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DEVELOPMENTS ON FRECHET-BOUNDS
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University of Freiburg

This paper describes some developments in the field of Frechet bounds
since the last report given at the Rome conference in 1990. At first a review is
given on product type representations of distributions with given marginals and
their relations to the solution of Schrδdinger type equations. The iterative pro-
portional fitting procedure allows an approximate construction. Its convergence
has been shown recently. We give a convergence proof of a modified algorithm
under alternative assumptions. In the next part of the paper several sufficient
and necessary conditions are given for the explicit construction of optimal mul-
tivariate couplings or, equivalently, tranportation plans. These results allow to
calculate several multivariate examples, in particular examples for minimal £p-
metrics. In the final part we consider some recent examples of optimal couplings
under additional or relaxed restrictions. We discuss a problem involving order
restrictions, the case of fixed difference of the marginals, the application of a
duality principle for Monge functions and Frechet bounds for marginal classes
majorized by a finite measure.

1. Introduction. The paper is divided in three main parts. In the first
part we review recent results on product-type representations of probability
measures with fixed marginals. These representations are related to systems
of integral equations introduced by Schrδdinger (1931). They are of impor-
tance for the construction and analysis of Schrόdinger bridges. Solutions may
be approximated by the iterative proportional fitting procedure which was in-
troduced in 1940 by Deming and Stephan. In the finite discrete case several
convergence proofs were given in the sixties. However a general convergence
proof was only found recently, and in this paper we establish convergence of a
modified algorithm under somewhat different assumptions.

In the second part of the paper we consider recent extensions of the theory
of optimal multivariate couplings, resp. tranportation problems, which we
introduced in Section 3 of the report Ruschendorf (1991b) on Frechet bounds
given at the Rome conference. Some sufficient and necessary conditions for
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optimality are established. In the case of minimal ^-metrics these results

allow us to explicitly construct optimal couplings in several examples. The

proofs exploit relations to nonconvex optimization problems.

In the final part we consider some examples of transportation prob-

lems (couplings) with additional or relaxed restrictions on the Frechet class

which were studied in recent papers of Olkin and Rachev (1990), Rachev and

Rϋschendorf (1994, 1993), and Levin (1992). The first problem, due to Rogers

(1992), is concerned with optimal couplings subject to order restrictions. In

the finite discrete case one can give a nice explicit solution. For the transporta-

tion problem with a fixed difference of the marginals, which is a generalization

of the Kantorovich-Rubinstein problem, several explicit formulas and bounds

for the optimal value were recently established in the univariate and also in

the multivariate case. Next a simple duality principle for Monge functions is

applied to two examples. Finally, a duality result for Frechet classes majorized

by a finite measure is established, and, as an application, a formula for the

corresponding upper Frechet bound is given.

2. Product Representation and Schrόdinger Problem. The lit-
erature on probability representations in marginal problems has been concen-

trated to a large extent on the standard representation (copula representa-

tion). Any n-dimensional distribution function F with marginals Fι,...,Fn

has a representation of the form F = C(F\,..., Fn), where C is a df with uni-

form marginals. Extensions of this representation to general spaces are given

in Scarsini (1989), Rachev and Rύschendorf (1990), and Rύschendorf (1991a).

A review can be found in Dall'Aglio, Kotz, and Salinetti (1990), the conference

volume of the 1990 conference in Rome.

In this section product-type representations of the form v — ®'i=1fiμ

are discussed. Here v is a probability measure with marginals V{, μ is a

probability measure with marginals μt , ®™-ιfi(x) = ΠΓ=i fi(χi)-> % € E =
ΠΓ=i Eh (E,Λ) = ®?=ι(Ei,Ai) the product space, and v — fμ denotes that

v has density / w.r.t. μ. Assume that μ — h ®™=1 μι has a density h w.r.t.

®μi and that V{ <C μi with density r{ = j ^ . Then

n

v := ® / ; μ e Af(i/i,...,i/n), (2.1)

the class of distributions with marginals z/2 , iff the functions (/2) satisfy the

following system of integral equations

1 < ι < n- ( 2 2 )
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In the case n = 2 these equations were introduced by Schrόdinger (1931). A

solution of the form (2.1) leads to the construction of Schrόdinger bridges and

permits the derivation of basic properties of these processes. For reference we

refer to Follmer (1988) and Wakolbinger (1992). The existence of solutions

of (2.2) for n = 2 has been proved in many papers including Fortet (1940),

Beurling (1960), Hobby and Pyke (1965) and Jamison (1974). A general ex-

istence result was recently obtained in Rϋschendorf and Thomsen (1993b).

The proof of the following extension to the case n > 2 is similar to the case

n — 2 in Ruschendorf and Thomsen (1993a) and, therefore, is only sketched.

Let l{y I μ) — J i n jp|dz/ denote the Kullback-Leibler distance. Define for

M = M ( i / i , . . . , i / n )

I(M I μ) = inf{/(i/ | μ); v G M}. (2.3)

THEOREM 2.1. If I(M \ μ) < oo, then there exists a solution (/i,.. . ,/ n )

of the system (2.2) of integral equations. Moreover, ®7l=1fi is uniquely deter-

mined.

