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AMBIGUITY IN BOUNDED MOMENT PROBLEMS

BY HANS G. KELLERER

University of Munich

Let (X, A, μ) be a finite measure space and K be a linear subspace of C\ (μ)
(e.g. generated by the one-dimensional projections, if X is a product space). The
following inverse problem is treated: To what extent is a set A 6 A
"/C-determined" within the class of all (fuzzy sets) g £ Coo{μ) satisfying 0 <
g < 1, i.e. which lower and upper bounds A* and A* for A can be derived from
knowing the integrals JA fdμ, f £ K - thus generalizing the uniqueness problem
(A. = A*).

Introduction. This is the natural extension of a paper entitled "Unique-
ness in bounded moment problems," Kellerer (1993). The questions treated
there had their origin in a central problem of tomography: which n-dimensional
objects can be reconstructed from the measures of all their (n — l)-dimensional
sections orthogonal to the different axes? In this form the planar case was stud-
ied by Kuba and Volcic (1988), while the extension to higher dimensions was
carried out by Fishburn et al. (1990, 1991).

As was done by Kemperman (1990, 1991), the author in Kellerer (1993)
subsumed this classical case under the following "bounded moment problem":
given a measure space (X,A,μ) and a family /C of integrable test functions,
which sets A £ A are - up to null sets - uniquely determined by the integrals
JA fdμ, f G /C? In the weak version A is compared with ordinary sets only,
while in the strong version this comparison takes place in the class Q of all
fuzzy sets (i.e. functions attaining their values in the unit interval). Since
both models coincide in important situations, but methods of convex analysis
cannot be applied to the weak version, in the sequel the strong version will be
emphasized.

Now the search for uniquely determined sets is in fact a very restricted
view of this kind of inverse problems. As considered by Kuba and Volcic (1993)
in the planar case, also in the general case two sets of uniqueness are associated
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with any set A e A: Uι(A) resp. Uo(A) are defined as the intersections of the
sets {g = 1} resp. {g = 0}, taken over all functions g G Q satisfying

/ fgdμ = / fdμ for / G /C.
Jx JA

It is one of the main results in Kellerer (1993) that uniqueness of A is closely
connected with the existence of a representation

(1) A = {/ > 0} and X\A = {f < 0}

for some / G iC. Under this assumption the set {/ = 0}, containing no
information about A via the integral JA fdμ, has to be a null set. Thus it is
only natural to conjecture that in the general case the representation (1) has
to be replaced by

(2) UX{A) = {/ > 0} and U0(A) = {/ < 0}

for some / G /C. Under this assumption A is known except for variations inside
the set V(A) = {/ = 0}.

However, as follows from Kellerer (1993), a representation of type (1)
for uniquely determined sets is (a) restricted to special situations or (b) valid
only in a weakened version. It is not surprising that this holds even more in
the general case. Roughly speaking, Section 2 of this paper is concerned with
aspect (b), while Section 3 is devoted to aspect (a). For a brief survey of these
sections see the following two paragraphs.

Interpreting the reconstruction of a set A G A from the associated in-
tegrals JAfdμ, f G /C, as an extension of some linear functional suggests an
application of the Hahn-Banach theorem. This provides in Theorem 2.1 a
characterization of the sets U\(A), UQ(A) and their relative complements that
turns out to be crucial for all that follows. It yields in particular Theorem 2.2,
solving the problem whenever the family K, is of finite dimension. This in turn
implies Theorem 2.3, ensuring a representation of type (2) whenever the basic
space X is finite.

As a corollary this yields Proposition 3.1, extending known results on
(0, l)-matrices to more general arrays. The final applications concern the
classical (two-dimensional) marginal problem. First a representation of type
(2) is provided in the discrete case by Proposition 3.3 without any assumption
on the underlying measure μ. This result then is carried over to the continuous
case by Proposition 3.5, where, however, μ has to have product form. It
remains an open problem, whether there is a common extension of these two
propositions.
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Before collecting the needed prerequisites in Section 1, some notation has
to be fixed. Given the measure space (X, .4,μ), the function spaces C\(μ) -
with its norm || || - and Coo{μ) have their usual meaning. Thus, in particular,
functions that agree modulo μ are identified and the same convention holds
for sets in A. Since suppressing μ in equations and inequalities, however, can
be misleading, the symbols = and < resp. C are used whenever null sets may

intervene. Finally, since μ is always assumed to be (σ—) finite, //-essential
intersection and union are well defined for each family ΛQ C A; they will be
denoted by μ-inf Ao resp. //-sup Ao

1. Preliminaries. Throughout the paper the following conventions
hold:

(a) (X,A,μ) is a finite measure space,

(b) /C is a linear subspace of Cι(μ).

