
Chapter 3

Stochastic integrals and
martingales in Hubert and
conuclear spaces

From now on we shall be concentrating on two kinds of infinite dimensional
spaces: a separable Hubert space H and a conuclear space Φ', the strong
dual of a CHNS Φ. Our aim in the present chapter is twofold: (1) To define
martingales taking values in H and Φ' respectively.

While the study of such martingales (particularly H-valued martingales)
is of importance in the general theory (see e.g. the books of Metivier [38]
and da Prato and Zabczyk [45]), we confine our attention to discussing only
those properties which are relevant to the theory of H or Φ'-valued SDE's.

(2) To introduce the definitions and study the basic properties of stochas-
tic integrals taking values in H and Φ'. In contrast to finite dimensional
stochastic calculus, we have three interested Brownian motions to consider:
cylindrical Brownian motion, H-valued Brownian motion and Φ'-valued
Brownian motion. We shall also define stochastic integrals with respect
to a Poisson random measure.

We assume throughout that (Ω, T, P) is a complete probability space
with a right continuous filtration {Tt}t>o- This chapter is organized as fol-
lows: After discussing some general properties of if-valued and Φ'-valued
martingales, we introduce ίf-cylindrical Brownian motion (ίf-c.B.m), H-
valued Brownian motion and Φ'-valued Wiener process. Then the stochastic
integrals with respect to these processes will be defined and a representa-
tion theorem will be derived for U-valued and Φ'-valued continuous square-
integrable martingales. Finally we define the stochastic integral with respect
to Poisson random measure and give conditions for a Φ'-valued martingale
to be represented as a stochastic integral with respect to a Poisson ran-
dom measure. The two representation theorems will play important roles
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86 CHAPTER 3. STOCHASTIC INTEGRALS

in later chapters in the study of stochastic differential equations on infinite
dimensional spaces.

3.1 Martingales taking values in Hubert and
conuclear spaces

In this section, we study general A'-valued martingales where X = H or Φ'.

In the latter case, we shall denote by {ψP} C Φ a CONS of Φ p and {φjp}

the CONS of Φ_ p conjugate to {φ?} for p > 0. Let θp be the isometry from

Φ_ p to Φ p such that θpφjp = φp

j} Vj > 1.

First, we discuss some basic properties of X-valued random variables.

Definition 3.1.1 A map X : Ω -> X is an Λ'-valued random variable
if it is TIB(X) -measurable, where B(X) is the B or el field of the topological
space X. A family {Xt : t G R+} of X-valued random variables is called an
A'-process.

Theorem 3.1.1 (a) B(Φ') is the σ-field generated by the following class of
subsets of Φ ;;

{/ G Φ' : f[φ] <a} φ e Φ and a G R. (3.1.1)

(b) B(H) is the σ-field generated by the following class of subsets of H:

{/ G H :< f,h >H< a} he H and a G R.

Proof: (a) Let B be the σ-field generated by the sets given by (3.1.1). As
{/ G Φ' : f[φ] < a} is an open set in the strong topology of Φ' for any φ G Φ
and a G R, we have B C B(Φ').

On the other hand, for any bounded subset B of Φ and e > 0,

{<?*(/) <e} = nφeBnD{f € Φ' : I/Ml < e} € B

where D is a countable dense subset of Φ and qs is the seminorm on Φ7

given by Definition 1.1.7 c). Therefore B contains the collection of all neigh-
borhoods in Φ'. As Φ' can be represented as a countable union of compact
subsets as follows

Φ' is separable. Let C be a countable dense subset of Φ'. Let G be an open
subset of Φ'. Then V£ G G there exists a neighborhood Uξ C G and hence

G = UtecnoUt G B.
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Therefore B contains the collection of all open subsets of Φ' and hence B —

(b) can be proved in a similar fashion (note that the σ-compactness of

Φ' is needed in the proof of part (a) only for the separability of Φ' and in

the present case, we assumed that H is a separable Hubert space). I

Corollary 3.1.1 (a) A map X : Ω —» Φ' is a Φ1-valued random variable iff

for any φ £ Φ, X[φ] is a real-valued random variable.

(b) A map X : Ω —> H is an H-valued random variable iff for any h £ H,

< X, h >H is a real-valued random variable.

Proof: We only prove (a). It is clear that if X is a Φ'-valued random variable

then X[φ] is a real-valued random variable, for any φ £ Φ. On the other

hand, let

Q = {C £ β(Φ') : X-\C) £ T}.

Then Q C ZJ(Φ') is a σ-field. As the sets of the form (3.1.1) are in £7, we
have by Theorem 3.1.1 that β(Φ') C G Hence, X is a Φ'-valued random
variable. I

The following regularization theorem is useful for constructing some Φ'-
valued random variables.

