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EXACT DISTRIBUTIONS OF SEQUENTIAL THRESHOLD
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We observe that, for any sequential procedure that is designed to estimate a pa-
rameter such as the threshold in a binary response experiment, the distribution of any
estimator after n steps is discrete, with at most 2n possible values. Furthermore, this
distribution can be computed exactly, rendering simulations unnecessary. We compute
and analyze the distributions of some estimators based on a certain up-down procedure,
with a view to their dependence on the initial level and stepsize.

1. Introduction. Binary response experiments and psychometric functions. The
ideas and methods considered here apply to any binary response experiment; that is,
to any experiment having two possible outcomes, denoted 0 and 1, in which the value
of a control variable x (set by the experimenter) determines the probability Φ(x) of
response 1. The general design problem is to choose values of x so that the responses
will allow efficient estimation of various features of the function Φ(x).

Such situations arise in a great many scientific areas. For concreteness we con-
sider the context of psychophysics. In this setting, a stimulus can be delivered to a
subject at different levels x, and responses 1 and 0 correspond to correct and incorrect
identification, respectively, of some feature of the stimulus. For example, a brush
may be stroked lightly on the subject's skin, at a fixed, constant velocity and pressure,
and the length of skin traversed, as well as the direction of the brush stroke, can be
varied. The subject is to attempt to identify correctly the direction of motion, and
if the subject's probability of doing so is Φ(x) when the traverse length (level) is x,
then Φ(x) is the subject's psychometric function. Another example is in hearing tests,
where tones of a fixed frequency but different amplitudes x are delivered to a subject's
ear, and response 1 corresponds to the tone's being audible to the subject.

In such studies it is assumed that Φ(x) is a monotone increasing function of x. It
is also of course between 0 and 1, and it is usually assumed to be continuous; but it
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need not be the cumulative distribution function (CDF) of a probability distribution,
as its limits at ±00 need not be 0 and 1. (It is worth noting that in some studies
Φ(x) is decidedly not the CDF of any distribution. For example, in what is called a
2-alternative forced choice version of the brushstroke experiment described above, two
stimuli are delivered with the same traverse length but opposite directions, and the
subject is to identify which one was in a specified direction. For such an experiment
Φ(a ) has no values lower than 0.5.)

In psychophysics, a typical problem is to estimate the subject's threshold, which is
usually defined as the value of x for which Φ(rz ) = 0.5 [cf. Harvey (1986) and Wetherill
(1963)]. We also refer to this as the quantile #0.5 of Φ In toxicology, #0.5 corresponds
to the LD50, but one may be more interested in other quantiles such as go.θ5 In some
psychophysical contexts the threshold is defined as the value of x maximizing the
derivative Φ'(a ); this may coincide with q0^, but for some commonly-assumed forms
of Φ it corresponds to some quantile other than #0.5

Another common psychophysical problem is the estimation of both the threshold
and the maximum slope of Φ(x), a quantity that reflects the subject's sensitivity or
"tuning." It is common to assume a parametrized psychometric function, Φ(α ) =
F(β(x — μ)), where F is some known function, often a symmetric CDF such as the
standard normal or logistic. In such cases μ is the threshold (by any definition), and
β is proportional to the maximum value of the slope. Sometimes the extreme-value
CDF is used for F (when x is on a logarithmic scale, corresponding to a Weibull
psychometric function for positive x in "real" units). In this case μ is taken to be the
point of steepest slope, which is not equal to #0.5•

We remark again that the subject of this paper does not depend on the context
or language of psychophysics. We consider here the evaluation of arbitrary sequential
procedures for estimating any scalar or vector parameter of the function Φ(x) that
governs any binary response experiment.

2. Sequential procedures. Perhaps the most commonly-used sequential proce-
dures for threshold estimation are loosely termed "up-down" or "staircase" procedures.
The use of these for estimating go.5 was proposed by von Bekesy (1947) and by Dixon
and Mood (1948). The first stimulus is delivered at some prespecified level, and the
next stimulus is delivered at a higher level if the response is 0 and a lower level if it is 1.
The procedure is repeated, with some rule for determining the successive amounts of
increase and decrease (the stepsizes). For the up-down procedure with a fixed stepsize
h, Durham and Flournoy (1994) proposed a randomized version of the simple up-down
procedure, for which they showed that, given a monotonic psychometric function, the
delivered stimulus levels converge to a unimodal distribution whose mode is less than h
from the target quantile. Giovagnoli and Pintacuda (1998) embed this procedure into
a general class of procedures that do likewise, and show the Durham-Flournoy rule to
be optimal in the sense that it is more peaked than others in the class. Giovagnoli
and Pintacuda (1996) discuss these and other procedures in the light of optimal design
theory.