PROOF: Since M is closed w.r.t. variation distance, there exists a unique

/-projection i/* of μ on M. Furthermore, by Theorem 3.1 of Csiszar (1975),

In 4 p belongs to the closure of φ^_1X
1(i/ί ) in X1(i/*). From Theorem 3 resp.

Remark 5 in Ruschendorf and Thomsen (1993a) any element in the closure

°f ®?=i^\(ui) 1S °f ^ e form β f - ^ for some measurable (but generally not

integrable) functions h{. Therefore, v* = ®7i=1fiμ G M(z/χ,..., z/n), where

fi := exp(hi) and (/i , . . . , fn) solves the Schrδdinger equation (2.2) |

Consider a system Tί C P({ l , . . . ,n}) of subsets of { l , . . . ,n} and let

μ G M1(E^Λ)^ the class of probability measures on (E,A), have multivariate

marginals μπ := μπH^H G Tί. Let vu < μu, H G H, be a system of

multivariate marginals with r # = ^p2- and assume that Mη-ι :— M(UH ,H G

W), the set of distributions with multivariate marginals VJJ is not empty. The

following result describes a basic structural property of probabilites with given

multivariate marginals.

THEOREM 2.2. (Ruschendorf and Thomsen (1993b).) If I(Mn | μ) < oo,

then there exist nonnegative functions (f}j)HeH °n EH = Π i e i ί ^ such that

®HenίH is measurable and v := ®HenfHμ G My,-

Theorem 2.2 implies the existence of solutions of the generalized system

of Schrδdinger equations

ίfH(xH)h(x) (g) fj(xj) (g) μjidx,) = rH(xH) [μH], H € H. (2.4)
J
 JΦH jeH'
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It also implies that under an integrability condition there is a one-to-one rela-

tion between M(μ#, H G Ή) and M(i/#, H GW) given by densities of product-

type. Moreover, v is the /-projection of μ, and in this way the relation by

product densities solves an optimization problem of a type related to Frechet

bounds.

3. Convergence of the Iterative Proportional Fitting Proce-
dure. The iterative proportional fitting procedure (IPFP) is an algorithm for

adjusting the marginal distributions of a probability measure to a-priori known

marginals. It was introduced by Deming and Stephan (1940) in connection

with adjusting estimates of cell probabilities in contingency tables subject to

certain marginal constraints. In this section we restrict our attention to the

case of two simple marginals. The aim of the IPFP is to find iteratively (ap-

proximatively) functions a = a(x),b = b(y) such that

R(x,a,b) := a(x) h(x,y)b(y)μ2(dy) = rr(x) [

C(y,a,b):= b(y) h(x,y)a(x)μ1(d x) = r2(y)

(3.1)

for x G £Ί,y G E2, where h,r{ are defined as in Section 2. So the aim of the

IPFP is to find solutions for the Schrόdinger equation (2.2); the existence of

solutions has been shown in Section 1.

The definition of the IPFP-algorithm is given recursively by:

τ<Λy)
6 : l a : = r U y ) : = y K ( φ i ( d l ) and

*•(*)an~l[X) - Jh(x,y)bn.1(y)μ2(dyy

Convergence of the IPFP-algorithm in the finite discrete case was proved in

papers by Brown (1959), Bishop and Fienberg (1969), Ireland and Kullback

(1968), Fienberg (1970) and Csiszar (1975).

Defining the sequence of measures (μ^) by

μ ^ := an®bnμ, μ^n~^ := an ® bn^μ (3.3)

we find that
R{x,an,bn) = ru C(y,an,bn+1) = r2. (3.4)

This means that μ(2n) has the correct first marginal vλ while μ( 2 n + 1 ) has the

correct second marginal v2-) that is,

μ(2n) G M(i/i), μ ( 2 n + 1 ) G M(i/2), for all neN, (3.5)
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and (μ(n>) is the sequence of alternating projections of μ = μ(°) on M (1/2)1 (
w.r.t. the Kullback-Leibler distance. The idea is that μ(n) converges to the
projection i/* of μ on M(i/χ, u2) = M(z/χ) Π Af (1/2).

In this sense the IPFP-algorithm is an analogue to the alternation algo-
rithm (or backfitting algorithm) which was introduced in the case of Hubert
spaces by von Neumann (1950) and Aronszajn (1950), and extended to some
further function spaces in many papers since then (cf. the survey in Light and
Cheney (1985)). Both types of alternating projections have found important
applications in fields such as tomography (cf. Hamaker and Solmon (1978)) in
ridge type regression models, ACE (cf. Breiman and Friedman (1985), Stone
(1985), Buja, Hastie and Tibshirani (1989)), in connection with Hoeffding's
decomposition (cf. Rύschendorf (1985)), restricted least squares estimators (cf.
Dykstra (1983), Gaffke and Mathar (1989)), projection pursuit density esti-
mation (cf. Friedman, Stutzle and Schroeder (1984)), and probabilistic expert
systems (cf. Jirousek (1991)).

