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PRODUCTS OF VECTOR MEASURES

BY R. M. SHORTT

Wesleyan University

Theorems are given regarding the existence of products of finitely and
infinitely many Banach space valued measures. A sequence of mesures is con-
structed for which all finite product measures exist, but the infinite dimensional
product does not.

0. Introduction. Theorems regarding products ("amalgamations") of
operator valued measures have been known for some time (see pp. 86-107 in
Berberian (1966)). These measures are required to be countably additive with
respect to the strong operator topology and thus are not Banach space valued
measures in the generally accepted sense; also, the two factor measures μi
and μ2 are usually assumed to commute: μ\(E)μ2{F) = μ2(F)μι(E): such a
requirement is imposed so that the product of self-adjoint valued measures will
have self-adjoint values. The articles Duchon (1969), Marz and Shortt (1994)
and Ohba (1977) represent attempts to develop a theory of product measure
for not necessarily commuting, Banach space valued measures; we continue
this line of enquiry.

An example of Dudley (1989) has shown that amalgamations of spectral
measures cannot always be formed without some regularity assumption for
one of the factor measures (as in Theorem 33 of Berberian (1966)). The same
idea holds for general Banach space valued measures, where the notion of a
perfect vector measure is useful. Section 1 lays out some basic results for
perfect measures; for measures taking values in the positive cone of a Banach
lattice, the theory runs parallel to the classical one developed by Gnedenko and
Kolmogoroff (cp. Ramachandran (1979)): Lemma 1.2 effects this similarity.
The fundamental result that enables our analysis is one proved in Shortt (1994)
and stated here as Lemma 1.5.

After exhibiting an example to which known existence results do not
apply, we prove a new existence theorem for products of Banach-space valued
measures (Theorem 2.1). The hypotheses required are weaker, e.g., than those
used in Duchon (1969) or Ohba (1977). A corresponding result for products
of infinitely many measures forms Theorem 2.2. Finally, Example 2.3 shows
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a sequence of measures for which no product measure exists; yet, product

measures exist for every finite subset of measures drawn from this sequence.

1. Perfect Vector Measures. Let T be a field (i.e. algebra) of subsets

of a set X and let (i?, || ||) be a Banach space. (We allow either real or

complex scalars.) A function μ : T -» B is a B-valued charge if it is finitely

additive: μ(Fι U F2) = μ{Fχ) + μ(F2) for disjoint F1 and F2 in T. A function

μ : T -> B is a B-valued measure if it is count ably additive: μ(Fι U F2 U •) =

/z(i7i)+/i(iΓ2)H as a norm-convergent series in B whenever (Fn) is a disjoint
sequence in T whose union also belongs to J7. Basic references on the subject

of vector measures include the classic treatise of Dunford and Schwartz (1958)

and the monograph of Diestel and Uhl (1977). The notation and terminology

of this article conform by and large to that of these standard sources.

As is customary, we let | |μ|| : T —• R denote the semi-variation of a

B- valued charge μ

\\μ\\(F) = sup{|^ o μ\(F) : ψ € B\ \φ\ < 1},

where |<£>oμ| is the total variation of the real measure ψo μ. Recall that every

B-valued measure on a σ-field T is bounded, i.e. is of bounded semi-variation.

(This follows from Corollary 19 on p. 9 of Diestel and Uhl (1977).)

LEMMA 1.1. Let μ : T —• B be a bounded B-valued measure on a Held

T'. Then μ extends uniquely to a B-valued measure μ : (^(J7) —• B defined on

the σ-field ^(J7) generated by T.

INDICATION: See Theorem 2, p. 27 in Diestel and Ulh (1977).

It is worth noting (Dudley and Pakula (1972)) that the preceding Lemma

becomes false if the hypothesis of boundedness is omitted.

We note that if μ : T -> B is a ^-valued charge, then | |μ(F) | | < \\μ\\(F)

for each F G T. When the Banach space B is equipped with additional

structure, then more can be said.