T h e o r e m 3.1.2 (Itό [19]) LetY : Φ -+ L 2 (Ω,T,P) be a continuous linear

map. Then there exists a Φ'-valued random variable Ϋ such that \/φ £ Φ,

) a.s.

Moreover there is q > 0 such that P(Ϋ £ Φ_q) = 1.

Proof: Let V(φ) = E(Y(φ)2)} Mφ £ Φ. Since V is continuous there exist
r > 0 and δ > 0 such that if \\φ\\r < δ then V(φ) < 1. Hence if θ = 1/δ we
have

V(φ)<θ2\\φ\\l, V^eΦ. (3.1.2)

Let q > r be such that the canonical injection from Φq into Φ r is Hilbert-

Schmidt. Then from (3.1.2)

i.e. if Ωi = {Σ,T=ΛY(Φqj)(ω))2 < °°} t h e n P ( Ω i ) = L D e f i n e

I H * 7 β if ω e Ωl
Ϋ(ω) = I Σ

1 0 otherwise.
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Then Ϋ is a Φ'-valued random variable such that Y € Φ_ q a.s. and

Ϋ(ω)[φ] = f ) Y{φ)){ω) < φ, φ) >q, Vφ £ Φ a.s. (3.1.3)

Letting ^ n = Σ " = i < Φ,Φqj >q Φ% then \\φn - φ\\τ < \\ψn - φ\\q -> 0 as
TO —>• oo so t h a t from (3.1.2)

a*TO-+oo. (3.1.4)

Finally, from (3.1.3) and (3.1.4) we have

i.e.

E(Ϋ(ω)[φ]-Y(φ)(ω)) =

Ϋ[φ] = Y(φ) a.s. Mφ € Φ

Remark 3.1.1 A more general regularization result can be found in Ra-
maswamy [46].

In the rest of this section, we discuss H-valued and Φ'-valued martingales.
Most of the results due to Mitoma [40].

Definition 3.1.2 (a) A Φ'-valued process M — {Mt}t>o is a Φ'-martin-

gale with respect to {Ft) if for each φ £ Φ, M f̂̂ ] is a martingale with respect

to {Ft}- It is called a Φ'-square-integrable-martingale if, in addition,

E{Mt[φf) < oo, Mφ G Φ, t > 0.

We denote the collection of all Φf-martingales (resp. Φ'-square-integrable-
martingales) by Λ^Φ') (resp. M.2{Φf)). We also denote

ί M G M2(Φf) : Mt[φ] has a continuous Ί
\ version for each φ G Φ J

(b) An H-valued process M = {Mt}t>o is an iί-martingale with respect to
{Ft} if for each h £ H, < M t, h >H is a martingale with respect to {Ft}- It
is called an ίf-square-integrable-martingale if, in addition,

E\\Mt\\2 < oo, Vt > 0.

We denote the collection of all H-martingales (resp. H-square-integrable-

martingales) by M(H) (resp. M2(H)) and write

M2'C(H) = {M G Λ42(H) : Mt has a continuous version}.
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Theorem 3.1.3 Let M G Λ42(Φ'). Then there exists a §' -valued version
M of M such that the following conditions hold:
(i) For each T > 0 there exists p — pψ > 0 such that

M\[OtTleD([0ίT],Φ-p)a.3.

(iί) M is r.c.l.l. in the strong Φ-topology, i.e.

MG£>([0,oo),Φ')α.s.

Proof: (i) Fix T > 0 and define V$(φ) = E(Mτ[φ]2) Then Vτ satisfies the
conditions of Lemma 1.3.1 and hence, there exist θ = θγ > 0 and r — r? > 0
such that

Vτ(φ) < θ\\φ\\r Vφ e Φ. (3.1.5)

Let D be a countable dense subset of [0,T]. Then by Doob's inequality

E[supMt[φ]2) < 4 sup E(Mt[φ]2) = 4E(Mτ[φ]2). (3.1.6)
\t£D J 0<t<T

Let p > r be such that the canonical injection from Φp to Φr is Hilbert-
Schmidt. Then from (3.1.5) and (3.1.6) we have

Σ [ ] ) Σ s u p Mt[φ?]2

jΞiteD I Ά \teD

So, if Ωi = [ω e Ω : Σ%Li supteDMt[<ή]2(ω) < oo}, then P(Q1) = 1.

Since each real-valued martingale Mt[φ^] has a right continuous modifi-

cation X/, writing

we have P(Ωj') = 1 for t e D. Then the set defined by

D j>i Ω£) Π Ωi

has probability one and if ω G Ω2

00
3(ω)2J2 sup X3

t(ω)2 < 00.
=l0<t<T
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For 0 < t < T, define Mt(ω) = 0 for ω £ Ω2 and

)φ]p, u>GΩ2.
J = l

Then for 0 < t < T we have P ( M t G Φ_p) = 1 and Mt(ω)[φ] = Mt(ω)[φ] for
all </> G Φ, ω € Ω2, i.e. Mt = Mt a.s.