Recently a general convergence proof of the IPFP-algorithm was found
under the following conditions.

THEOREM 3.1. (Ruschendorf (1993c).) If for some positive constant
c > 0,/ι/r2 > c a.s., then

l(μl»)\μ)^I(v*\μ) and
(3-6)

where | | denotes the total variation distance and v* is the I-projection ofμ
on

The proof of Theorem 3.1 is based on some geometric properties of the
Kullback-Leibler distance. The essential step is to prove that the sequence
(αn ® bn) C Lλ(μ) is uniformly integrable. It is easy to see that the marginals
πt (μ(n)) converge to the correct marginals U{. This, together with the lower
semicontinuity of/ w.r.t. the r-topology (of setwise convergence), implies the
convergence properties of μ(n).

Motivated by the paper of Hobby and Pyke (1965), we next introduce a
modification of the IPFP-algorithm which allows the use of monotonicity argu-
ments to ensure pointwise convergence of αn, bn under alternative assumptions.
Define the modified IPFP-algorithm recursively by:

1. αo(x) := α > 0.
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2. If an is defined, then set

bn(y) := J h(x,y)an(x)μ1(άx)

i.e. C(y,αn,δn) = r2(y).

3. If R(x,an,bn) < rχ(x), then define

an+i(x) := T77 ^ , \ , , ., (3.8)
J f(x,y)bn(y)μ2(dy)

i.e. Λ(x,αn +i,6n) = ri(x). If R{x,an,bn) > n(y), then define

an+1(x) := αn(x). (3.9)

THEOREM 3.2. Assume that

(A i ; h(x,y) < Cri(a:)r2(y) [μ]

(A.2j J^ h(x,y)μ2(άy) > uι(x)μ2(A), A G ^ for some finite mea-
sure ^2 ~ μ2 and function u\ > 0 witA J j4τi/i(da;) < oo, tien the modi-
fied 1PFP-algorithm converges in total variation to the I-projection of μ on
M(1/1^2) and αn, bn converge pointwise.

PROOF. Define

An := {xeEn Λ(x,αn,6n)<ri(a:)}. (3.10)

By definition αn < α n + i , i.e., αn converges isotonically to some function α
and 6n-|_i < 6n, i.e., bn converges antitonically to some function 6. For x G
An we have iί(x,αn,6n) < rι(x) and, therefore, i2(a;,αn+i,&n+i) = TΊ(X).

Since bn+ι < 6n, this implies that i?(:r,an+i,&n+i) < rχ(x), i.e. x 6 An+i.
Therefore, An C An +i converges isotonically to some set A, i.e. An f A.

If /ii(An) = 1, then R(x,αn,bn) = ri(a:) a.s. and we are done. So assume
w.l.g. that μi(An) < 1, for all n, equivalently, μ\ (A^) > 0, for all n and

For a: G Ac

n we have i?(x,αn,6n) > n(x) and, therefore, αn(x) = α. This
implies that

(x) < R(x,αn,bn) = α h(x,y)bn(y)μ2(dy)

< αC rι(x) r2(y)bn(y)μ2(dy).
(3.11)
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Therefore, / r2(y)bn(y)μ2(dy) > -^ > 0, for all n and in the limit

S r2(y)b(y)μ2(dy) > ^ This implies the existence of positive constants

r, σ > 0 with μ({b > r}) > σ > 0.

Next for any x 6 An C A and any n G iV we have

ri(x) > R(x,an,bn) = an(x) h(x,y)bn(y)μ2(άy) (3.12)

and, therefore,

> a(x)r / h(x,y)μ2(dy)
J{b>r}

> ra(x)uι(x)μ2({b > r}).

Since μ2 ~ /Ϊ2 we conclude that μ2({b > r}) > 0 and, therefore, we have

cuφ) ioτxeA ( 3 Λ 3 )

a for x 6 Ac

Denote the r.h.s. of (3.13) by α(#); by assumption α is integrable. Furthermore,

for each n £ N we have

= h(x,y)an(x)bn(y)μ1(dx)

f „
< δn(ί/) h(x,y)a(x)μ1(dx).

( 3 1 4 )

Note that

so that the integrand in (3.14) is a.s. finite. Therefore, from (3.14) we obtain

b(y) > V-M, KV) •= ίh(x,y)a(x)μi(dx). (3.15)
b(y) J

From the dominated convergence theorem it follows that

r2(y) = km C(y,an,bn)

(3.16)
= b(y) h(x,y)a(x)dμ1(x).
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For xeAwe have

rι(x) = lim R(x, an+1,bn)

= liman+ι(x) lh(x,y)bn(y)μ2(dy) , 3 J ^

= a(x) jh(x9y)b(y)μ2(dy),

the integral being positive and finite by (A.2). Since for x G A, we have r^x) >

i?(x,αn +i,6n +i) > iZ(x,αn+i,6n), it follows that i2(z,αn+i,δn+i) converges to

ri(x).

