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Makarov (1981) and Frank, Nelsen and Schweizer (1987), and indepen-
dently Riischendorf (1982), have found upper and lower bounds for P{X+Y < t}
(t € R = (—00,00)), when the marginal distributions of X and Y are fixed, and
they have proved that their bounds are sharp.

In this paper we find similar bounds when X and Y are vectors rather
than scalars. First we determine lower and upper bounds by generalizing the
method of Frank, Nelsen and Schweizer and we show that the method can be
used also to determine bounds for distributions of functions other than the sum.
Then, by generalizing Riischendorf’s method, based on a theorem of Strassen,
we prove that the bounds previously obtained are sharp. Finally we use the
bounds to obtain inequalities for expectations of increasing and of A-monotone
functions of X 4+ Y.

1. Introduction. Makarov (1981) and Frank, Nelsen and Schweizer
(1987), and independently Rischendorf (1982), have solved the following prob-
lem: Let X and Y be real-valued random variables with respective one-
dimensional distribution functions F; and F3, and let Fr g, be the Fréchet
class of joint distributions with marginals F; and F3. For all ¢ € R find the
best bounds

L(t):= inf P{X+Y <t} (1.1)
'rleF2
and
U(t):= sup P{X+Y <t}. (1.2)
Fr,pRy

A review can be found in Section 2.2.5 of Riischendorf (1991) or in Section 8
of Schweizer (1991); see also Remark 7.3.3 in Rachev (1991).
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In this paper we extend the methods of Frank, Nelsen and Schweizer
(1987), and of Riischendorf (1982), to the multivariate case, that is, to the
case in which F; and F, are n-dimensional. Whereas the extension of Frank,
Nelsen and Schweizer’s method provides bounds that are easy to compute,
we cannot prove sharpness using their method. To show that the bounds are
sharp we generalize Riischendorf’s idea, which in turn is based on a theorem of
Strassen. The bounds can be used to establish inequalities for the expectations
of increasing and of A-monotone functions of the sum of two random vectors.

Below, the terms “increasing” and “decreasing” stand, respectively, for
“nondecreasing” and “nonincreasing.” Also, whenever we study an expecta-
tion or an integral we implicitly assume it exists. For two elements s =
(s1,82,...,8,) and t = (t1,%2,...,t,) in R™, the notation s < ¢ will mean
8; <t,t=1,2,...,n, and the notation s < ¢t will mean s; < t;,1=1,2,...,n.
In this paper, when we refer to the distribution function F of a random vector
T = (T1,Ts,...,T,) we mean the function F defined by F(¢t) = P{T < t}.
The corresponding survival function F is defined by F(¢) = P{T > t}.

1. Bounds on the Distribution Function of X +Y. Let X =
(X1,X2,...,Xn) and Y = (¥1,Y2,...,Y;,) be two random vectors with re-
spective marginal distributions F; and F,, and some joint distribution F.
Define

W(z,y) = max{Fi(z) + Fz(y) - 1,0}, (2.1)
Z(z,y) = min{Fi (=) + F2(y), 1}. (2.2)

In general W and Z are not distribution functions. When n = 1, W is the
lower Fréchet bound of Fr, r, (and therefore a distribution function), and Z
is one minus the lower Fréchet bound for the class of joint survival functions
F(z,y)= P{X > «,Y >y} with the above marginals. Also define

L(t) = P tW(u,v), (2:3)
U= jnf_ Z(uv). (2.4)

THEOREM 2.1. For every pair of random vectors X = (X1,X2,...,Xn)
and Y = (Y4,Y2,...,Y,) having distributions Fy and F3, respectively,

L(t) < P{X +Y <t} <U(). (2.5)

Proor. Note that for all t,u € R"

W(u,t —u) = max{Fi(u) + Fp(t — u) — 1,0}

2.6
<P{X<u,Y<t—u}<P{X+Y <t} (2:6)
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Z(u,t —u) = min{Fy(u) + F2(t — u), 1}

2.7
>1-P{X>u,Y>t—u}>P{X+Y <t} (2.7)
Therefore
L(t)=supW(u,t —u) < P{X+Y < t}, (2.8)
u
Ut) = inf Z(u,t—u) > P{X+Y <t} (2.9)

for each 2n-dimensional distribution F of (X,Y) with n-dimensional margins
Fi and F,. 1

The central point is that the bounds L(t) and U(t) in (2.5) depend only
on the margins and not on the joint distribution. Note that these bounds are
not necessarily distribution functions.