Next since for s, t G [0, Γ], j > 1 and ω G Ω2

<4 sup
0<ί<T

by the dominated convergence theorem,

Um NM t(α;)-M s(ω) | | 2 = lim

OO

- P

the last assertion follows from the right continuity of Xl{ω). In a similar
fashion the fact that Mt has left hand limits in the || ||_p-norm is shown.

Thus we have proved that for each T > 0 there exists p — pψ > 0 such
that Mt has a r.c.1.1. version Mt in the || ||_p-norm, i.e.

_ p), a.s.

(ii) Let Tn increase to infinity. Then by (i) there exists pn such that Mt has
a version M n with

r | [ O ) T n ] G ΰ ( [ 0 , Γ ] ) Φ . P n ) ) a.s.

With the notation used in the proof of (i) let Ω3 = n^Q" If ^ € Ω3 define
for 0 < t < oo

Mt{ω) = M t

n H for Tn_χ < t < Γn ι (Γo = 0).

Then P(M t eΦ') = l and Mt(ω) = Mt(ω) for α; G Ω3.
For ί > 0, let n be such that t < Tn. Then for e > 0 there exists 5t > 0

such that if t < s < t + δt



3.1. MARTINGALES 91

For any bounded subset B of Φ, let C be a constant such that ||^>||Pn < C
Vφe B. Therefore

sup \(Mt(ω) - M.(ω))[φ]\ <Ce, Vt < s < t + δu
ΦeB

i.e. Mt is strongly right continuous. A similar argument shows that it has
left hand limits. I

R e m a r k 3 . 1 . 2 If M G M 2 ( Φ ' ) such t h a t for each φ e Φ

sup E (Mt[φ]2) < oo,
0<t<oo V J

there exists p > 0 such that Mt has a version Mt G D([0, oo), Φ_p) a.s. This

is seen using the fact that if D is a countable dense subset of R+ then

E(supMt[φ]2) <AE{MJ^]2).
\teD J

The next theorem is the analogue of Theorem 3.1.3 to continuous mar-
tingales.

T h e o r e m 3.1.4 Let M G Λ^2>C(Φ/). Then there exists a Φ'-valued version
M of M such that the following conditions hold:
(i) For each Γ > 0 there exists p = pτ > 0 such that

],Φ_p) a.s.

(ii) M is continuous in the strong Φ'-topology, i.e.

MGC([0,oo),Φ') a.s.

(Hi) If for each φ G Φ

sup E(Mt[φ]2) < oo,
0<ί<oo

then there exists p > 0 such that

Me C([0,oo),Φ_p) a.s.

The following example, due to Kallianpur and Ramaswamy, gives a Φ'-

valued strongly continuous Gaussian martingale Mt for which the following

is not true: There exists p independent of t such that

Mt G Φ - p W > 0, a.s.
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Example 3.1.1 Consider the CHNS of Example 1.3.2. Using the notation
of that example, we define f : R+ x Φ —> R as follows

Lei {S5}5>o be a real-valued standard Brownian motion. Since for each
t>0 and φ £ Φ

I f(s, φfds < oo
Jo

the Wiener integral

Xt,Φ= f f{s,φ)dBsJo

is a Gaussian martingale for each φ £ Φ. Since /(s, φ) is linear and contin-
uous in Φ, the linear random functional

Xttφ : Φ - X2(Ω)

is ^-continuous. Hence by the regularization theorem there exists a Φ'-valued

random variable Xt such that

Then (X t,^Γ

ί

β) t>o £ Λ12'C(Φ/). Hence by Theorem 3.1.4, X has a strongly
continuous version also denoted by X.

Now suppose there exists p > 0 such that Xt £ Φ_ p a.s. Vί > 0. Let

Then {^(n)} converges in Φ p to an element φ, and therefore Xt[φ(n>] —>•

Xt[Φ] But since Xt is L2-continuous

E(Xt[φW]2) -> E{Xt[φ]2) < oo Vt > 0 (3.1.7)

iΛe finiteness of the limit being a consequence of Xt[φ] being a Gaussian
random variable. On the other hand, if t > p + rι,

= f f{s,φ{n)?ds
Jo

2

χ.yp-r1+s d s
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Then by Fatou's lemma

limhif E(Xt[φ(nψ) = oo

which contradicts from (3.1.7). I

3.2 Φ'-Wiener process and cylindrical Brownian
motion

In this section we introduce ίf-cylindrical Brownian motion, H-valued Brow-

nian motion and Φ'-Wiener process. We give several examples of such pro-

cesses and illustrate how some infinite dimensional extensions of the real val-

ued Brownian motion (as the cylindrical Brownian motion and a sequence of

independent Brownian motions) may be seen as nuclear space valued Wiener

processes.