Concerning (a), the σ-finite case is covered as well, multiplying the measure
μ by a strictly positive function h £ C\{μ) and all functions in /C by l/h.
Concerning (b), the linearity assumption is no real restriction, as is immediate
from the central notion:

DEFINITION 1.1. The set

G = {g e Coo(μ) : 0 < g < 1}

is endowed with the equivalence relation

g\ ~ g2 <* / fgidμ = / / s ^ μ for all / e /C.
fc Jx Jx

Clearly, this relation is compatible not only with equality modulo μ but also
with the linear structure in Q.

A thorough study of ambiguity with respect to this equivalence relation
requires an extended list of sets of uniqueness and variability:

DEFINITION 1.2. For A € A

(a) the sets ?7I(J4), ,V(A) are defined by
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Uχ{A) = μ- inf{{<7 = 1} : £ 9 g ~
/c

Uo(A) = μ- inf{{<? = 0} : G 3 g ~
/c

V1(A) =

= V1(A)UVo(A);

(b) the sets £^i(i4), , V*(A) are defined similarly, restricting ^ G ̂  to indi-

cator functions.

In accordance with the underlying equivalence relation, these mappings

from A to A have to be understood modulo μ. They have some simple prop-

erties, which will be used in the sequel without further mention:

LEMMA 1.3. The sets introduced in Definition 1.2 satisfy

(o) Uι(A) C A and Uo(A) C X\A

with analogous relations for V{ and U*, V*;

(b) Ui(X\A) = ϊ7i-i(Λ) for i = 0,1

with analogous equations for V{ and £/"*, V*;

(c) U(X\A) = U(A)

with analogous equations for V and U*, V*;

(d) Ui(A) C U*(A) and Vi(A) D V?(A) for i = 0,1

with analogous relations for U, V.

PROOF, (a) and (d) are trivial, (b) and (c) follow from

Q 3 g ~ 1A if and only if Q 3 l - g ~ lχ\A I

Clearly, A being fixed, there is a monotone dependence on /C: the sets of

uniqueness increase and the sets of variability decrease, if the subspace K is

enlarged. Moreover, for any A £ Ay the set

is contained in V(A) and V*(A).
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As already mentioned in the introduction, the weak notions 17*, ap-

pear only at some places, while the emphasis in general is on the strong notions

E/, , . Here, both the extreme cases deserve special names:

DEFINITION 1.4. A set A G Λ is called

(a) "uniquely determined," if V(A) = 0,

(b) "totally undetermined," if V(A) = X.

Thus, for instance, all sets are totally undetermined in the case K — {0}

and uniquely determined in the case /C = C\(μ).

The simplest nontrivial case is easily dealt with:

LEMMA 1.5. Let K, be spanned by a single function f and A G Λ be an

arbitrary set.

(a)Iff\A>0andf\ X\A<0, then
μ μ

Ui(A) = {f>0} and U0(A) = {/ < 0};

(b) iff I A< 0 and f I X\A > 0, then

μ μ

{/ < 0} a * d Uo(A) = {f> 0};

(c) in all other cases A is totally undetermined.

PROOF, (a) The functional / defined by

I(g) = / fgdμ for g G Q
Jx

transforms the condition g ~ \A into the equation I(g) = /(1A) and attains

its maximum 1(1 A) at g if and only if

{g = 1} D {/ > 0} and {g = 0} D {/ < 0}.

(b) Replace /by - / i n (a).