Recall that a Banach lattice is a partially ordered Banach space (JB, || ||, <)

such that

i) {B, <) is a vector lattice, and

ϋ ) Ikl l < IMI w h e n e v e r | x | < \y\ for x , y £ B .

Here, \x\ = (x V 0) - (x Λ 0).

The reader is referred to the text of Kelley, Namioka, et al. (1976) and
Schaefer (1974) for readable accounts of the elementary theory of Banach
lattices.
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LEMMA 1.2. Let (B,<) be a Banach lattice with positive cone B+ =
{x e B : x > 0}. Let μ : T ->• B+ be a charge. For each F £ T, we have
\\μ\\(F) = \\μ(F)\\.

INDICATION: This is Lemma 1.1 of Shortt (1994).

A class /C of subsets of a set X is compact if it has the following property:
given any sequence (Kn) drawn from /C such that K\ Π A ' 2 n Π Kn φ 0 for
each n, the intersection K\ Π K2 Π is non-empty. Let μ : T -» B be a
B-valued charge on a field T. We say that μ is a compact charge if there is a
compact class /C of subsets of X such that for every F € T and € > 0, there
are sets F' £ T and Jί G K with F ' C tf C F and | |/i | | (F - Ff) < e. In
this case, we say that the class /C μ-approximates T. If T is a σ-field, we say
that a charge μ : T -^ B is perfect if the restriction of μ to every countably
generated sub-σ-field of T is compact. Clearly, every compact charge on a
σ-field is perfect.

Every i?-valued measure μ on a σ-field T has a control measure, i.e. a
finite, positive, real measure m on T such that ||μ||(jP) —> 0 if and only if
m(F) -+ 0. (See Dunford and Schwartz (1958) IV.10.5 (p. 321) .) One easily
deduces

LEMMA 1.3. Let μ : T —» B be a B-valued measure on a σ-field T with
control measure m. Then μ is compact [resp. perfect] if and only if m is
compact [resp. perfect].

Let X be a topological space with Baire σ-field B(X). A charge
μ : B(X) —> B is tight if, for each e > 0 and F 6 B(X), there is a compact
set K C F with | |μ | | (F — K) < e. Clearly, every tight measure is compact and
hence perfect. It is well-known that for certain spaces X, every finite, positive,
real measure m on B(X) is tight. The class of such spaces includes the compact
Hausdorff spaces and those separable metric spaces that are Borel subsets of
their completions ("absolute Borel" spaces). See, e.g., Theorem 7.1.4 (Ulam's
Theorem) and Theorem 7.1.5 in Dudley (1989). The use of control measures
allows the easy transfer of these results to vector measures:

LEMMA 1.4 Let X be either a compact Hausdorff space or an absolute

Borel metrisable space with Baire σ-field B{X). Then every B-valued measure

μ : B(X) —» B is tight (hence compact, hence perfect).

The following is a recently proved generalisation of a result of Marczewski

and Ryll-Nardzewski (1953). Let T\ and T<ι be a σ-fields of subsets of sets Xi

and X2, respectively. Then T\ X T2 is the field on X\ X X2 generated by all

rectangles Fλ x F2 for JF\ G Tλ and F2 G T2 Further, T\ ® T2 is the σ-field

generated by T\ X T2.
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LEMMA 1.5. Let T\ and T2 be σ-fields of subsets of sets X\ and X2,

respectively, and let p : T\ X Ti —> B+ be a charge taking values in the

positive cone of a Banach lattice ( 5 , <). Define charges μ\ : T\ —• 2?+ and

ruie

X * 2 ) μ2(^ 2 ) = p ( * i X F2).

Ifμi is a measure, and μ2 is a perfect measure, then p is a measure on

INDICATION: This is Theorem 3.1 in Shortt (1994).