The bounds given in Theorem 2.1 are on the probability of a lower orthant
{u € R" : u < t}. We present next the analogous bounds on the probabilities
of upper orthants {u € R" : u > t}. These bounds are obtained in an entirely
similar fashion by way of the survival functions F; and F,. Define

E(z, y)= max{—ﬁl(z) + 72(1’) - 1,0}, (2'10)
Z(x,y) = min{F; (=) + Fa(y),1}. (2.11)

In general @ is not a survival function except when n = 1. Also define

I(t)= sup wW(u,v), (2.12)
ut+v=t
u(t) = inf Z . 2.13
a(e) = jnf_ %u,v) (213)
THEOREM 2.2. For every pair of random vectors X = (X1, X2,...,X,)

and Y = (Nh,Ys,...,Y,) having distributions Fy and Fj, respectively,

I(t) < P{X + Y >t} <a(t).

REMARK 2.3. A comparison of Theorems 2.1 and 2.2 shows the compli-
cation that arises in the multivariate case, in contrast to the univariate case.
When n = 1 the two theorems yield the same bounds, those of Frank, Nelsen
and Schweizer (1987). However the bounds are different when n > 2 because
the complement of a lower “orthant” is an upper “orthant” only when n = 1.

We now extend Theorem 2.1 to functions other than addition. Note that
the last inequalities in (2.6) and (2.7) follow from two simple set inclusions:
For any fixed u,v € R"

{(W, ") 1 v <u,v’ <o} C{(u,v):u' +v' <u+v}
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and
{(W,") t e > u,v" >0} C{(u,v) i + 0" > u+ v}

Thus, one may replace X + Y in Theorem 2.1 by a more general function
g9(X,Y) provided that

{(W,v") 14/ < u, v’ <o} C{(u,): g(u',v") < g(u,v)}

and
{(w,0) s u' > u,v' > v} C{(u,v'): g(u',v") > g(u,v)}.

Any increasing function g : R?* — R, such that
(u,v) < (v, v") = g(u,v) < g(v/, ), (2.15)

satisfies these conditions. Define now

L®)= sup  W(u,v),
g(u,'v) =t

Uy(t) = inf  Z(u,v),
g(u,'v) =t

where W and Z are defined in (2.1) and (2.2). Also define

Zg(t) = sup TD_('u,, 'v),
g(u, 'v) =1

u(t) = inf Z(u,v),
g(u, v) =1

where W and 7 are defined in (2.10) and (2.11). Then we have the following
result.

THEOREM 2.4. Let g : R?® — R be an increasing function that satisfies
(2.15). For every pair of random vectors X = (X1,X32,...,X,) and Y =
(Y1,Y2,...,Y,) having distributions Fy and F3, respectively,

Ly(t) < P{g(X,Y) < t} < Uy(t)

and
Iy(t) < P{g(X,Y) > t} < Wy(t).

3. Sharp Bounds. In this section we show that the bounds in Theorems
2.1 and 2.2 are sharp.

We start by stating a special case of Theorem 11 of Strassen (1965). Let
S and T be Polish spaces and let P; be a probability measure on (5, Bor(S)),
P, be a probability measure on (T, Bor(T)), and let Pp, p, be the class of
probability measures on (S X T, Bor(5) ® Bor(T')) with marginals P; and Ps.
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LEmMMA 3.1. Fix a closed set A C S xT and an € > 0. Then the following
two statements are equivalent.

(a) There exists a p € Pp, p, such that u(A) > 1—e.
(b) For every open set C C T, Po(C)— Pi(mi(AN (S x C))) < €, where m;
denotes the projection on S.

Now, for any closed set A C S x T, let M(A) = sup{u(A) : u € Pp, p,}
and m(A) = inf{u(A) : p € Pp,p,}, and let Or denote the class of open
subsets of T. The following result was stated without proof in Riischendorf
(1982) for the case S =T =R.