(c) Due to V(A) = Vr(X\i4) there are essentially two cases:

(1) / f+dμ > 0 and / f'dμ > 0
JA JA
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yields constants 7,1? £]0,1[ such that

7 / fdμ = ΰ(- I Γdμ) + (1 - ΰ) I f+dμ,
JX\A JA JA

and this implies

(*) 9 ~ U and {g = 1A} = 0
TV

for the function

9 = Tl r u + ^l^n{/>o} + (1 - ^)l^n{/<o> G ̂

(2) / /+dμ > 0 and / /
+
d μ > 0

JA JX\AfX\A

yields constants 7, ΰ £]0,1[ such that

- 7
= ΰ(- ί f+dμ)

because the left-hand side varies between the values JA f~dμ > 0 and
- JX\A f~dμ < 0, and this implies (•) for the function

This result allows the following reduction process:

LEMMA 1.6. Let A £ Λ and / G /C satisfy

f I A > 0 and / | X\A < 0
μ μ

and define

Xf = {/ = 0} and A' = i n X'.

Then, with the notations U- and V for the problem resulting from the restric-
tion of μ and K to Xf, the following equations hold:

U0(A) = {/ < 0} U U'0{A'),

V(A) = V'(A').
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PROOF. If g1 denotes the restriction of g e Q to X1', then it follows as in
the proof of Lemma 1.5(a) that an equivalence g ~ \A can be split into the

/c
conditions

(a) {g = 1} C {/ > 0} and {g = 0} C {/ < 0},

(b) g' ~ 1A<,

/c
where K! denotes the restriction of K to Xf. Thus the assertion is an immediate
consequence of the definition of U[ and V1. I

This result yields first bounds for the sets U{ (and thus for the sets V{ as
well): if KA denotes the family of all functions / £ K satisfying the condition
in Lemma 1.6, it follows that

Uλ{A) Dμ- sup{{/ > 0} : / e KA} = A*,

Ut(A) Dμ- inf {{/ > 0} : / € /CA} = A*

with analogous bounds for

It should be pointed out here that these bounds are attained for some
/ € KΆ, provided K is a closed subspace of Cχ(μ). Indeed, choosing functions

U {fn > 0} = A* and Π {fn > 0} = A*un j μ i i u n _ j μ

and guaranteeing Σn€f^ ||/n|| < oo by appropriate scalar factors, the function
/ = ΣΠGN fn € & belongs to KA and satisfies

{/ > 0} = A, and {/ > 0} = A*.

2. General Results. The main result of Kellerer (1993), i.e. the crite-
rion for sets to be uniquely determined, stated there in Theorem 2.1, has the
following extension:

THEOREM 2.1. For fixed A G Λ let U{ and V stand for U{(A) and Vi(A),
respectively. Then the functional

ί ί i f
-D :/—*•/ (1 — fydμ -\- I (1 + f)^dμ -f- / (~/)"*"dμ -\- I (+/)"'"(ί//

JUλ JUo JVx JVo

on C\(μ) satisfies

mί{D(f) : / e K) = 0.
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PROOF. 1. Due to the duality C\{μ) = Coo(μ), there is a bijection between

the functions g ζ C<χ>(μ) such that

(1) g?U,

(2) 0 < g < 1
μ μ

and the continuous linear functionals / on C\(μ) such that

(I') /(/) = / fdμ for / e /C,
JA

(20 0 < /(/) < / fdμ for 0 < / G

where the continuity of / is actually a consequence of condition (2'). By means

of the functional

J(f) = I f+dμ for /
7x

which is obviously positively homogeneous and subadditive, condition (2f) can

be replaced by

I(f)<J(f) for all fed(μ).
Indeed, this inequality implies (20 due to

I(f) < J(f) = 0 whenever / < 0,

while the converse is trivial.

2. By the definition of the sets U% each J-dominated linear functional /

on C\(μ) extending

IAU) = I fdμ for / G K
JA

has to satisfy

/(/) = Jjdμ ioτ{fφϋ}CUχ,

/(/) = 0 for {/ φ 0} C Uo.

Due to the positivity of /, these two conditions can be subsumed under the

sole requirement

for f0 = lUχ - lUo.