COROLLARY 1.6. In the situation above, p extends uniquely to a measure

PROOF. Lemma 1.2 shows that | |p| | = ||/>(-XΊ X^2)| | 5 so that pis bounded.

Lemma 1.1 gives the extension p : T\ ® T2 —> B. We then consider the

collection C = {B G T\ ® T2 : p(B) > 0}. If (xn) is a summable sequence

in B+ then Σxn > 0. Using this fact, it is easy to prove that C is a σ-field

containing 7Ί X ^ Thus C = T\ ® J ^

2. Finite and Infinite Products. Let B\,B2 and B3 be Banach spaces
and let / : B\ x B2 —> ^3 be a separately continuous bilinear form. Important

examples include the case where B = B\ — B2 = ^3 is a Banach algebra,

and f(x,y) = xy is the product in 2?, and the case where H = Bι = i?2, is a

Hubert space, B3 = H, and f(x,y) = (x,y).

Let T\ and ^2 be σ-fields of subsets of sets X\ and X ^ respectively. Let

J 7 ! x T2 and J 7 ! ® T2 be, as before, the field and σ-ίield on X\ x X2 generated

by the collection of all rectangles F\ x F2 for F\ G T\ and F2 G ̂ 2- Le^

μ\ '. T\ -+ B\ and //2 : ^2 —• ^2 be .B2-valued measures and let /x =

Mi X M2 be the unique #3-valued charge on T\ X T2 such that /^(Fi X F2) =

/(μi( JFi),μ 2(^2)) for F\ G ^ Ί and F 2 G ^2- We address the question of

whether μ\ x μ2 is countably additive and whether μ\ X //2 can be extended

to a measure on T\ ® ̂ *2

It is known that the answer to the first question can be in the negative.

For the special case where f(x,y) — (x,y) (inner product in Hubert space),

this is shown by an example of Dudley and Pakula (1972). In another special

case, an example of Dudley (1973) applies. Since this example was originally

given in a somewhat different context, where σ-additivity for the norm was

neither assumed for the μ2- nor required for μι X μ2, we present the idea afresh.

Let 1 < p < 00 and suppose that i + i = 1. Define Bλ = Lp[0,1], B2 =

Z 9[0,l], and £3 = /^[0,1], setting f(u,υ) = uυ (point-wise product). Let

λ be Lebesgue measure on [0,1] and let S C [0,1] be such that λ*(S) = 1

and λ*(5) = 0. Put Xx = S and X2 = [0,1] - 5, with T{ = {F Π Xi : F
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Borel}, i = 1, 2. Define μτ(F ΠX1) = IF and μ2(F Π X 2 ) = /p : these are Bλ-
and i?2-valued measures. The argument in Dudley (1973) shows that μ1 x μ2

is not countably additive on T\ xT2, so extension to a measure on T\ ® T2 is
impossible.

In this section, conditions are given under which product measure

μi X μ2 is countably additive and admits of a countably additive extension

μi ® μ2 Subsequently, an existence result for infinite products is developed.

An example is given where finite products exist, but infinite ones do not.

Let μi : T\ —> B\ and μ2 : T2 -+ B2 be 5-valued measures on σ-fields T\

and ^2 a n d let f : B\ x B2 -± B3 be a (separately) continuous bilinear form,

where (i?3,<) is a Banach lattice. Let p = μ\ x μ2 be the product charge

defined above. Supose that p(F) > 0 for every F ζ T\X T2. Define charges

Px'.Tλ-+ B$ and p2 : T2 -> 5 + by ^ ( Ή ) = / ^ x X 2) = f(μ1(F1)9μ1(X2))

and p2(F2) = p(Xi X F 2 ) = f{μ\(X\),μ2(F2)). Then continuity of / ensures

that pi and p 2 are I?3-valued measures.

THEOREM 2.1. in t i e situation just described, if the measure p2 is perfect,

then μi X μ2 is countably additive on T\ X T2 and extends to a unique measure

PROOF. The theorem follows from Lemma 1.5 and Corollary 1.6.