Definition 3.2.1 Let H be a separable Hilbert space with norm || \\H- A
family {Bt(h) : t > 0,h G H} of real-valued random variables is called a
cylindrical Brownian motion (c.B.m) on H with covariance Σ if
Σ is a continuous self-adjoint positive definite operator on H such that the

following conditions hold:

i) For each h G H such that h φ 0, < Σ/i, h >Jj ' Bt(h) is a one dimensional

standard Wiener process.

ii) For any t > 0, αi, <*2 G R and /i, f2 G H

+ a2f2) = αiS t(/i) + a2Bt(f2) a.s.

in) For each h G H, {Bt(h)} is an Tf -martingale, where

T* = σ{Bs(k) :s<t,keH}.

{Bt{h) : t > 0, h G H} is called a standard H-c.B.m or simply, H-c.B.m. if
it is a H-c.B.m. with covariance Σ = I.

Theorem 3.2.1 Let {Bt(h) : t > 0, h G H} be an H-c.B.m with covariance
Σ. Then there exists an H-valued process Bt such that

Bt(h)=< Buh>H VheH

if and only ifΣ G L^(H). In this case {Bt} is called an iϊ-valued Brow-
nian motion.
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Proof: "=>" For t > 0 fixed, as

F(h) = E{exp(i<Bt,h>H)}

= E{exp{iBt{h)}

= exp (-- < Σh, h >Hj , heH,

is a characteristic function on H and hence, by Sazonov's theorem, F is
continuous with respect to 5-topology. Therefore h -»< Σh, h >H is 5-
contίnuous which implies that Σ is a nuclear operator.
"<=" Let

CO

Σ h = Σ λj < h , ej >H ej} h e H
3=1

where λ, > 0, Σ^=i λ i < °° a n d {%} i s a CONS of H. Let

It is easy to show that Bt is well-defined and satisfies the condition of the

theorem. I

Remark 3.2.1 1° Let {Bt(h) :t>0,heH}bea standard H-c.B.m. Then

it is an H-c.B.m. with identity operator as its covariance. Therefore there

does not exist a process Bt in H such that

Bt(h)=<Buh>H.

2° // {Bt(h) : t > 0,/ι G H} is an H-c.B.m with covariance Σ and S G

L(H,H), we define

Bξ(h) = Bt{Sh), VΛ e H.

Then {Bf{h) : t > 0,/ι G H} is an H-c.B.m with covariance 5*Σ5. As
a consequence, {Bf (h) : t > 0,/ι G H} is a standard H-c.B.m if we take
S = Σ " 1 / 2 . Therefore we only need to consider standard H-c.B.m.

Theorem 3.2.2 Let {en}n>χ be a CONS in H. There exists a one-to-one
correspondence between an H-c.B.m. B and a sequence of independent one-
dimensional Brownian motions {B™} given by

B? = Bt{en), n G N (3.2.1)

and
CO

Bt(h) = Σ<h,en>H JBJ\ heH. (3.2.2)
n=l
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Proof: Let {B™} be a sequence of independent one-dimensional Brownian
motions. Note that by Doob's inequality

E sup
o<t<τ

m+k

<h,en>HB?
n=m+l

<

= 4Γ

n=m+l

m+k

n=m+l

a s m - 4 oo. Hence for any h G H, Bt(h) given by (3.2.2) is well-defined in
the following sense: VT > 0

E sup
0<ί<T

J5t(/ι) - Σ < h, en >H B%
n = l

0, as m ̂  oo. (3.2.3)

For any 0 = t0 < tλ < t2 < < tk

I k-\
liΣλjiBt^
\ 3=0

> H

j=0 n=l
- Bξ.)

k-l m
= J^ Π Π

j=0 n=l

fc-1 m

= lim Π Π
m—>-oo X J - X J -

j=0 n=l
fc-1

λ, < h, en >H

i=0

Hence (i) of Definition 3.2.1 holds. From

m

Σ < h^n >H B?
n = l n = l

= Σ
n=l

(ii) of Definition 3.2.1 follows immediately from (3.2.3) by the uniqueness of
L2-limits.

Finally let A G Tf which is given in (iii) of Definition 3.2.1. Then for
any t > s and h G H

E{(Bt(h)-Bs(h))lA(ω)}
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= Jim^ Ej2<h,en>H (B? - B?)lA{u>) = 0.
m~>°° n=l

This proves (iii) of Definition 3.2.1. Therefore B is a cylindrical Brownian

motion on H.