3. Now start the proof of the Hahn-Banach theorem by adjoining to K

in the first step the function /Q. Then it turns out that the admissible values



150 AMBIGUITY IN BO UNDED MOMENT PROBLEMS

of /(/o) reduce to μ{U\) if and only if

f)-Πf-fo)) = μ(U1)=m(
/e/c

By inserting J and /^ explicitly the first equation is easily transformed into
the condition inf/G/c D(f) = 0 (while the second one becomes

inf(/ (l + f)-dμ+ ί (l-f)~dμ+ I (+f)-<lμ+ ί (-
fE/C JUλ JUQ JV1 JVo

( f ) μ + ( / ) μ ) = 0
V1 J

and is seen to be no condition at all by choosing / = 0). I

To get a first insight into this result assume the infimum of the functional
D to be attained for some function f € IC. This forces all integrals involved
to vanish and thus yields the inequalities

f\U1{A)>l and / | «70(A) < - 1 ,
μ μ

f I VUA) > 0 and / I V0(A) < 0.
μ μ

According to Lemma 1.6, however, the sets {/ > 0} and {/ < 0} are contained
in U\(A) and UQ(A)J respectively, and this implies

Ur{A) = {f> 0},V(A) = {/ = 0},UQ(A) = {/ < 0}.

As already mentioned in the introduction, such a representation in general
cannot be expected even for uniquely determined sets. In order to obtain a
reasonable representation at least in the case of a finite-dimensional subspace
/C, lexicographic order "-<" has to be used. Specialized to x G Mk it is defined
by x -< 0 resp. x y 0 meaning x φ 0 with the first nonzero coordinate being
negative resp. positive.

With this notation Proposition 3.8 in Kellerer (1993) has the following
natural extension (with a less geometric proof than given there):

THEOREM 2.2. IfO<k= dim K, < oo, then for any set A G A there

exist functions fi G /C such that
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PROOF. With the functional D from Theorem 2.1 and a base hi, 1 < i < fc,
of K define

d(ai,--,ak) = D{ ])P α»Λt ) for a i ? ,afc G IR.
\<i<k

Then Theorem 2.1 provides coefficients a™ such that

(1) d « , . . . , α £ ) - > 0 for n -> oo,

and there are two possibilities:

Case 1: If the sequence (α?, •••,<$), n G N, is bounded, by taking a
subsequence, it can be assumed that

an

{ -> ai G IR for 1 < i < k.

By the continuity of d this yields

D(f) = 0 for / = J ] α,-̂  G /C,

and by the remark following the proof of Theorem 2.1 this means

= {/ > 0}, V(Λ) = {/ = 0}, C/o(A) = {/< 0},

i.e. the functions fι = f and / 2 = = /&. = 0 are appropriate.

Case 2: If the sequence (α^, ,α]J), n G N, is unbounded, after taking

subsequences (and changing the indices and/or the sign of fti, if necessary), it

can be assumed that

(2) |o j | > K | for 1 < i < k and n G N,

(3) α? -^ oo,

(4) <%laϊ -* αt G [-1, +1] for 1 < i < k.

This yields the representation

KKA?

where

6^ = α^/α^1 - α. -> 0 for 1 < i < fc.
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By (1) and the definition of D this implies

/ I Uι U Vί > 0 and / | Uo U Vo < 0,

which, in the notation of Lemma 1.6, means

Uo(A) = {/ < 0} U £^(A'),

V(Λ) = V'(A').

In view of / φ 0 the restriction /C' of/C to {/ = 0} satisfies dim K! — dim /C-l,
and the assertion follows by induction on fc, starting with Lemma 1.6. I

As shown in Kellerer (1993), the number of functions /t required in gen-
eral cannot be decreased below the dimension of K even for uniquely deter-
mined sets. An exception, however, is the case where

{/ = 0} = 0 or X for all / £ /C;

here obviously only /i is needed and thus any set A £ Λ is either uniquely
determined or totally undetermined.

It is a natural conjecture that the statement of Theorem 2.2 extends to
subspaces /C of infinite dimension, if the finite sequence /i, , fk is replaced
by a sequence /n, n £ N (with the corresponding lexicographic order). This,
however, is disproved in Kellerer (1993), where instead it is shown that a
uniquely determined set A £ Λ has a representation

A = {/* > 0} and X\A = {/* < 0}

for some function /* £ /C*. Here, /C* denotes the hull of /C with respect to
an extended mode of weak convergence (for details see Section 2 of Kellerer
(1993)). While it is easily seen that the sets {/* > 0} and {/* < 0} are again
contained in U\(A) and Uo(A), respectively, it is an open problem, whether
this result carries over to the general case, i.e. whether it is true that

UM) = {/* > 0}, V(A) = {/* = 0}, Uo(A)={f* < 0}

for some function /* £ /C*.