Here, for the sake of concreteness, we examine an up-down procedure which is
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frequently used by psychophysicists in at least one laboratory at the University of
North Carolina. It is one of a class of procedures loosely termed PEST, for Parameter
Estimation by Sequential Testing, by Taylor and Creelman (1967) and Taylor, Forbes
and Creelman (1983). The particular procedure we consider here is actually called
"PEST" by Gelfand (1990), but because of the vagueness of this term we call it the
Adaptive Stepsize Procedure, or ASP.

There are two parameters in ASP: an initial stimulus level x\ and an initial stepsize
so- The stimulus level is decreased by the current stepsize after every correct (1)
response and increased by the current stepsize after every incorrect (0) response. The
stepsizes are adjusted as follows: the stepsize is divided by 2 whenever a 1 has been
followed by a 0 or a 0 by a 1 (this is called a "reversal"), and it is multiplied by 2
whenever there have been three consecutive Γs or three consecutive 0's. In algorithmic
form, ASP can be formulated as follows.

Procedure ASP(:ci, so) [#i ^starting stimulus level, s0 ^starting stepsize]
Set n = 1.
Repeat until stopping rule is met:

Deliver stimulus at level xn.
If latest three responses were 111 or 000, increase the stepsize:

else if latest two responses were 10 or 01, decrease the stepsize:
sn = 5n_i/2;

else
Sn = 5 n_i.

If latest response was 1,
xn+ι = xn - sn\

else

End.

The usual stopping rule (which will play no part in what we do here) is to stop
when sn first becomes smaller than some predefined size send.

Notice that because the stepsize is adjusted before a step is taken, the first stepsize
that is actually used as an increment is s\. However, 5χ always equals s0, because the
algorithm will not change the stepsize until at least two stimuli have been delivered.
Hence we will refer later to the initial stimulus level and stepsize as x\ and s\, to avoid
confusion.

Figure 1 shows an example of an ASP session that was arbitrarily stopped after 14
trials. The symbol + indicates a correct (1) response, and o indicates an incorrect
(0) response. The height of the symbol is the level of the stimulus. The figure shows
that the first stimulus was delivered at X\ — 0 and the response was 0. No change in
stepsize can occur after the first step, so S\ — So and the stimulus level was increased
by si = 0.5. The second stimulus, at level x2 = 0.5, elicited a correct response.
Since the latest two responses were 01, the stepsize was halved to $2 — 0.25; since the
latest response was 1, the level was decreased by 52- The process continued. Notice
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that when there were more than three consecutive Γs, the stepsize was doubled after
each succeeding 1, since in each case the latest three responses were 111. Similarly,
when there were more than three consecutive O's, the stepsize was doubled after each
succeeding 0.

3 o

-1

- 2

10 15
trial number

FIG. 1. An ASP session with xι = 0 and SQ = 0.5.

Several threshold estimates are possible, based on the results of an ASP session. A
common estimate is xn+i (xi5 in the example of Figure 1), the level of the next stimulus
that would have been delivered had the session continued. Others are x, the mean
of all stimuli delivered, xmed, the median, and Xk, the mean of all stimuli delivered
in the last A: runs, where a run is defined as a sequence of consecutive Γs (resp. O's)
preceded and followed by O's (resp. Γs). (For example, the last three runs in the
session pictured in Figure 1 comprise 10 stimuli, including the undelivered 15ίΛ.) Still
another threshold estimate that is often used is the mean of the last k reversal points.
For the example of Figure 1, with k = 4, this would equal (x2 + x + xio + xu)/^
(For such an estimate, the stopping criterion would be that a certain even number of
reversals have occurred.)

3. Exact distributions of estimates. To evaluate the performance of one of
the threshold estimates described above for ASP-or any estimator of any parameter
based on any sequential procedure-one thinks first of Monte Carlo simulation. One
would simulate sessions in which the procedure is used on a subject with a known
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psychometric function Φ; the simulated subject would respond 1 with probability Φ(a )
and 0 with probability 1 - Φ(a ) to any stimulus delivered at level x, independently
of other stimuli in the session. (Two assumptions are being made here that are
certainly open to question in real psychophysical experiments, but that are widely
used in analysis of procedures. One is that the successive trials are independent, and
the other is that the psychometric function does not vary with time.)

However, upon thinking about the results of such a simulation, one is led to the
following simple observations. First, the set of possible values of the estimate after
n steps is finite for any fixed n. For example, if n is only 2, there are just four
possible values of the estimator xn+ι = x$. If, as in the previous example, XQ — 0
and s0 = 0.5, then these four values are 2, 0.5, —0.5, and —2. In general, there are at
most 2n different values of the estimate, because each value is determined completely
by the sequence of subject's responses, and there are 2n such sequences. Finally, each
response sequence also uniquely determines (along with the initial conditions, which
in the case of ASP are xλ and s0) the sequence of stimulus levelsxi,x2, -#n+i I n

turn, these levels determine the probabilities of the responses themselves. The value
of the final estimate (whether it be x n + i or some other estimate), and its probability,
are also determined uniquely by the response sequence.