On the other hand, let 5 be a cylindrical Brownian motion on H and

define {B?} by (3.2.1). It follows from (i) of Definition 3.2.1 that {B?} is

a sequence of one-dimensional Brownian motions. Now we prove they are

independent, i.e. for any 0 < tj\ < < tjm) Xjr £ R, rtj £ N, j = 1, , k

and r = 1, , rrij, we have

<ΣΣv«2. = Π
V j=lr=l / j=l

p Σ
\ r=l

We may assume that 7nj and tjr do not depend on j , otherwise we only need

to rearrange {i j r : j = 1, , k and r = 1, , rrij} as {ίi, t<ι, , t m } and

define

λj 5 = 0 if ί s ^ {tjV : r = 1, , m,},

for j = 1, , k and s = 1, , m. Let

r

/v = Σ λ ^ 5 and ^ ' ° = 0> ίo = °

Then

s = l

k m

j=lr=l

j=l r=l

A; m - 1

*ΣΣ(
j=l r=0

m-1

r = 0

m - 1

r = 0 3=1
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exp I - - Σ ( ί r + 1 - tr)(βjm ~
j=l V r=0

r = l

Therefore {-BJ1} is a sequence of independent one-dimensional Brownian mo-
tions. I

Next we give an example of iϊ-c.B.m. We need the following definition.

Definition 3.2.2 Let O C R d be a measurable set. A real-valued function

I ^ o n Ω x /?/(R+ x O) is called a white noise random measure if

i) For A e #/(R+ X 0), W( ,A) is a N(0,\A\) random variable;

ii) For disjoint Borel sets A\, A<χ in β/(R+ x O), W(-} Aι) and W(-, A2) are

independent and

( ; l 2 ) (;1) (;A2) a.S.

where

x O) = {A e B(R+ x O) : \A\ < 00}

and \A\ is the Lebesgue measure of A.

Next we define Brownian sheet as a random field.

Definition 3.2.3 Let (£7, S) be a measurable space. A real-valued measur-

able function f on E x Ω is called a random field on E. ft is a Gaussian
random field if {/(#, •),£ £ E} is a Gaussian system.

For each (t, x) G R+ X Ό, let

AtiXΞΞ{(s,y)eΈL+ x O : 0 < 5 < ί , yά <xjt j = 1, • , d},

where x = (xιr"tχd) a n d y = (yi, ,yd) We assume that \AtiX\ <
00, V(t,a;) G R + x O .

Definition 3.2.4 ,4 real-valued function B onQx R+ X O is a Brownian
sheet (B.S.) or space-time Brownian motion if {B( ,t} x) : (£,#) G

R-l_ X 0} it is a Gaussian system such that

i) E(B(Ί t, x)) = 0, V(t, a:) G R+ X O
) ( , y ) ) = |At>x Π A s,y |, V(t,z), (5,y) G R + x O .
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Remark 3.2.2 If Ό = [0, b]d for some b > 0 or

O = {x £ ΈLd : Zj > 0, j = 1,2, - , d},

and B is a Brownian sheet on R+ X O, then

d

Cov(B(;tJx),B(Ίs)y))=(sΛt)H(xjΛyJ).
i=i

Remark 3.2.3 There is a one-to-one correspondence between white noise
random measure W and Brownian sheet B as follows:

In this sense, we shall denote the Brownian sheet by W(t,x).

Remark 3.2.4 It can be shown that W(t,x) is continuous in (ί, x) £ R+ X O

and nowhere differentiate for a.a. ω. Therefore we can only define Wt,x =

^tdχX' in the sense of distribution:

for all smooth functions φ with compact supports in R + X O. Wt,x is called

the white noise in space-time.

Now we proceed to introduce stochastic integrals with respect to white

noise random measures (or equivalently, with respect to a Brownian sheet).

For convenience, we take d = 1 and O = [0,6]. For a simple function f on

R + X [0, b] given by

f(s,x) = Σ α a [ t t _ l j ί t ) x [ X τ _ 1 > X t ) ( 5 , ί c ) (3.2.4)

where 0 = to < t\ < < tn and 0 = Xo < x\ < < xn = 6, we define

n

Bt(f) Ξ ΣaiW([U-i Λ t,U Λ t) X [xi-^Xi)), Vt > 0. (3.2.5)

The proof of the following theorem is straightforward and we leave it to

the reader.

Theorem 3.2.3 Let f be a simple function and let Bt(f) be defined by

(3.2.5). Then
(a) Bt(f) is a real-valued continuous Gaussian process such that for any
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0 < s < t, Bs(f) is T™-measurable, Bt(f) - Bs(f) is independent of J7™
and

E(Bt(f) - Bs(f))2 = f t f(r,x)2drdx
Js Jθ

where

F? = σ{W(A):VAc[O,t]x[Q,b]}.