For a; G Ac we have from (3.11)

= a(x)jh(x,y)b(y)μ2(dy). ( 3 Λ 8 )

Again by dominated convergence and from the definition we obtain

R(x,an,bn)dμι(x) = C(y,an,bn)dμ2(y) = 1

and, therefore, equality holds in (3.18), i.e. a and 6 are solutions of the

Schrδdinger equation. Finally, from the pointwise dominated convergence of

the densities we conclude that we have convergence in total variation. |

REMARKS. The assumptions (A.I), (A.2) can be modified in the proof

given above. First note that (A.2) is satisfied if

(A.2') h(x,y) > crι(x)r2(y) holds for some c > 0 (with μ2 := cv2).

Condition (A.I) is used in (3.11). Here we can also use the estimate

h(x,y)bn(y)μ2(dy) < ( J 2 ) ( J SJh
So it is possible to replace (A.I) by the assumption

2

< 00.< C , f r2

2(y)μ2(dy)

4. Optimal Multivariate Couplings, Minimal ^-Metrics. The

aim of this section is to describe extensions of the theory of optimal multi-

variate couplings, or transportation problems, begun in Section 3 of the paper

Riischendorf (1991b) and continued in Rύschendorf (1993d). In particular

sufficient criteria and examples for minimal £p-metrics are discussed.
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Let c = c(x, y) be a coupling function on RkxRk and for Pi £ M1(Rk,Bk),
let

M(c) := sup ίjcdμ; μ G M(Pi,P2)j , (4.1)

where M(Pi,P2) are the measures with marginals P t. Call μ* 6 M(P\,P2) an
optimal c-coupling if f cdμ* = M(c). Assume that c(x,y) is bounded below
by functions of the form / Θ g(x,y) = f(x) + g(y), f € X^Pi), fl € ^ ( Ή ) ,
i.e. / 0 g < c. Then by the duality theorem:

M(c) = inf {//dPi +yfldP2; / € X^Pi),*/ € X1(P2),/ ®g > c | . (4.2)

For an introduction to coupling problems and duality results of this kind we
refer to Kellerer (1984).

A function / is called c-convex if for some index set /

f{x) =
iei

This notation generalizes convexity which is a special case with c(x,y) = x y.
It has been studied in several recent papers on non-convex optimization theory
(cf. Elster and Nehse (1974), and Dietrich (1988). Denote the c-conjugate of

/
/*(</) := sup(C0π,y)-/(*)). (4.3)

X

Then / is c-convex if and only if / = /**. The c-subgradient of / in x is
defined by

dj(x) = {y : /(*) - f{x) > c(z, y) - c(x, y) for all z} (4.4)

For the determination of optimal c-couplings the following result in Rύschendorf
(1991b) is fundamental. Assume that J c(x,y)άPi(x) < oo, i = 1,2, and that
c is bounded below as above. Then μ* € M(Pi,P2) is an optimal c-coupling
induced by random variables X, Y, if and only if

Y € dcf(X) a.s. for some c-convex function / . (4.5)

An interesting consequence of (4.5) is the existence of a pair X, Y with
X ~ Pi, y ~ P2 and Y G dcf(X) a.s. for some c-convex function / . A
condition equivalent to (4.5) is that the support Γ of μ* is c-cyclically monotone
i.e. for all (zχ,ί/i),.. .,(&Λ,Ifo) € Γ we have

n

Σ{c{xi+x,yi)-c{xi,yi)) < 0, (4.6)
ϊ = l
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where xn+1 := xτ (cf. Dietrich (1988) and Smith and Knott (1992).

The case in which c(x, y) = | x-y | p , x,y € Rk, p > 1, has been discussed
previously for the euclidean distance and p = 2 in Knott and Smith (1984) and
Rύschendorf and Rachev (1990) and several examples have been constructed
in Cuesta-Albertos, Rϋschendorf, and Tuero-Diaz (1993), while the case of
general minimal ^-metrics, p > 1 has been considered in Rύschendorf (1991a).
In Rύschendorf (1991b) it was shown that for a continuous, differentiable,
injective function φ, a pair of random variables X ~ Pi, φ(X) ~ P2 is an
optimal c-coupling, if for all #, y in the support of Pi we have

Jy-
< 0, (4.7)

where c\(u,v) — J^c(u,υ) (assuming that Cι(u,φ(u))άu is closed). It is easy
to see that for f(x) = jQ_^χ cι(u,φ(u))άu the condition that φ(y) £ dcf(y)

is equivalent to (4.7) for any (not necessarily differentiable) function φ (cf.
Rύschendorf (1993d)). Therefore, (4.7) is a characterization of the c-optimality
of any function φ.

In the following, we discuss some necessary and some sufficient conditions
for the optimality of couplings induced by functions φ for the pairs (X, φ(X)).
For a more detailed discussion and proofs we refer to Rύschendorf (1993d).
The idea of the following simple sufficient condition is from Smith and Knott
(1992).

PROPOSITION 4.1. Ifc( ,y) is concave and if h(u) := cι(u,φ(u)) is cycli-

cally monotone on the support of P\, then (X, Φ(X)) is an optimal c-coupling.