To conclude this section, instead of a generalization, a special case of
Theorem 2.2 will be considered. The following result is the natural extension
of Corollary 4.10 in Kellerer (1993):
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THEOREM 2.3. If X is finite, then for any set A e A there exists a function
f G K such that

U1(A) = {f>0}, V(A) = {f = 0}, Uo(A) = {f<0}.

PROOF. Since k = dim /C < oo, Theorem 2.2 applies and provides
suitable functions /i, , /*. With the notation

Ti = {/; 7̂  0} for 1 < i < k

the functions /k_i, , /i (in this order) can be replaced by appropriate posi-
tive multiples such that

min|/;(z)| >max | ^ fj(x)\ for i = A? - 1, , 1.

This leads to the equivalence

i.e. the function / = Σκi<k f* ^ ^ solves the problem. I

3. Marginal Problems. As already mentioned in the introduction,
the classical case of a bounded moment problem concerns the reconstruction
of an n-dimensional set, given the measures of all its (n — 1)-dimensional
sections orthogonal to the different axes. Here, even for uniquely determined
sets, it makes an essential difference whether n = 2 or n > 2. While in
the higher-dimensional case counterexamples predominate, the results in the
two-dimensional case are quite satisfactory (for both see Section 6 of Kellerer
(1993)). It is the aim of this section to show this to be true also in the general
setting of this paper.

To fix the notation, the marginal problem is introduced by

( X = X1 x X2 and A = Λι

£ = {/l o τri + /2 o π2 : /; G £i(μ*)},

where TΓ; denotes the projection from X to Xi and μt the associated marginal
measure of μ.

The first result takes up Theorem 2.3 to study (0, l)-matrices, as is done
in an extensive literature (see Ryser (1960) and Brualdi (1980) for surveys and
Kuba (1989) for some recent results). In this case strong and weak notions
coincide:
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PROPOSITION 3.1. Let the problem (M) be specified by

(*) Xi unite, Λ = V(Xi), μ{{x}) = 0 or 1 for all x eX.

Then for any set A £ Λ there exists a function f 6 K. such that

U!(A) = UΪ(A) = {/ > 0},

V(A) = V*(A) = {f = 0},

Uo(A) = Uζ(A) = {/ < 0}.

PROOF. 1. According to Theorem 2.3 and due to the symmetry in A and

X\A it is enough to show that for fixed y G X to a function g G 6 with

(1) g ~ 1A and g(y) < 1

there corresponds a set B G Λ with

1B ~ 1A and y £ B.
/C

Since X is finite, it is no restriction to assume in addition

(2) C = {x G X : 0 < g(x) < 1} minimal under condition (1).

Thus the assertion is established by proving C — 0.

2. Since all sums ΣXl g(xi,X2) and ̂  ^(^1,^2) are integer-valued, the
hypothesis C φ 0 is easily seen to yield a "loop"

with ^ > 1 and #?, -^f"1 pairwise distinct, but xf = a;? for % — 1,2. Then,

by alternate addition of appropriate values — α and +α to the values of g at the

vertices of the loop, the cardinality of C can be decreased without violating

assumption (1) - contradicting, however, assumption (2). I

It should be pointed out that by this result in particular known character-

izations can be extended to more general arrays - as, for instance, triangular

matrices - by proper choice of the points x G l with μ({x}) = 0.

It will be shown next that in the marginal situation Theorem 2.3 extends

from the finite to the countable case. This requires, however, some preparation:

LEMMA 3.2. Let problem (M) be specified by

(*) Xi countable and Λi = V(Xi).
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Then a set A e A is totally undetermined if and only if

(α) AxxA2CA and (*i\Ai) x (X2\A2) C X\A

admits only the trivial solution

(b) A1 x A2 = 0 and (Xi\Ai) x (X2\A2) = 0.

PROOF. 1. To prove the condition to be necessary, assume V(A) = X

and let the sets A{ satisfy (a). Then the function

/ = lAl O 7Γi + 1Λ2 ° π2 - 1 G /C

fulfiUs
/ I A > 0 and / | X\A < 0.

μ μ

Therefore by Lemma 1.6

Ax x A2 = { / > 0} C tfi(A) = 0,

(Xi\Ai) x (^2\A2) = {/ < 0} C £Ό(A)=0,

i.e. the sets At satisfy (b).