The consequence of these observations is that given a subject's psychometric func-
tion, any n-step sequential procedure has a finite probability space of2n outcomes whose
probabilities can be computed exactly. Any parameter estimator based on the procedure
is a random variable on this finite space, whose distribution is therefore known exactly.
The elements of the probability space are pairs (x, r) , where r = (r i ? r 2 , . . . , rn) is one
of the sequences of n 0's and Γs and x = (xι, x2,..., xn, £n+i) ι s the resulting sequence
of stimulus levels. The probability of the pair (x, r) is then

P(x,r)= Π *(**)• Π (l-*(*j))

The remainder of this paper presents some features of the exact distributions of
threshold estimates based on the ASP procedure described above, stopped after 14
steps.

We remark here that the computation of exact distributions is not restricted to
sequential procedures that are truncated after a fixed number of steps. The method
can be used for a procedure with any stopping rule, in the sense that for any e > 0
one can compute the exact probabilities of a finite set of outcomes whose probability
exceeds 1 — e. One simply computes, for each n, the probabilities of all outcomes that
have terminated in n or fewer steps, increasing n until the probabilities of all outcomes
computed so far add to more than 1 — e. In such cases, means and standard deviations
of the distributions cannot be computed reliably because of the possible presence of
very large values whose probabilities are not included. But more robust measures of
location and scale will not suffer.

4. Exact distributions of ASP-based threshold estimates. Here we eval-
uate and compare estimates based on a 14-step ASP procedure, for a subject whose
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psychometric function Φ(x) is the standard normal CDF Φ(x). For this psychometric
function, μ = 0 and β = 1. We consider four sets of starting conditions, determined
by two values each of the starting stimulus level X\ (0 and 3) and the starting stepsize
s0 (0.5 and 2).

We begin with the estimate Xχ5. Figure 2a is a histogram of the exact distribution of
Xi5 for procedure parameters x\ = 0 and s0 = 0.5, and Figure 2b is the same for xx = 0
and 5o = 2. Note that not every possible value of the distribution is within the range
plotted (the total probability of all values depicted is given on the figure); nevertheless,
the reported means and standard deviations of the distributions are correct for the
complete exact distributions.

Comparing the two histograms in Figures 2a and 2b, one sees that in this case
(xι = 0) where the initial stimulus level equals the subject's actual threshold, a smaller
stepsize appears better than a larger one. The procedure is unbiased in either case,
of course, but the larger stepsize produces an estimator with slightly higher variance.
The estimate from the larger stepsize also has a greater tendency to assume values in
the discrete set {0, ± | , ± | , . . . } .

Figures 3a and 3b are similar to Figures 2a and 2b, except that now the starting
stimulus level is X\ — 3 while the subject's threshold remains 0. In this case, one sees
that the larger stepsize is better, producing an estimate with smaller bias and smaller
variance. Thus, based on these four combinations of x\ and Si, we see that deciding
on an optimum stepsize will be difficult: smaller stepsizes appear to be better if the
initial stimulus level is close to the true threshold, but larger stepsizes seem better
otherwise.
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F I G . 2. Distribution of x 1 5 for ASP, 14 steps. Subject's μ = 0, β = 1. Top: x0 = 0, s0 = 0.5.

Bottom XQ = 0, so = 2.
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FIG. 3. Distribution of xi5 for ASP, 14 steps. Subject's μ = 0, β = 1. Top: x0 = 3, s0 = 0.5.

Bottom XQ = 3, so = 2.

This is confirmed by the data in Table 1, showing the expected value, standard
deviation, and root mean squared error of x15 for two starting values, xx — 0 and 3,
and initial stepsizes in the range si = 0.25 : 0.25 : 2.00.

These numbers appear to confirm that, if xγ is at the subject's unknown threshold
μ, then x1 5 is unbiased for all stepsizes, but that smaller stepsizes produce smaller
mean squared errors than larger ones. On the other hand, if xλ is not equal to μ,
then the bias of Xι5 appears smallest when S\ is a little less than half of \xχ — μ|, while
larger stepsizes produce smaller mean squared errors.

