,12,13,23,14,24,34,1234,15,25,35,126,136,1235,45,

1245,1345,2345,146,246,346,12346,156,256,356,12356,456,236,

12456,13456,23456,123456}

= 33

#33 = {1,2,12,13,23,14,24,34,1234,15,25,35,126,136,1235,45,

1245,1345,2345,146,246,346,12346,156,256,356,12356,456,236,

12456,13456,23456,123456}
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n = 34

B
M
 = {1,2,3,12,13,23,14,24,34,1234,15,25,35,1235,45,

1245,1345,2345,126,136,236,146,246,346,12346,156,

256,356,12356,456,12456,13456,23456,123456}

n = 35

B
35
 = {1,2,3,4,12,13,23,14,24,34,1234,15,25,35,1235,45,

1245,1345,2345,126,136,236,146,246,346,12346,156,

256,356,12356,456,12456,13456,23456,123456}

π = 36

5
3 6
 = {1,2,3,4,5,12,13,23,14,24,34,1234,15,25,35,1235,45,

1345,2345,126,136,236,146,246,346,12346,156,256,356,12356,

456,1245,12456,13456,23456,123456}

n = 37

B
37
 = {1,2,3,4,5,6,12,13,23,14,24,34,1234,15,25,35,126,1235,

1245,1345,2345,146,246,346,12346,156,256,356,12356,456,136,

236,45,12456,13456,23456,123456}

n = 38

#38 = {2,3,4,5,6,12,13,23,14,24,34,134,1234,15,25,125,35,

1245,1345,2345,12345,126,136,236,146,246,346,12346,156,

1235,45,256,356,12356,456,12456,13456,123456}

π = 39

£39 = {2,3,4,5,6,12,13,23,14,24,34,134,1234,15,25,125,35,

45,1245,1345,2345,126,146,246,346,12346,156,256,356,12356,

1235,456,136,236,12456,3456,13456,23456,123456}

n = 40

B
i0
 = {2,3,4,5,6,12,13,23,14,24,34,134,1234,15,25,35,135,

1235,45,145,1245,1345,2345,146,246,346,12346,156,256,356,

126,12356,456,136,236,12456,3456,13456,23456,123456}

n = 41

#4i = {2,3,4,5,6,12,13,23,14,24,34,134,1234,15,25,125,35,

45,1235,1245,1345,2345,126,136,236,146,246,346,12346,156,

145,256,356,12356,456,2456,12456,3456,13456,23456,123456}

n = 42

B
42
 = {2,3,4,5,6,12,13,23,14,24,34,134,1234,15,25,125,35,

45,145,245,1245,1345,2345,126,136,236,146,246,346,12346,156,

1235,256,356,12356,456,2456,12456,3456,13456,23456,123456}

n = 43

£43 = {1,2,3,4,6,12,23,123,14,24,124,34,134,234,1234,15, 25,

135,1235,45,145,245,1245,345,1345,2345,12345,126,136,236,

256,356,12356,456,1456,2456,12456,3456,13456,23456,

35,156,123456}

194



n = 44

B
u
 = {1,2,3,4,5,6,12,13,23,123,14,24,124,34,134,234,1234,

25,125,35,135,235,1235,45,1245,1345,2345,146,246,346,

256,356,12356,456,1456,2456,12456,3456,13456,23456,

15,12346,156,123456}

n = 45

B
i5
 = {1,2,3,4,5,6,12,13,23,123,14,24,124,34,134,234,1234,

125,35,135,235,1235,45,145,1245,1345,2345,146,246,346,

256,356,12356,456,1456,2456,12456,3456,13456,23456,

15,25,12346,156,123456}

n = 46

5
4
6 = {1,2,3,4,5,6,12,13,23,123,14,24,124,34,134,234,

25,125,35,135,235,1235,45,145,1245,1345,2345,146,246,346,

256,356,2356,12356,456,1456,2456,12456,3456,13456,23456,

1234,15,12346,156,123456}

n = 47

B
47
 = {1,2,3,4,5,6,12,13,23,123,14,24,124,34,134,234,1234,

25,125,35,135,235,1235,45,145,1245,1345,2345,146,246,346,

12346,156,256,356,2356,12356,456,1456,2456,12456,3456,13456,

15,2346,23456,123456}

n = 48

£
4 8
 = {1,2,3,4,5,6,12,13,23,123,14,124,34,134,234,1234,

15,25,125,35,1235,45,145,245,1245,345,1345,236,146,346,

1346,2346,156,12345,136,256,356,1356,2356,12356,456,1456,

24,2456,3456,13456,23456,123456}

n = 49

B
i9
 = {1,2,3,4,5,6,12,13,23,123,14,124,34,134,1234,15,25,

125,35,135,1235,45,145,1245,345,1345,136,236,24,146,246,346,

1346,2346,12346,156,256,356,1356,2356,12356,456,1456,

2456,12456,3456,13456,23456,123456}

n = 50