2. To prove the condition to be sufficient, consider the pairs (Ai, A2) as
points of the compact space

Y = {0,l}Xl X {

For fixed z° = (x?,x2) G X with μ({z0}) > 0 the function

d(A1,A2) = M ( ^ \ ^ ) n (A! x A2)) + μ(A Π ((XAAx) x (X2\A2)))

is continuous and by assumption strictly positive on the closed subset

Y° - {(AUA2) eY:χ°eAi for i = 1,2}.

Thus there exists ε > 0 such that

d(A1,A2)>ε for ( A ^ ^ G F 0 ,

while obviously

d(A1,A2) > 0 for (AUA2) €

Assuming in addition ε < μ[{x0}) define a measure 17 by

V{B) = /x(B) - εlB(a; 0) for 5 e Λ
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and let 1/1, v2 denote the marginal measures of the restriction of μ to A. Then,
by the elementary identity

d(AuA2) = μ(Aχ X A2) + μ(A) - μ(A Π (Ai X X2)) - μ(A Π (Xi X A2)),

the hypotheses

* Ί ( A 2 ) + ^(A 2) < V(A\ x A2) + 7 for A; e A

of Satz 4.4 in Kellerer (1964a) are fulfilled (with v_ = 0). This yields the
existence of a measure v <v with marginals z/2 . It is a simple consequence
that its density g = dv/dμ £ (7 satisfies

# £ 1Λ and flf(z°) < 1.

Therefore x° φ U\(A) and thus, x° being essentially arbitrary, Uι(A) = 0.

Since the assertion is symmetric in A and X\A, finally Uo(A) — 0 holds as

well. I

Now the desired representation can be established:

PROPOSITION 3.3. Let problem (M) be specified as in Lemma, 3.2. Then
for any set A G A there exists a function f 6 /C such that

Ul(A) = {f>0}, V(A) = {f = 0}, Uo(A) = {f<0}.

PROOF. 1. Denote by TZ the family of all pairs (Ai, A2) satisfying

A1xA2CA and (Xi\Ai) x (X2\A2) C X\A.

Since X is countable, 7£ contains a sequence (A^, A2) n G N, such that

! X ̂ 2 : (Aχ,A2) € 7e} = U >1? x ΛJ,

(J{(XΛAχ) x (X2\A2) :

The functions

Λ = Σ 2 " n ( U Γ - iχt\An) f o r * = 1»
neN

are bounded by ±1, hence the function

/ = /1 o τri + /2 o τr2
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belongs to /C and is appropriate, as will now be shown.

2. Since obviously

/ I A > 0 and / | X\A < 0,
μ μ

it follows from Lemma 1.6 that

{/ > 0} c Ux(A) and {/ < 0} C ϋo(A).

Therefore it remains to show

{/ = 0} C V(A),

where {/ = 0} is a countable union of products

X' = X[χ Xι

2 with X[ = {fi = Ίi} and 71 + 72 = 0.

3. To this end let A[ C X satisfy

(a') A[ xA'2cX'nA and (X[\A[) x (X£\A;

2) C X7\A.

Then the sets

A< = Λ ; U { / < > 7 . } for * = 1,2

satisfy
i i x 4 2 C A,

because / is strictly positive on (Ai x i2)\(^i X AJ), and similarly

(X1\A1)x(X2\A2)cX\A.

Therefore (^1,^2) € 7£, hence by the definition of / in particular

A[ x A'2 C {/ > 0} and (X[\A[) x (X!>\A'2) C {/ < 0}.

Since the sets on the left-hand sides are as well subsets of X1 C {/ = 0}, in
fact

(V) Ai x A'2 = 0 and (X'M'J x {X'2\A'2) = 0.

Thus Lemma 3.2 applies locally to X' and yields, in a self-explaining notation,

V(A) D V\X' Π A) = X7,

as had to be shown.
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According to this result the set V(A) has the special form

V(A)=
neN

with disjoint sets A™, nGN, for i = 1,2.

The final application concerns essentially the classical geometric situa-
tion. As is easily checked, the proof of Lemma 3.2 makes substantial use of
the discrete structure and cannot be carried over to the continuous situation.
Apart from an isomorphism argument, the proof of the following analogue of
Lemma 3.2 is therefore based on the main result of Kuba and Volcic (1993):

LEMMA 3.4. Let problem (M) be specified by

(*) μi nonatomic and μ = μ\ ® μ2.