In Figures 4 through 7 we study three different ASP-based estimates, for procedures
truncated after n steps, where n ranges from four to 14. The three estimates are:

xΛ+i, the level of the first undelivered stimulus (this is the estimate whose exact
distribution is shown in Figures 2 and 3);

x, the mean of the stimulus levels xi, X2,..., xn+i]
xm, the median of the stimulus levels Xi, x<ι,..., xn+\.
As before, the subject's psychometric function Φ(τ) is the standard normal CDF

Φ(x), so that the subject's threshold is μ = 0 and the slope parameter is β = 1. Also
as before, we studied the ASP procedure with four combinations of initial conditions,
corresponding to initial level x\ = 0 or 3 and initial stepsize s\ = 0.5 or 2. Each of
Figures 4 through 7 corresponds to one of these four sets of initial conditions for the
procedure, and it plots, for n = 4, 5, . . . , 14, the median and the 2.5 and 97.5 percentiles
of the exact distribution of each of these three estimates.
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TABLE 1

Expected values, standard deviations, and root mean square errors of the estimate x
for the lA-step ASP, for starting stimulus levels X\ — 0 and 3 and various initial

step sizes.

Xl

0
0

0

0

0

0
0

0

3

3

3

3

3

3

3

3

0.25
0.50

0.75

1.00

1.25

1.50
1.75

2.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
2.00

E(x
l5
)

0.0000
0.0000

0.0000

0.0000

0.0000

0.0000
0.0000

0.0000

0.0564

0.0427

0.0248

-0.0147
-0.0102

-0.0154

-0.0198
-0.0233

SΌ(x
15
)

0.4293
0.5236

0.5650

0.5966

0.6285

0.6560
0.6789

0.6992

0.7497

0.8238

0.7738
0.6977

0.6820

0.6873

0.6815
0.6653

RMSE(x
15
)

0.4293
0.5236

0.5650

0.5966

0.6285

0.6560
0.6789

0.6992

0.7519

0.8250
0.7742

0.6979

0.6820

0.6875

0.6818

0.6658

Notice that the data in these figures do not enable the establishment of confidence
intervals for μ. They provide statements of the form

1 — a — P [est — Cι(d) < μ < est + C2(d)],

where d is the unknown difference between the starting stimulus level x\ and the
subject's threshold, and the numbers Cι(d) and -c2(d) are the 97.5 and 2.5 percentiles,
respectively. Our calculations give the values of c\(d) and c2(d) for d = 0 and d — 3.
Thus, if one is able to assume an upper bound on d, one can obtain conservative
confidence bounds on μ using calculations like the ones shown here.

Looking at Figures 4 and 5, corresponding to d = 0 (initial stimulus level equals
subject's threshold), we confirm that in this case all three estimates are unbiased, and
we see that the smaller stepsize produces narrower confidence intervals. We further
see that the confidence-interval widths based on x and xm are nearly equal, and are
smaller than those based on the "usual" estimate xn+ι-

Turning to Figures 6 and 7, for the case d = 3 (initial level differs from true
threshold), we see again that a larger stepsize is better; the estimates tend to have less
bias and smaller variance. It is less clear which of the three is preferred, however, as
confidence intervals based on x n + i will be slightly wider than those based on x or xm,
but the bias of x n + i is much less than that of the other estimates.
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FIG. 4. Median and 2.5% tails of ASP estimates.
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FIG. 5. Median and 2.5% tails of ASP estimates.
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FIG. 6. Median and 2.5% tails of ASP estimates.
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FIG. 7. Median and 2.5% tails of ASP estimates.
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Notice that because the computed distributions are exact, one actually knows the
bias of any estimate, except that again one knows it only as a function of the unknown
distance d — xχ — μ. A full study of any estimate, based on any procedure, will require
calculating its exact distribution for a range of values of d.

The authors plan such studies of the estimates x n + i and xm in the future, along
with studies of other estimates, using procedures with larger numbers of steps. In par-
ticular, we plan studies of sequential maximum-likelihood procedures [see Hall (1968),
Wu (1985), or Harvey (1986)]. In such a procedure one assumes the subject's psy-
chometric function is Φ(a ) = F(β(x — μ)) for some known function F. After a small
initial set of stimuli, at levels chosen according to one of several rules, one computes
the maximum-likelihood estimate (MLE) μ of μ, and then delivers the next stimulus at
that level. Alternatively, one can find both μ and β and deliver the next two stimuli
at μάzcβ where c can be chosen for D-optimality or c-optimality [see Kalish (1985)].
The process is iterated, computing new MLEs after each step, until some stopping
condition is met.

5. Conclusion. In summary, we have pointed out that, rather than using Monte
Carlo methods to investigate the distributions of estimates of parameters of psychome-
tric functions by sequential procedures, one can find the distributions exactly. This
is based on the simple observation that if the procedure is stopped after n steps, then
there are 2n possible outcomes and the distribution of the estimate can be computed
exactly for any given psychometric function. If the procedure is not arbitrarily stopped
after n steps, but has some other stopping rule, one can still find the exact distribution
except on a set of probability e. Planned future studies will investigate and compare
the behaviors of several commonly-used threshold estimation procedures.
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