LEmMMA 3.2. For any closed set A C S X T one has

M(A) = 1- sup {Py(C) - P(mi(AN (S x C)))}.
CeOr

Proor. We will establish the inequalities

M(A) <1 - sup {P(C) — Pi(m(AN (S x C)))}, (3.1)
CeOp
and
M(A)>1- Cseug {P(C) — Pi(mi(AN (S x C)))}. (3.2)

Recall that M(A) = sup{u(A) : 4 € Pp, p, }. Thus, for every é > 0, there
exists a p € Pp, p, such that

w(A) > M(A)-6=1-(6— M(A)+1).
By Lemma 3.1, for every open set C C T,
Py(C)— P(m(AN(SxC))<é—M(A)+ 1.
Therefore

sup {Py(C)— Pi(m(AN(SxC))}<6d- M(A)+ 1.
CeOp

Letting 6§ — 0 we obtain (3.1).
Now, for a fixed closed set A C S x T, let

6(A) = sup {P(C) - Pi(m(AN(S x C)))}.
CEOT
Then, for every open set C C T,

Py(C) = Ai(m(AN (S x C))) < 6(A).
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By Lemma 3.1 there exists a 4 € Pp, p, such that u(A) > 1—6(A). Since, by
definition, M(A) > u(A), it follows that M(A) > 1 — 6(A), which is (3.2). 1§

We are now ready to provide sharp bounds for P{X + Y < ¢} and
for P{X + Y < t} along the lines of Riischendorf (1982). For t € R" let
A(t) = {(z,y) ;¢ +y < t} and A(t+) = {(z,y) : ¢+ y < t}. Forany t € R"
and C CR" lett—C ={y:y=1t— =« for some = € C}. Recall that a set
A C R" is called upper [lower](3.6) if t € A and s > [<] ¢ imply that s € A.
Let O and U be, respectively, the class of open subsets and the class of upper
open subsets of R™. As in Section 1 we denote by Fr g, the class of joint
distributions with marginals F; and F;.

THEOREM 3.3. For every pair of random vectors X = (X1, X2,...,X,)
andY = (Y1,Y2,...,Y,) having distributions Fy and Fj, respectively,

}_inf P{X+Y <t}= sup {Po(—00,a))— P((—00,t—a)?)} (3.3)
F1.F2 a€R”

and

sup P{X+Y <t} = Cixéx;{PZ(C':) + Pi(t—-C)}, (3.4)

]:FlrF2

where Py and P, are the probability measures associated with Fy and F3,
respectively.

Proor. To prove (3.4), first note that

sup P{X +Y <t} = M(A(t+)).

}-Fl ,Fo

By Lemma 3.2 we have
M(A(4) = 1= sup (B(C) = Plma(A(t4) 0 (& x O)}.

For C C R™ define
C; =m(A+)N(R"x C))={z:a <t —y for some y € C}

(Cjf is a lower set).

Note that given ¢t and C, there exists an upper set V such that
C;=Vy. (3.5)

(To see it just take V = {y' : y’ > y for some y € C} and verify that (3.5)
holds.) When C'is an upper set then C; =t - C.
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Now, from (3.5) it follows that
glel%{Pz(C) — Pi(m(A(t+) N (R™ x C)))}
= sup {P,(C) - Pi(m1(A(t+) N (R™ x C)))}.

Therefore
M(A(t+)) = 1 - sup {Po(C) = P(ma(A(t4+) 0 (B x C))}
=1- sup{P(C) — P(C})}
ceu
=1-sup{P(C)- Pi(t-C)}
celd
= Il () + Pt O,

and this gives (3.4).
The proof of (3.3) is similar. First note that

inf P{X +Y <t} =m(A(t)).

Fy,Fy

Since the set (A(t))° is closed, Lemma 3.2 yields
M((A(®))) =1 - sup {P2(C) = Py(m((A(¥))° N (R* x €)))}.
For C C R" define
Ct:=m((A))NR*xC))={z:2z £ t—y for some y € C}

(Cy is an upper set).