With further work, it can be shown that if the measures μi and μ2 are per-

fect, then so is the product measure μ\ ® μ2. Mutatis mutandis, the argument

parallels the proof of the classical result of Marczewski (1953); for another

exposition of the classical, real-valued case, see Theorem 3.1.1 (Volume I, p.

35) of Dunford and Schwartz (1958).

We note two special cases of the theorem: the first with B\ — i?2 a Hubert

space and B% — IR and f(x,y) — (#,y); the second, with B\ — B2 — B3 a

Banach algebra with / (#, y) = xy. The necessary continuity for / follows from

the continuity of the inner product in the first case, from \\xy\\ < | |^| | ||y|| in

the second.

In the paper of Dudley and Pakula (1972) addressing the case where

/(#, y) = (z, y), it is noted that a satisfactory existence theorem for the inner

product of Hubert spaced valued measures can be derived from work of Bartle

(1956) and found in Duchon (1969): this result assumes that one of the mea-

sures μι has finite total variation. The characteristics of the counter-example

presented in Dudley and Pakula (1972) led the authors to suggest "that it

may be difficult to find any reasonably broad conditions under which μi x μ2

would be countably additive while |μi | = \μ2\ — 00." In view of this assertion,

it is noteworthy that Theorem 2.1 makes no assumptions about finite varia-

tion for the μ{. Indeed, returning to a version of the example outlined above,
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let Bλ = Lp[0,l],B2 = Lq[O,l] and B3 = Lλ[O,l] and f(u,υ) = uv. Taking

Xτ = X2 = [0,1] and T\ = T2 the Borel σ-fίeld on [0,1], put μλ{F) = IF

and μ2(F) = IF- Then μi and μ2 are perfect (Lemma 1.4), so that μι x μ2 is

countably additive and extends to a measure (μi ® μ2) : ^ x f2 -> ^1[0,1]

(Theorem 2.1). In this example, we have \μι\(F) = \μ2\(F) = oo whenever

1 < p < oo and i*1 is not a null-set: see Example 16, p. 7, in Diestel and Uhl

(1977).

S. Obha (1977) proved an existence theorem for products of vector mea-

sures under special assumptions ("D-continuity") on one of the factors; these

conditions do not apply in the foregoing example.

We now return our attention to the existence of products of an infinite

sequence of vector measures.

Let l?i, B2 . . . be Banach spaces and let (£?oo> <) be a Banach lattice. For

each n > 1, suppose that fn : B\ x x Bn —> B^ is a separately continuous

multi-linear form. We assume that the fn are connected in the following way:

there are elements et G B{(i > 1) such that

for all x\ £ B{. (We have in mind the example where i?oo = B\ — B2 — is

a Banach algebra with unit e = e\ — e2 , and / n ( # i , -Xn) = x\ 'Xn>)

Let T\,T2 . . . be σ-fields of subsets of sets Xi,X2 . . . and let μz : T{ —>

•B, (i > 1) be ^-valued measures with μi(Xi) — et for i > 1. Put X =

Xι X X2 X - - and let <Sn be the σ-field on X generated by rectangles i*\ x

• x Fn x X n +i x Xn+2 x for F{ e T{. Let S — USn and define T\ ®

JF2 ® = σ(<S). We seek a jE^-valued measure p on T\ ® T2 ® such that

p{F1X"'XFnx X n + 1 X •) = /n(μi(Fi) , . . .,μn(Fn)) for aU i^ e T{ and

w > 1.