PROOF. Let # i , . . . , # n be in the support of Pi, then by concavity of

t = l t = l

n

= Σh(xi)(xi+ι-Xi) < 0. I
t = l

It is well known that cyclically monotone functions arise from gradients

of convex functions. If φ is continuously differentiable, then φ is cyclically

monotone if and only if ί ̂ - J is symmetric and φ is monotone, i.e. (y —

x)(φ(y) - φ(x)) > 0 (cf. Rΰschendorf (1991b) and Levin (1992)).

EXAMPLE 4.1. Consider the important example c(x,y) = — | x — y | p ,

x,y e Rk, p > 1. Then cχ{x,y) - -p \ x - y \p~2 (x - y) and if h(u) is
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cyclically monotone, then the equation

- \x - φ(x) \p~2 (x - φ(x)) = h(x) (4.8)

is uniquely solved by

φ(x) = I h(x) \~ϊ=ϊ h(x) + x = φh(x) (4.9)

So for any monotone function h we obtain that (X, φh(X)) is an optimal

(minimal) £p-coupling. In particular, for p = 2we recover the optimal coupling

result for minimal ^-metrics. If h(x) = Ax is a linear cylically monotone func-

tion, i.e. A is symmetric, positive semidefinite, then φ{x) = (xτA2x)~p-1 Ax —

x. If h(x) = a(\ x |)m, where a is increasing, is a radial transformation, then

φ(x) = (α(| x |))-£τ α ( | x I) * + x = ί(a(\ x | ) ) ^ + \x |) ^~
1 X ' ' X] (4.10)

is again a radial transformation. For this case cf. also Cuesta-Albertos,

Rύschendorf, and Tuero-Diaz (1993). A partial result in the case 1 < p <

2 has been obtained previously by Smith and Knott (1992). Of course the

assumption of concavity of c can be weakened to the condition that c(x, y) =

c(#, y) + h(x) is concave in x for some function h(x).

REMARK. Proposition 4.1 also holds more generally for the support of

optimal couplings as formulated in Smith and Knott (1992). It can also be

derived directly from criterion (4.7). Let gy(u) := cχ(u^φ(y)) — c\(u^φ(u)).

If c( ,z) is concave, then —c\( ,φ(y)) is cyclically monotone. This implies

(9y(v) ~ 9y(u), v - u) = (ci(v, φ(y)) - cλ(u, φ(y)), v - u) < 0 and, therefore,

the path-integral

Fy(x) := / gy(u) άu (4.11)
Jxo—>χ

is concave. From (4.11) we conclude that

Fy(x) - Fy{y) < gy(y)(x - y) = 0, (4.12)

i.e., that condition (4.7) holds. I

Note that by definition y* £ dcf(y) iff

f(x)-c(x,y*) > f(y)-c(y,y*) (4.13)

for all x, i.e. ψy{x) > ψy(y), for all x, where ψy(y) := f(x) - c(x,y*). For
y* = φ(y),φy(x) = $y^χ(c-ί{u,φ(u))-c1{u,φ(y))άu= -Fy{x)iΐ cι(u,φ(u))du
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is closed. So (4.13) is equivalent to the condition that x —> Fy(x) has its
maximum in x = y. Since

lχFy(y) = ~γχΨ

y{y) = 0, (4.14)

and with y* =

( 4 1 5 )

92

dxdy v ' ^ v JJdxκ n

we obtain (cf. Rύschendorf (1993d)).

PROPOSITION 4.2. Let c be differentiate and c\(u,φ{u))άu be closed.

a) A sufficient condition for the c-optimality of φ is given by

B(x,y) < 0. (4.16)

b) A necessary condition for the c-optimality of φ is given by

-B(y,y) = -^-yc{y,φ{y))Dφ{y) > 0. (4.17)

For c(#, y) = — p \ x — y |p, 1 < p, | | the euclidean distance, (4.17) leads

to the necessary condition Up — 2) ̂ ~ftWMy~rWJ /J Dφ(y) < 0, which in

the case p = 2 is equivalent to the necessary and sufficient conditon Dφ(y) > 0.

The next sufficient condition does not assume that c( ,t/) is concave.

PROPOSITION 4.3. If c\(u,φ(u))άu is closed and if for all (x,y) in the
support of the distribution of(X,Y)

> 0, (4.18)

then φ is a c-optimal coupling for Pi = Px, P2 = Pγ.

PROOF. For the c-optimality of φ it is sufficient by (4.7) to prove that

(u, φ(y)) - ci(tι, 0(tO))dt* < 0 = Fy(y).
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Let xt := y + t(x — y), t > 0 and H(t) := Fy(xt), then

= (ci(xt, Φ(y)) - ci(xί7 φ(xt)), x-y) (4-19)

( ( K ) ) ( > £ ( > ) ) , £ ( - y) < 0.

This implies that

fl JIT

Fy(x) = Fy{y) + y — (t)dt < 0.