Then the equivalence in Lemma 3.2 holds as well.

PROOF. 1. It follows as in the proof of Lemma 3.2 that a totally undeter-
mined set A G A satisfies the condition stated there. In proving the converse,
the σ-algebras Λ% may be reduced to separable, i.e. countably generated, σ-
algebras A®, due to the following reasons:

(1) 4̂ is the union of all products A0 = A®® A2 with separable σ-algebras

A°i c Λ ;

(2) adjoining to A® a sequence of finite partitions X{ = \Jk A™k into sets
A^ G Λ% with μ(A™k) < ^ for n G N keeps μi nonatomic;

(3) when Q in Definition 1.2 is reduced to the subclass Q° of .40-measurable
functions, then the sets U{(A) are enlarged and thus the assertion, A to
be totally undetermined, is strengthened;

(4) when /C is similarly reduced to /C°, then the relations g ~ lA and g ~ lA

are equivalent for g G £°, as is seen by smoothing / G /C to f° G /C° via
Radon- Nikody m.

2. Since it is no restriction to assume in addition μ%{Xi) = 1, it follows
by an appropriate isomorphism theorem (see for instance Satz 1.4 in Kellerer
(1964b)) that it is in fact enough to treat the case where X is the unit interval,
Ai its Borel σ-algebra, and μi the restriction of Lebesgue measure. This,
however, is done in Kuba and Volcic (1993), where the problem is first reduced,
using "monotone rearrangements" as in Lorentz (1949), to sets with decreasing
"cross functions" x\ —• μ2(AXl) and x2 —• μ\{AX2) and then is settled in (the
course of the proof of) Theorem 4.3 by actually establishing the stronger result
V*(A) = 0. I
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Now the product situation can be treated, where again strong and weak
notions coincide:

PROPOSITION 3.5. Let problem (M) be specified as in Lemma, 3.4. Then
for any set A £ A there exists a function f G /C such that

UM) = Uΐ(A) = {f> 0},

V(A) = V*(A) = {/ = 0},

Uo(A) = Uζ(A) = {f< 0}.

PROOF. 1. The proof of Proposition 3.3, concerning the sets U{(A) and
V(Λ), requires only two modifications:

(1) the defining equations for the sequence (A™, A%), n G N, have to hold only
modulo μ - and can clearly be satisfied;

(2) the representation of the set {/ = 0} as a countable union of products
X[ X X'2 has to hold only modulo μ - and can be obtained, because it follows
from Fubini's theorem that the defining values 7t may be restricted to the
countable sets

Γ. = {7 : μidfi = 7 » > 0}.

2. To prove the equations concerning the sets U*(A) and V*(A) it is
enough to verify the inclusion V(A) C V*(A), or equivalently, to show

B = {0 < g < 1} C V*(A) for g - 1A.

To this end split B into the sets

Bx = B Π tfί(A) and B2 =

and, replacing in Satz 1.7 in Kellerer (1964b) the inequality 0 < / < g by
0 < lβt9 < Ij5t5 choose sets d G A such that

d C 5, and 1(7- ~ l̂ .̂ r for i = 1,2.

Then the set
C = d U C2 U {g = 1}

satisfies lc ~ 1^ and thus includes UΪ(A). This yields the equation C\ = 5χ,
/C ^

which in view of 1 G /C implies

μ(B1)= / lc1dμ= / lBlgdμ =
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Since the last integrand is strictly less than 1, necessarily

and similarly

μ(B Π Uζ(A)) = 0.

Together this yields B C V*(A), as had to be shown. I

It is a consequence of this result that not only the set V(A) but also
Uι(A) and UQ(A) are simply countable unions of product sets.

In conclusion, the main open problem has to be pointed out: Extend
Lemma 3.4 to the case where μ, instead of being a product measure, is only
assumed to be absolutely continuous with respect to such a product. This
would make it possible to deal with the geometric situation under the addi-
tional information that the unknown set A is contained in some fixed (non-
product) subset Xo of the plane. The crucial point lies in the fact that the
proof in Kuba and Volcic (1993) cannot be extended to this situation, because
it makes use of monotone rearrangements in both coordinates separately.
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