(b) For any t > 0, αi, a2 E R and simple functions /i, f2,

Sί(«i/i + Oί2f2) = aιBt(fι) + a2Bt(f2) a.s.

For general function / on R + X [0,6] such that

/ / f(s,x)2dsdx < oo, VΓ > 0,
Jo Jo

tet {/n} be a sequence of simple functions such that

ίτ ίb

/ / (Λι(«, ®) - /(*» ίc))2cί5dίr -^0 as n -* oo, VΓ > 0.
Jo Jo

Since

B SUp |Bt(/n)-βt(/m)|2<4£;|βτ(/n-/m)|2

0<ί<T

= 4Γ / / (/Λ(5, a?) - fm(s, x))2dsdx ^ 0, VΓ > 0,
Jo Jo

there exists a process, denoted by

Bt(f)= ί ί f{s}x)W{dsdx)
Jo Jo

E sup |B t(/n) - Bt(f)\2 -.. 0, VT > 0. (3.2.6)
0<ί<T

such that

Theorem 3.2.4 Le* if = L2([0, 6]).
(̂ αj Le^ W(dtdx) be a white noise random measure on R+ x [0,6], Then

{Bt(f) : ί > 0, / ξ f f } de^nerf 6y (3.2.6) is an H-c.B.m.
(b) Suppose that {Bt(f) : t > 0, / E i ϊ} &'s an H-c.B.m. Then there exists
a white noise random measure W(dtdx) on R+ X [0,6] such that {Bt(f)}
constructed in (3.2.6) has the property:

Bt(f) = Bt(/), a.β.
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Proof: (a) Let fn be a sequence of simple functions on [0,b] such that | | / n -
/ | | # — > 0 a s n — > o o . Then / and fn can be regarded as functions on
R x [0,6], i.e.

f(t,x) = f(x), V ( M ) 6 R x [ 0 , i ] .

Then Bt(f) is well-defined by (3.2.6). By Theorem 3.2.3 and (3.2.6), it is easy

to see that i), ii) of Definition 3.2.1 hold. The condition iii) of Definition 3.2.1

follows from T? C Jψ.

(b) For any A G #/(R+ X [0, 6]), let

^Bn(lA). (3.2.7)

For m > n —> oo, we have

pm pb

E\Bn(lA) - Bm{lA)\2 = / / lA(s} x)dsdx -+ 0
Jn JO

and hence W(>,A) is well-defined by (3.2.7). For AUA2 G £/(R+ X [0,6]),
let {/n}? {ΰn} be two sequences of simple functions such that

/ \fn(s,x)-lAl(s,x)\2dsdx-+0
o

and
rb

/ \gn{s, x) ~ U2(«i x)\2dsdx -* 0.
JO

Let

and

Then

^ ) ) + iβW( , A2))
= \imEexp(iaBn(fn) + iβBn(gn))

( \ fn pb \

- - / / (α/n(5, x) + /35n(s, x))2dsdir
2 7o Jo /
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= e x p ί - i / / (alAl+βlA2)
2dsdx)

\ * JΈL+ Jo J

Hence W{ ,AX), W(-,A2) are independent and W( ,Aj) ~ N(0,\Aj\), j =
1,2.

Further, since

Bn(9n) = B n (/ n

we haveand fn + gn

Therefore, by Definition 3.2.2, W is a white noise random measure.
For any / G ϋ", let {/n} be a sequence of of simple function such that

||/n - /Hff - 0. Let

Then

Bt(fn) =

= Σ al

By (3.2.8) and (3.2.6), we have

U^)) = Bt(fn). (3.2.8)

a.s.

Now we introduce the concept of Φ'-valued Wiener process and its rela-
tionship with iϊ-c.B.m.

Definition 3.2.5 A strongly sample continuous Φ'-valued stochastic process
W = (Wt)t>o on (Ω, J7, P) is called a centered Φ'-Wiener process with
covariance Q( , •) if W satisfies the following three conditions:
a) Wo = 0 a.s.
b) W has independent increments, i.e. the random variables

- wtl)[φ2), •••,(wtn- wtn_^n]
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are independent for any φι, , φn G Φ, 0 < t\ < < tn) n > 1.
c) For each t > 0 and φ G Φ

where Q is a covariance functional, i.e. a positive definite symmetric
continuous bilinear form on Φ x Φ.

R e m a r k 3.2.5 Let W be a Φ'-Wiener process with covariance Q. Then

i) W eM2>c(Φ').

ii) {Wt[φ\ ' φ G Φ,ί > 0} is a centered Gaussian system and

E(Wt[φ]W.[<φ]) = (8Λt)Q(φtψ)t φ,ψeΦ, s,t>0.