REMARKS.

a) In the case c(x, y) = - | x - y | p, define 5̂ (2/) :=| « - Φ(y) \p~2 (x - Φ(y))
Then condition (4.18) reads

(x - y, \x - # s ) Γ 2 (x - </>(x))- I x - φ(y) \p~2 (x - φ(y))) < 0;

for p = 2 this is equivalent to the monotonicity of φ. As a consequence
2—p

we obtain that all functions of the form φ(x) —| h(x) I?-1 /ι(z) + #, where
/i is a cyclically monotone function, are c-optimal coupling functions. For
this and several further applications to ί\ -metrics we refer to Rύschendorf
(1993d). Even in the one-dimensional case Proposition 4.3 leads to new
results.

b) Some ideas related to this section can be found in the recent paper of
Levin (1992) in the context of the transshipment problem (with fixed dif-
ference of the marginals). For differentiable cost functions Levin obtains
an explicit formula for the optimal value of the problem, while we ob-
tain some characterizations of the optimal transportation plans (cf. also
Section 5.2).

c) The sufficient condition for optimality, B(x,y) < 0, implies that Fy(x) is
concave. If we can assure the weaker condition that Fy is quasi-concave,
i.e.

Fy{axχ + (1 - a)x2) > mm(Fy(x1)iFy(x2))J

then a local minimum is either situated in a domain where Fy is con-
stant or it is already a global minimum (cf. Roberts and Varberg (1973)).
Therefore, the sharpened necessary condition that l?(y, y) < 0, is already
a sufficient condition for c-optimality of φ.

5. Optimal Couplings Under Additional and Relaxed Restric-
tions. Recently, some modifications of the usual coupling (transportation)



286 DEVELOPMENTS ON FRECHET-BOUNDS

problem in which additional or relaxed restrictions on the underlying Frechet
class of distributions with given marginals are introduced have been con-
cidered. The aim is to obtain Frechet bounds for these modified Frechet classes.
Some classes of restrictions of this type have been investigated in Olkin and
Rachev (1990), Rachev and Rύschendorf (1994, 1993), and Levin (1992). In
the final part of this paper we review some of the recent developments.

5.1. Order Restrictions. The following coupling (transportation) problem
was posed by Rogers (1992). Let F, G be 1-dimensional distribution functions,
with F < s t G, i.e. F stochastically smaller than G, let C := {(x,y) € R2',
x < y}, and let

MC(F, G) := M(F, G)Π{μe M\R2,B2); μ(C) = 1}

be the set of all measures with marginals F, G which are concentrated on the
order cone C. We consider the following problem: For a strict convex function
φ, determine

sup \jv(y- *Md*> dp); μ € MC(F, G) j (5.2)

Note that the corresponding inf problem is well-known and independent
of the order restriction. The motivation for problem (5.1) is to get a good
monotone coupling of random walks (5n), (Sf

n) with S'o = x > So = 0, Sf
n > Sn

for all n and Sf
n = Sn for all large enough n. Without the order restriction a

solution of (5.2) is given by the random variables X = F~1(f7), Y = G~x(l —
U) where U is a rv uniformly distributed on (0,1). It is intuitively clear that a
solution of (5.2) should concentrate as much mass as possible on the diagonal.
This is indeed true, as was shown by Rogers (1992):

Each solution (X,Y) of (5.2) has the property that

P{X = Y) =\F ΛG\= if A gdm (5.3)

if F = /m, G = gm. Moreover a solution of (5.2) exists.

It is possible to characterize optimal solutions by an ordering property

(cf. Rachev and Rύschendorf (1993)).

PROPOSITON 5.1. Let X,Y be rv's with dΓs F,G and X < Y a.s. Then

(X, Y) defines a solution of (5.2) iff

X(ω) < X(ω') < Y(ω) < Y(ω') implies Y(ω') = Y(ω) (5.4)

a.s. for the pairs (ω,α/) w.r.t. the product measure.
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For finite discrete distributions one can explicitly construct optimal pairs

with the ordering property given in (5.4). First consider the case of equiproba-

ble atoms. Let μi = ^ ΣΓ=i ε^i-> ^ ~ \ ΣΓ=i ε*>i ^e ^ e measures correspond-

ing to F, G, where a\ < . . . < α n , 61 < . . . < bn and α; < 62 , for all i. Problem

(5.2) is equivalent to the following problem:

Find a permutation π G T n such that

i- α π ( t )) = max! (5.5)
t = l

over all permutations TΓ G ΐ n such that off(t ) < &;, 1 < i < ft, which we call

admissible permutations. An optimal admissible permutation is essentially

unique (up to indices with equal values of αt ) and given by the following

proposition (cf. Rachev and Rύschendorf (1993)).

PROPOSITION 5.2. Define π* G ϊ n inductively by:

π*(l) := max{& < n; ak < br} (5.6)

τr*(ifc) := max{ί < n; ί g {τr*(l),..., π*(A: - 1)}, α^ < 6A;}, 2 < jfe < n.

Then TΓ* G T n is the optimal admissible permutation.

So up to a simultaneous permuation of the probability space an optimal

pair of rv's is essentially unique.