THEOREM 2.2. In t i e situation just described, suppose that the measures

μi are perfect and that the product charges μ\ X X μn defined on T\ X X Tn

by the rule

(μi X . . . X μn)(F1 X - X Fn) = / n ( μ i ( F i ) , . . .,μn(Fn))

take values in #+>. Then tiere is a unique B^-valued measure (μi ® μ2 ® * •) :

^i®^® > B+> such that
>

(μi ® μ2 ® )(*i X ' X f n X ^ n + i X --) = fn(μi(F1),...,μn(Fn))

for all F{ £ T{ and all n. The measure μi ® μ2 ® is perfect.
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OUTLINE OF PROOF. Repeated application of Theorem 2.1 yields product
measures μi ® ® μn on J*χ ® ® ̂  taking values in #+>. We define a
charge /> : <S —• 2?+, by putting

X X n + i X X n + 2 X •) = (μi ® ® μn)(F)

for F £ ^ i ® ® Tn It must be proved that p is countably additive; this,
combined with the fact that ||/>||(X) = ||/>(X)|| < oo (Lemma 1.2) and Lemma
1.1 yields the desired extension on p. The argument is much the same as in the
classical setting: the proof of Marczewski and Ryll-Nardzewski (1953) applies
mutatis mutandis to show that p is a compact charge on <!>, hence countably
additive. (For another exposition, see Ramachandran (1979) Theorem 3.1.1.)

We conclude with an example of a sequence of measures for which all
finite product measures exist, but infinite product measure does not.

EXAMPLE 2.3. Let λ be Lebesgue measure on [0,1] and let [0,1] = P\ U
P2 U be a partition of the interval into sets P t such that \*(Pi) = 0.
(See [7], p. 81.) For n > 1, define Xn = [0,1] - (Pi U U Pn) and let
Tn be the σ-field on Xn given by Tn = {F Π Xn : F Borel}. Let (pn) be
a sequence of positive real numbers with Σl/pn = 1. Put B^ = Z^O, 1]

and Bn = ZPn[0,1] for n = 1,2, Let en be the constant function 1 for

each n. Then the product mappings fn : B\ x x Bn —> B^ we define by

/ n (wi, . . . , un) = U\"'Un (point-wise product). Let μ n : Tn —> B+ be the

measure given by μn(F Π Xn) = IF (indicator function).

We assert that for each n > 1, there exists a measure

(μi ® ® μn) : ^1 ® ® ̂ n -+ 5 +

such that (μi® ®μn)(FiX x F n ) = / n ( μ i ( F i ) , . . .,μn(jPn)) = / i i ^ i ) μn

(F n ) = lFln...nFn f°Γ aU -ft ^ ^ i However, these is no measure (μi ® μ<± ® •) :

J7!® T2® • 5 i such that {μλ ® μ2 ® )(^i X X F n X ^ n + i X •) =

^Fin. .nFn for all tt and Ή G Λ .

For each n > 1, define the diagonal Δ n = {(#i , . . . , xn) E I i X X I n :
xx = a:2 = . . . = χn}. Then μi ® ® μn is defined so that

(μi ® ® μn){(z, ...,x):x eFΠ Xn} = i >

(μi ® ® μn){X\ X x I n - Δ n ) = 0

for aU Borel F C [0,1].

We now derive a contradiction from the supposed existence of product
measure μi ® μ2 ® on T\ ® ̂ 2 ® # •• Consider the diagonal Δ = {(x, x) :
x € [0,1]} in [0,1]2 and write [0,1]2 - Δ = Un(En x Fn), where the (En) and
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Fn) are sequences of Borel sets with En Π Fn = 0; they may be taken to be
intervals. For 1 < i < j , define E(n,i,j) = C\ X C<ι x , where Ck = [0,1]
for k £ {iJ},C{ = En,Cj = Fn. Let Aω be the diagonal Aω = {x : x(l) =
x{2) - •} in [0, l]ω and note that [0, l]ω = Aω U |J E(n, i, j), where the union
is taken over all i < j and n > 1. Then X = |J X Π £ ( n , i, j ) , and we see that
(μi ® ̂ 2 ® * * *)(^) = [̂o,i] a n d , at the same time,

j j ) = IEjFn = 0,

a contradiction.
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