Remark 3.2.6 A Φ'-valued process (Zt)t>o is a non-centered Wiener
process if there exists m G Φ' such that Zt — mt is a centered Wiener
process.

L e m m a 3.2.1 i) For each φ G Φ, let tφ — Q(φ, •). Then i is an injective

linear operator from Φ onto a linear subspace H(L) O / Φ ' .

ii) For any v\,V2 G 7£(t), let

Then < , >HQ is an inner product on TZ(L). Let \\ \\HQ be the norm on

TZ(L) determined by the inner product < , >HQ and let HQ be the completion

of 1Z{L) with respect to \\ \\HQ' Then HQ is a separable Hilbert space and

HQ C Φ'.

Proof: The proof is standard and we leave it to the reader. I

L e m m a 3.2.2 i) There exists an index r2 such that for any p > r2} 3 a

positive-definite (i.e. ( >/Q^φ,φ) > 0, V<£ G Φ p , φ Φ 0) self-adjoint operator

\/Qp on Φ p such that

Q(φ, Ψ) = (yQpφ, yQpΨ/ V0, ψ G Φ.

ii) For p > r2, we have

w[θpv] =< tϋ, υ >_p, Vw, v G Φ-p

and

ΘP\[QP = \/QPΘP : Φ - P -> Φ P
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in) For any p > r2, we have HQ =

He

, ) . Furthermore, for any h G Φ - p

= Il^ll-P.

i-e-j y/Qp is a n isometry from Φ_ p to HQ.

Proof: i) Let V2(φ) = Q(φ, φ) for φ G Φ. Then V : Φ -+ [0, oo) satisfies the
conditions of Lemma 1.3.1. Therefore there exist θ > 0 and r2 > 0 such that

Hence

G Φ, p > r 2 .

Therefore Q can be extended to become a symmetric continuous bilinear

form on Φ p x Φ p , still denoted by Q. As Q(φ, •) G Φ - p for any φ G Φ p , it

follows from Riesz's representation theorem that there exists Qφ G Φ p such

that

It is easy to show that Q is a positive definite self-adjoint operator on Φ p

and hence y/Q^ is well-defined and Q(φ,ψ) = (y/ζf^Φ, y/QpΨ) for any φ
and φ in Φ p .
ii) Note that, for any v and w in Φ_ p ,

-p Ψj

3=1

oo

_p f;
k=l

-P=<
 υ>w

 >-P
3=1

and

w

iii) If /o G Φ-
p
 such that (fo,y/Q^θ^

p
φ) = 0 for any φ e Φ, then

\ / -p

fo = 0 and hence, / 0 = 0. i.e., ^/Q^Q-yQ is dense in Φ_ p . As TZ(L) is
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dense in HQ , we only need to show that \JQ£ is an isometry from
onto TZ(ι). Note that V<̂>, ψ G Φ, we have

Therefore for <̂> £ Φ

and

Hence y/Q^ is an isometry from y/Q^Θ-vΦ onto 1Z(L).

T h e o r e m 3.2.5 Le/ Q be a coυariance functional on Φ X Φ and let HQ be

constructed in Lemma 3.2.1. Then there exists a one-to-one correspondence

between a Φ*'-valued Wiener process W with coυariance Q and an HQ-c.B.m.

B:
oo

Wt = ΣBt(fj)fj (3.2.9)

where {/,} is a CONS of HQ;

Bt{υ) = Jiir^ Wt^Vn], Vυ G HQ (3.2.10)

where {vn} C 7£(i) converges to v in HQ.

Proof: First we assume that W is a Φ'-valued Wiener process and define B

by (3.2.10). It follows from Doob's inequality that

E sup
0<t<T

= 4TQ (r^vn - υm), rl{vn - υ)

- ^ I I ^ ^ O . (3.2.11)

Hence (3.2.10) is well-defined and B.(v) is a real-valued continuous process.

Further, let 0 = t0 < t\ < • • • < ίjt and λα, λ2, , Aj, e R. Then

\ ί=1
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= Jim^ Eexp ί i j[r1 t;n] -

- Jrn^ Π exp (-±(td

Therefore {IMI^1 St(^) : ί > 0} is a real-valued Brownian motion. This

proves (i) of Definition 3.2.1.

For vi, ^2 € V, αi , α 2 G R and £ > 0, note that

-i-.i -1Λ.2vn]

and

in the sense of (3.2.11), where {v^}, {υ%} C TZ(ι) such that v£

in i ϊg . (ii) of Definition 3.2.1 follows easily.

As Tf C J ^ , it follows from (3.2.11) that Vυ G F Q , A G , r >

i.e., Sί(t ) is a ^-mart ingale . This proves (iii) of Definition 3.2.1 and hence
B is an iΪQ-c.B.m.