#50 = {1,2,3,4,5,6,23,123,14,24,124,34,134,234,1234,15,

25,125,35,135,235,1235,45,245,1245,345,1345,2345,126,136,236,

146,246,346,1346,2346,12346,156,256,1256,356,2356,12356,

456,2456,12456,3456,13456,23456,123456}

ή = 51

£
5 1
 = {1,2,3,4,5,6,12,13,23,123,14,34,134,234,1234,15,25,125,

35,24,235,1235,45,145,245,1245,345,2345,12345,126,136,146,

346,1346,2346,12346,156,256,1256,356,1356,2356,12356,1456,

246,2456,12456,3456,13456,23456,123456}

τϊ = 52

β
5 2
 = {1,2,3,4,5,6,12,13,23,123,14,34,134,234,1234,15,

25,125,35,235,1235,45,145,245,1245,345,2345,12345,126,

136,236,24,146,246,346,1346,2346,12346,156,256,1256,356,

1356,2356,12356,1456,2456,12456,3456,13456,23456,123456}

195



n = 53

5
5
3 = {1,2,3,4,5,6,12,13,23,123,14,34,134,234,1234,15,25,35,

135,24,235,1235,45,145,245,345,1345,2345,12345,126,136,236,

146,246,1246,346,1346,2346,12346,256,1256,356,1356,2356,

156,12356,1456,2456,12456,3456,13456,23456,123456}

π = 54

B
5i
 = {1,2,3,4,5,6,12,13,23,14,24,124,34,134,234,1234,15,

25,125,35,135,235,1235,45,145,245,345,1345,2345,12345,126,

136,236,146,1246,346,1346,2346,12346,156,256,1256,356,1356,

2356,12356,456,1456,2456,12456,3456,13456,23456,123456}

n = 55

#55 = {1,2,3,4,5,6,12,13,23,123,14,24,124,34,134,234,15,25,

125,35,135,235,1235,45,245,1245,345,1345,2345,12345,126,136,

236,1236,146,1246,346,1346,2346,12346,156,256,1256,356,1356,

2356,12356,456,1456,2456,12456,3456,13456,23456,123456}

n = 56

B
56
 = {1,2,3,4,5,6,12,13,23,123,14,24,124,34,134,234,1234,15,

125,35,235,1235,45,145,245,1245,345,1345,2345,12345,126,136,

1236,1456,146,1246,346,1346,2346,12346,156,256,1256,356,

2356,12356,456,2456,12456,3456,13456,23456,

25,236,1356,123456}

π = 57

£57 = {1,2,3,4,5,6,12,13,23,123,14,24,124,34,134,234,1234,

125,35,135,235,1235,45,145,245,1245,345,1345,12345,126,136,

2345,1456,146,1246,346,1346,2346,12346,156,256,1256,356,

12356,456,2456,12456,3456,13456,23456,

15,25,236,1236,1356,2356,123456}

n = 58

B
58
 = {1,2,3,4,5,6,12,13,23,123,14,24,124,34,134,234,1234,

125,35,135,235,1235,45,145,245,1245,345,1345,12345,126,136,

2345,1456,146,246,1246,346,1346,2346,12346,156,256,1256,356,

2356,12356,456,2456,12456,3456,13456,23456,

15,25,236,1236,1356,123456}

n = 59

£
5 9
 = {1,2,3,4,5,6,12,13,23,123,14,24,124,34,134,234,1234,

125,35,135,235,1235,45,145,245,1245,345,1345,12345,126,136,

2345,156,1456,146,246,1246,346,1346,2346,12346,56,256,1256,

2356,12356,456,2456,12456,3456,13456,23456,

15,25,236,1236,356,1356,123456}

n = 60

Beo = {1,2,3,4,5,6,12,13,23,123,14,24,124,34,134,234,1234,

125,35,135,235,1235,45,145,245,1245,345,1345,12345,126,136,

1236,46,2345,1456,146,246,1246,346,1346,2346,12346,156,256,

1356,2356,12356,456,56,2456,12456,3456,13456,23456,

15,25,236,1256,356,123456}

196



= 61

B
61
 = {1,2,3,4, 5,6,12,13,23,123,14,24,124,34,134,234,1234,

125,35,135,235,1235,45,145,245,1245,345,46,1345,12345,126,

236,1236,2345,156,146,246,1246,346,1346,2346,12346,56,256,

1356,2356,12356,456,1456,2456,12456,3456,13456,23456,

15,25,36,136,1256,356,123456}

= 62

B
62
 = {1, 2,3,4, 5,6,12,13,23,123,14,24,124,34,134, 234,1234,

125,35,135, 235,1235,45,145, 245,1245,345,1345,46,12345,26,

236,1236,2345,156,146,246,1246,346,1346,2346,12346,56,256,

1356,2356,12356,456,1456,2456,12456,3456,13456,23456,

15,25,126,36,136,1256,356,123456}

= 63
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