For every t and C, there exists a lower set V such that
Ct =W (3.6)

(To see it just take V = {y' : y’ < y for some y € C} and verify that (3.6)
holds.) More than that, for every ¢ and C, there exists a lower orthant @ such
that o

Ce = Q. (3.7)
(To see it suppose that C is a lower set and take @ to be the smallest lower
orthant containing C. Then, clearly, éj - @/t But if z € CAQ; thenz £t—y
for some y € . Thus there exists a y € @ such that z; + y; > t; for some
i € {1,2,...,n}. Since C is a lower set, it follows from the definition of Q
that there exists a point y’' € C such that y! = y; for that i. For y' we have
z; + y! > ti, and therefore = € E/'t, and (3.7) follows.)
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When C' is the lower orthant, C = (-0, a), say, then
Ct = (=00, t — a)°.
From (3.7) we have
sup {P2(C) = A(m((A(2))° N (R x C)))}

= sup {P3((~00,a)) = Pi((-00,t—a))}.

a€R
Therefore
M((A(t)))=1- sup {P3((-00,a))~ Pi((—c0,t—a))}.
acR"
Hence
m(A(t)) = 1 - M((A(t))°)
= sup {P((-o0,a)) - Pi((~00,t - a))},

acR"

and this gives (3.3). [ |

The same method yields bounds on probabilities of upper orthants. This
is stated next. The proof is omitted since it is similar to the proof of Theorem
3.3. Let £ be the class of lower open subsets of R™.

THEOREM 3.4. For every pair of random vectors X = (X1,X2,...,X,)
and Y = (Y1,Y2,...,Y,) having distributions F; and F3, respectively,

inf P{X+Y >t}= sup {P(a,))— Pi((t - a,00)%)} (3.8)

}-FI,F2 a e Rn

and
sup P{X+Y >t} = ci'Iéfg{P2(Cc) + Pi(t—C)} (3.9)

}.Fl 33
where Py and P, are the probability measures associated with Fy; and F3,
respectively.
From Theorems 3.3 and 3.4 we can obtain the sharpness of the bounds
given in Theorems 2.1 and 2.2.

CoOROLLARY 3.5. Let X = (X1,X3,...,Xy) and Y = (N1, Ys,...,Y,) be
a pair of random vectors with distributions Fy and F3, respectively. If X +Y
has a continuous distribution then the bounds given in (2.5) and in (2.14) are
sharp.

ProoF. It is easy to verify that the lower bounds given in (3.3) and in
(3.8) are the same as the lower bounds given in (2.5) and in (2.14), respectively.
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In order to show that the upper bound given in (2.5) is sharp, first note
that since the upper bound in (3.4) is sharp it follows that for any ¢ € R”,

U@ 2 jnf (P(C%) + Pa(t - )},

where U(t) is given in (2.5), and, for convenience, we interchanged the indices 1
and 2 in (3.4). Now we show that, for any t € R,

Ut) < jof {P1(C°) + Po(t - C)}. (3.10)

Fix a t € R™ and an upper open set C. Let ug be a boundary point of
C (some of the coordinates of ug may be infinite). Since C is an upper set it
follows that (—o0,ug] C C° and that (ug,00) C C. Hence Fi(ug) < P(C°)
and F3(t — up) < P2(t — C). Therefore, for any open upper set C,

Pl(Cc) + Pz(t - C) > F](uo) + Fz(t — ’u.o) > I%f{Fl(u) + F2(t - u)} > U(t),

and (3.10) follows.

In a similar fashion it can be shown that the upper bound given in (2.14)
is equal to the upper bound given in (3.9). |

The results given in Theorems 3.3 and 3.4 can be extended to sums
of more than just two random vectors. We describe only the extension of
(3.4); the other bounds can be extended similarly. The discussion below is an
extension of Proposition 3(a) of Riischendorf (1982).

Let X1, X,,..., Xk be random vectors with distributions Fi, Fy,..., Fk,
respectively. Let Fr, F,,. F denote the class of joint distributions with mar-
gins F1,F,...,Fx. For F € Frg F,,.. F._, denote by G the distribution
function of the sum of k¥ — 1 random vectors that have the joint distribution
F. Then

sp P{Xi+Xg+ 4 Xe<th= s inf {PU(C)+Qr(t-C)},

FFy,Fy,...,F B N

where P, and QF are the probability measures associated with Fi and GF,
respectively. The proof of this is immediate from (3.4).