REMARK. Proposition 5.2 extends to the case in which μ\ = ΣΓ=iP*εαi?

M2 = ΣΓ=i tf^&t w ^ h rational pz , gt , by representing p t , qi in the formal

equiprobable case. By an approximation argument as given in Rogers (1992)

this allows one to approximate optimal couplings for F , G with compact sup-

port. The general case then can be approximated via ordering criterion (5.4)

using truncation.

5.2. Marginals with a Given Difference. Consider the class TH of all

distributions on R2 with fixed difference of the marginal df 's Fχ~ F2 = H and

consider the transportation problem with the following relaxed condition on

the marginals:

Minimize c(x,y)dF(x,y) subject to F

where c(x, y) is a symmetric, nonnegative and continuous cost function. Prob-

lem (5.7) is a generalization of the Kantorovich-Rubinstein problem. The

following result was proved by Rachev and Rύschendorf in 1991. (The corre-

sponding paper is Rachev and Rϋschendorf (1993).)



288 DEVELOPMENTS ON FRECHET-BOUNDS

THEOREM 5.3. (cf. Rachev and Rϋschendorf (1994)). ) . Assume that

c(x,y) =\ x — y \ ζ(x,y) > 0, where ζ(x,y) is symmetric and continuous on

the diagonal, t -» ζ(t,t) is locally bounded and ζ(t,t) < C(x->y) holds for

x < t < y, then

= Jζ(t,t) \ H \ (t)dt. (5.8)

From (5.8) one sees that only the behaviour of the cost function on the

diagonal enters the formula.

In the multivariate case the following upper bound was established in

Rachev and Rϋschendorf (1994) for the case of cp(x, y) = | x — y \p= ( Σ I x«

-Ui \p ) > 1 < P- Let Tu be the class of distributions on Rk X Rk with fixed
difference H of the marginals.

THEOREM 5.4. (cf. Rachev and Rύschendorf (1994)). If H has Lebesgue

density h, then

a) inf I / 2 J x - y \p άF(x,y)i F € TH\ < I J V \P JH(V) I dy, where

b) If there exists a continuous function g : R -* R1, a.e. differentiate and
such that for p = 1,

= ( sg(yi JH(y))) a.e. (5.9)

and for p > 1,

V*(y) = ( sg{yi Jπ{y)) Of^Y ) , (5.10)
\ \\y UJ )

where i + 1 = 1 and sg denotes the sign function, then equality in a) holds.

The derivatives in (5.9), (5.10) may be considered in the weak sense.

For the case of bounded, differentiable cost functions on Rk x Rk Levin

(1992) obtained the following interesting result:

THEOREM 5.5. Let c be bounded and defined on X x X, where X is a

domain in Rk, c(x,x) — 0, {c < α} analytic for all α, c continuously differen-

tiable in some open neighbourhood of the diagonal and assume the existence
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of some function h on X with h(x) - h(y) < c(x,y), then

inf I fc(x,y)dF(xJy); F e fH\ = ίuo(x)dH(x), where

a (5.11)

uo(x) =

The proof of (5.11) shows that differentiability on the diagonal is crucial

since it reduces the dual problem to a trivial situation. In the real (and

euclidean) case the most natural cost function | x — y | is excluded while for

the differentiate functions | x — y | α , α > 1, the infimum is trivially zero (cf.

(5.8)). It would, therefore, be of interest to have a version of (5.11) in the

nondifferentiable case. From the proofs it is not clear how an optimal plan (if

it exists) can be constructed.

5.3. A Duality Principle. Let c = c(u, v), u, v 6 R1 be a Monge function,

i.e., Δ^c < 0 for all x,y G ϋ 2 , x < y where Δ^ is the multivariate difference

operator. It is well known that the Kantorovich-functional

= mΐ{Ec(X,Y); X ~ Pu Y ~ P2} (5.12)

is given by

AC(PUP2) = Ec(F^(U),F^(U)), (5.13)

here each F{ is the df of Pi and U is a rv uniformly distributed on (0,1). The

following simple property of Monge functions leads to an interesting duality

principle (cf. Rachev and Rϋschendorf (1993)).

If c is a Monge function, then

Έ(u, v) := —c(—ifc, v) is a Monge function.

As a first application consider a Monge function c and define the sup-problem:

X,Y); X~P2,Y~ P 2}. (5.15)

From the duality result in (5.14) we obtain the following (well-known) dual

result for the sup-problem which in this case is also obvious from the lower

Frechet bounds.

For a Monge function c we have

AC(P1,P2) = EciFΐ'il-U^F^iU)), (5.16)

where U is a rv uniformly distributed on (0,1).
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For an application with additional restrictions let T(x,y) be a measure
generating function with

Γ(*,y) > (Fί(x) + F2(y)-l)+ =: F(x,y). (5.17)

Define !Fγ = ^rr(Pi^P2) to be the set of all distribution functions F with
marginals Pχ,P2 and such that F is bounded above by Γ

F(x,y) < T(x,y), for all x9y. (5.18)

Define

F*(x, y) := inf {Γ(tι, t;) + (*!(*) - F1(u)) + (F2(y) - F2(v))}
"<Xy (5.19)

then Barnes and Hoffmann (1985) in the discrete case and Olkin and Rachev
(1990) in the general case proved:

F* errand i n f I jc(χ,y)άF{x,y); F e TΓ\ = Jc(x,y)dF*(x,y). (5.20)

In particular F* is the upper Frechet bound corresponding to !Fγ.