4. Inequalities for Expectations of Functions of X +Y . In this sec-
tion we show how Theorems 2.1, 2.2, 3.3 and 3.4 yield bounds on expectations
of the form E[¢(X + Y)] for certain classes of functions ¢.
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First recall that for a real n-variate function ¢, the multivariate difference
operator A is defined by

AlLg = Z (=1)Z=1% (151 + (1 — €1)t1, -+ oy €nsn + (1 — en)tn),
(€1,€2,...,€n)€{0,1}7

where s and t are elements of R™. The function ¢ is called A-monotone if
A§¢ >0 whenever s<t.

Let M be the set of all n-variate functions that are A-monotone in any k£ of
their coordinates when the other n—k coordinates are held fixed, 0 < k < n—1.
For example, every distribution function is a member of M. Also, all functions
¢ of the form @(t1,ts,...,t,) = []i,; ¢i(t;) belong to M provided ¢; is a
nonnegative increasing function, ¢ = 1,2,...,n. An n-times differentiable
function ¢ is in M if, and only if, Wg_;’imd)(t) > 0, {t1,%2,.--,tm} C
{1,2,...,n}. We will consider only these members of M. We then write
as(t) = '5t18?2_+3t,,¢(t) which is well defined and nonnegative. Using Theorem
2.2 (or Theorem 3.4) and ideas of Cambanis, Simons and Stout (1976), Tchen
(1980), Riischendorf (1980) and Mosler (1984) we obtain the following bounds.

THEOREM 4.1. Let X = (X1,X2,...,X,) and Y = (Y1,Y,,...,Y,) be
any random vectors with respective marginal distributions Fy; and F,. Let
¢ € M be n-times differentiable, and assume that there exists a b > —oo such
that imy, oo #(t1,. .., tic1,tiy tit1, .-, tn) = b, 1=1,2,...,n. Then

b+ /R ay(®)l(t) dt < E[HX +Y)] < b+ /]R autEdt,  (41)

where [ and @ are defined in (2.12) and (2.13).

Proor. Let K denote the distribution of X + Y. Writing ¢(t) =

t .
b+ / ay(x) dz, and applying Fubini’s theorem to interchange the order

—00
of integration, we obtain

E[p(X+Y)=b+ /]R" ags(t) K (t) dt
> b+ /lR _as(B)I(2) dt,

where the inequality follows from the fact that K(¢) > I(t) (see (2.14)).

The proof of the other inequality is similar. ]
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When [ and @ happen to be survival functions, associated with the dis-
tribution functions ! and u, then (4.1) can be written as

[ o0 i) < Blox + )] < [ o(e) dute),

or as

(-0 [ o) i) < Blg(x +¥)) < (-1 [ 6(0) dute).

Inequality (4.1) essentially follows from Theorem 2.2 . In a similar fashion
one can use Theorem 2.1 (or Theorem 3.3) to obtain the following result.

THEOREM 4.2. Let X = (X1,Xs,...,X,) and Y = (h,Y2,...,Y,) be
any random vectors with respective marginal distributions F; and F,. Let
g : R" — R be n-times differentiable such that ¢, € M where ¢, is de-
fined by ¢4(t) = g(—t), t € R" (for example, g satisfies these conditions if

(—1)mmé’_%i_;g(t) > 0, {i1,%2,.--,im} C {1,2,...,n}). Suppose that

t,‘z
there exists a b > —oo such that lim, o g(t1,...,tic1,tis tix1,- .., 0n) = b,
1=1,2,...,n. Then

b+(=1)" /R _ag(t)L(t) dt < E[g(X+Y)] < b+(~1)" /R _ag(8)U(t) dt, (4.2)

where L and U are defined in (2.3) and (2.4), and a, denotes the nth partial
derivative of g.