From the duality principle we can infer the dual result to (5.20). For a
measure μ let Gμ be defined by

Gμ(x,y) := P(X<x,Y>y), (5.21)

where (X, Y) ~ μ. Define

SA :={Gμ; μeM(PuP2),Gμ(x,y) < A(x,y) forallz^}, (5.22)

where Δ is a measure defining function defining a measure δ by A(x,y) —
δ((—oo,x] x[j/,oo)). Define

AA(c) := sup j fcdμ; Gμ < Δ, μeM(PuP2)\ (5.23)

and

_ F2(y) := 1 - F2((-y)-) (5.24)

F*(x,y):= M{A(u,v) + (F1(x)-Fι(u)) (5.25)

+ F2((-v)-)-F2((-y)-)}Λ
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The simple duality argument of (5.14) allows one to obtain the solution

of the transportation problem (5.23) without additional calculation. A direct

proof of the following result was given in Olkin and Rachev (1990).

PROPOSITION 5.6. P* is a df with marginals Fi,F2. Tie corresponding
measure μ* satisfies: Gμ* G G

AA(c) = jcdμ*. (5.26)

5.4. Majorized Frechet Bounds. On a measure space (X,/?), let /?; C /?

be sub-σ-algebras, 1 < i < n, and P, G M 1 ( X , β ί ), let μ be a finite measure

on (X, β) , and define

Mμ := {P G M\X,B); P/Bi = P2 , 1 < i < n, P < μ}. (5.27)

Assume that Mμ φ 0 and define

ί / X / 1
U J φ ) := i n f < U(φo) + h d μ ; / ι > 0 , <£o + ^ 5 > < £ r > ( 5 . 2 8 )

i y j
where

ί7 is the dual operator for the pure marginal problem and for all lower ma-

jorized measurable functions φo

UφoάP; PeM(Pu...,Pn)\ =s u p | IφodP; P £ M(P1,.. .,Pn)\ = U(φ0) (5.29)

holds (cf. e.g. Kellerer (1984), Riischendorf (1991b)). Similarly, Uμ is the dual

operator for the majorized marginal problem. A linear operator 5* is majorized

*yUμ,

S < Uμ iff S > 0, S/Bi = P^ l<i<n and S < μ. (5.30)

Therefore, the approach to duality theorems as developed in Riischendorf

(1991b), Section 2.1, yields the duality theorem

ϋμ(φ) = sup jy^dP; P G M μ | =: Mμ(φ) (5.31)

for upper semicontinuous or uniformly approximable integrable functions φ

in the situation of compactly approximable measure spaces (X,Bi,Pi) with
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countable topological basis. In some sense (5.31) gives the duality result for
the general case of order restrictions as considered e.g. in Sections 5.1, 5.2.

We want to consider the question of more explicit evaluations of the dual
operator Uμ for the case φ = 1B->B £ B. In this sense we try to establish the
sharp upper Frechet bounds in the class Mμ. Define Mμ(B) := Mμ(lβ) and
assume the duality (5.31).

PROPOSITION 5.7. (cf. Rachev and Rϋschendorf (1993)).

Mμ(B) = sup PΛμ(fl), (5.32)

PeM(pu...}pn)

where P Λ μ is the infίmum in the lattice of measures.

PROOF. From (5.31)

Mμ{B) = m{{μ(h)
= mf{μ(h) + U{lB -h);0<h< 1} { ' }

The last step follows by taking ψ = (lβ - Λ)+, so 0 < φ and w.l.g. h <
Next using the integration trick of Strassen (1965)

Mμ(B) = inf sup {μ(h) + P(lB - h)}
0<h<lB

= inf sup < μ(h> t)άt + / P(1B - h > \ - ί)dί } .
0<h<lB p {J0 J0 )

With Ct := {h > t} C B we have

{x : h(x) < lB(x) - 1 + 0 = {x e B; h(x) <t} = B\Ct.

Therefore,

Mμ(B) = inf sup / (μ(Ct) + P(B \ Ct))dt
0<h<lB p Jo

(5.34)

p
p CCB

= sup μ Λ P(B).
P

On the other hand obviously

Mμ{B) = suv{P(B); P e M(P1,...,Pn), P < μ}

= sup{P Λ μ(B); P <Ξ M{PU .. .,Pn), P < μ}

< sup PΛμ(B).
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Proposition 5.7 allows one to reduce the problem of the majorized Frechet

bounds to the problem of "usual" Frechet bounds but for a more complicated

functional. It remains an open problem to determine more explicit formulas

for Mμ(B). Some special instances of explicit results for this case of local

upper bounds have been solved in Rachev and Rϋschendorf (1994).
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