ProoF. A computation similar to the one in the proof of Theorem 4.1
yields
E[g(X +Y)] = E[¢g(-(X +Y))]

=b+ ./]R" ag,()P{—(X +Y) >t} dt
—b+ /Rn as,(P{X +Y < —t) dt

— b4 /R" ag,(—)P{X + Y <t} dt

= b4 (1) /Rn a,()P{X +Y < £} dt

> b4 (1) / 0, (8)L(t) dt,
]Rn
where the inequality follows from (2.5).

The other inequality can be proven in a similar fashion. |
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Functions g of the kind discussed in Theorem 4.2 are studied in Mosler
and Scarsini (1991).

Using Theorems 2.1, 2.2, 3.3 and 3.4 we can also obtain bounds on
E[¢(X + V)] for functions ¢ which are increasing with respect to the compo-
nentwise order in R™ (rather than just A-monotone). We need the following
definitions.

DEFINITION 4.3. A set function M : Bor(R™) — [0, 1] is called a capacity
if
(i) M(0) =0,
(i) M(R*) =1,
(iii) A, B € Bor(R™), A C B = M(A) < M(B).

DEFINITION 4.4. Given a measurable function ¢ : R® — R, the lower
Choquet integral of ¢ with respect to the capacity M is defined as

[oam= /0 - M 900 < )l da— [ _M({t:6(0) < o) da

and the upper Choquet integral of ¢ with respect to M is defined as

0

/qs M = /0°° M{t: (2) > a}) da — / [ = M({t: 6(2) > a})] da.

—00

For definitions and properties of the Choquet integrals see, e.g., Choquet
(1953-54), Gilboa (1989) and Denneberg (1994).
Now let X and Y be as in Theorem 2.1 and denote the joint distribution
of X +Y by K. Then, from Theorem 2.1, we have that for all £ € R",
L(t) < K(t) < U(¢). (4.3)
Note that L and U are increasing functions such that for : = 1,2,...,n,

lim L(tl,. costiclsbistinty e ostn)

ti——00
= lim U(ti,...,ti—1,t,tig1,-- i) =0,
t;——00
and
lim L(t)= lim U(t)=1.
t— 0 t— 00

Let P be the probability measure on (R™, Bor(R")) associated with K,
let Q be the class of lower orthants

Q = {(~o0,t): t € R"},
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and let Q* be the class of complements of lower orthants
Q* = {R"\ (—o0,t) : t € R"}.
Clearly Q, 9* C Bor(R"). For B = (—00,t) € Q define
M.(B) = L(t) and M*(B)=U(¢).
Extend M, and M* to Bor(R") as follows. For A € Bor(R"),

M.(A) = sup M,(B) and
BCA
BEQ
M*(A) = AE% M*(B).
BEQ
Clearly, M™* and M, are capacities.

For any lower set A we have

M.(A) = sup M.(B)
BeQ
sup P(B)

BCA
BEQ

P(A)

i, ()

BeQ

inf M*(B) = M"(4),

BEQ

IN

VAN VAN

IN

where the first and the last inequalities follow from (4.3). Therefore (Dycker-
hoff and Mosler (1993), Scarsini (1992)), for all increasing functions ¢ : R® —
R,

/¢>dM* /¢dP</¢dM (4.4)

Since [¢ dP = [ ¢ dP = E[¢(X +Y)], (4.4) provides bounds for E[$(X +Y)]
for all increasing ¢.

Similar bounds can be obtained by defining, for B = (R"\ (—o0,t)) € Q*,
N.(B)=1-U(t), and N*(B)=1- L(¢).
Now extend N, and N* to Bor(R") by defining

N.(A)= sup N.(B) and N*(A)= inf N*(B),
BCA ACB

BeQ* BEQ*
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for A € Bor(R"). Again N, and N* are capacities, and for all upper sets A, a
similar argument yields

N.(A) < P(4) < N*(A),

which implies that for any increasing function ¢

7¢ dN, < 7¢ dP < 7¢> dN"*.

In summary, for all increasing ¢,

max ( 1 saxr, [o dN*) < E[p(X + V)]

< min </¢> dM,,,7¢ dN*) .

Bounds on E[¢(X + Y)), for all increasing ¢, the analogues of those in
(4.5), can be obtained in a similar fashion using Theorem 2.2 (rather than
Theorem 2.1 ). We omit the details.

(4.5)
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