On the other hand, let B be an iΪQ-c.B.m. and define W by (3.2.9). Let
r 2 be given by Lemma 3.2.2 and p > r 2 such that the canonical injection

from Φ_r2

Hilbert-Schmidt. Then

E sup
0<t<T
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= 4T Σ IIΛ H2-p - 0

as the canonical injection from i ίg to Φ_ p given by the composition HQ —>
Φ_ r 2 -» Φ_ p is Hilbert-Schmidt. Therefore (3.2.9) is well-defined and Wt is
a continuous Φ_p-valued process. As in the first part of the proof of this
theorem, we can show that Wt satisfies the conditions of Definition 3.2.5,
i.e., W is a Φ'-valued Wiener process. I

Corollary 3.2.1 For any covariance functional Q on Φ x Φ, there exists
a Φ'-valued Wiener process W with covariance Q and there exists p > 0
depending only on Q such that

WeC(R+,Φ_p) a.s.

where C(R+,Φ_ P ) is the space of strongly continuous functions from R+ to

Φ_ P .

Proof: Let HQ be constructed by Lemma 3.2.1. It follows from Theo-
rem 3.2.2 that there exists an iΪQ-c.B.m. and then by Theorem 3.2.5, we
obtain the results of the corollary. I

Remark 3.2.7 Let (Φ,iί, Tt) be a special compatible family defined in Sec-
tion 1.3. Suppose that Q is a covariance functional on Φ X Φ, then there
exists a Φ'-valued Wiener process W with covariance Q such that

W. GC(R+,Φ_P) a.s.

for any p > r\ + r<ι where v\ is given by (1.3.17) and Γ2 is given by Lemma
3.2.2.

Remark 3.2.8 It follows from Corollary 3.2.1 that the condition (in) in
Theorem 3.1.4 is not necessary.

Now we introduce some examples of Φ^valued Wiener processes.

Example 3.2.1 Let (Φ, iί, L) be a special compatible family such that H =
L2([0, b]) (cf. Remark 1.3.4). Let W(t,x) be a Brownian sheet on R+ X [0, b].
Let Wt be a Φ'-valued process defined by

Wt[φ] = [ [ φ(x)W(dsdx) V<£ e Φ.
JO Jo

It is easy to see that {Wt} is a Φf-valued Wiener process with covariance
functional Q given by

Q(Φ,Ψ)=<Φ,Φ>H v Φ,ψe$.

Further W. £ C(R + , Φ_p) for p>rλ.
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Example 3.2.2 Let (Φ,iΓ, L) be a special compatible family (see Remark

1.3.4)- Recall that the injection from Φq to Φ p is a Hilbert-Schmidt map for

q > p + ri Let < , >o be the inner product in H and define

Then from Corollary 3.2.1 there exists a Φ1-valued Wiener process W with

covariance Qo such that

W. G C ( R + , Φ_ p ) a.s. if p>rλ

and will be called a s tandard W i e n e r process. More generally, ifr>0

and

Qr(Φ,Ψ)=<Φ,Ψ>r Φ,ψeΦ
then there exists a Φf-valued Wiener process W with covariance Qr such that

W. eC(Έί+,Φ-p)forp>r + r1.

As will be shown in later examples, in applications the Q is not always

given by one of the inner products on the Hubert spaces defining Φ. Never-

theless since Q is continuous on Φ X Φ, then, as in the proof of Lemma 3.2.2,

there exist θ > 0 and r<ι > 0 such that

Q(Φ,Φ)<θ\\φ\\2

r2, VφeΦ

and therefore there exists a Φ'-valued Wiener process W with covariance Q

such that

W . e C ( R + , Φ _ p ) a.s.

for any p > r\ + r2

Example 3.2.3 Let 5(R) be the Schwartz space of Example 1.3.1 (see also

Remark 1.3.5). Then (S,L2(ΈL),-d2/dx2 + x2/A) is a special compatible

family where {φj}j>ι are the Hermite functions given by (1.3.10), λj =

j - 1/2, j > 1, < , > 0 is the inner product on L2(R) and r\ > 1/2.

Taking Φ = S(R) and H = L2(R) in the last example, we have that if

Qo(ΦiΨ) =< ΦiΨ >o then the standard Wiener process W in <S'(R) is such

that W G C(R+,c>p) for p > 1/2. Clearly, there is no smallest p such that

this happens.

For φ G Φ define

Wί1][φ] = Wt[D2φ] where D = -£-.
dx

Then the covariance functional of the Φ'-valued Wiener process

is

, V) = Qo(D2φ,D2φ) =< D2φ,D2ψ > 0 .
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We shall show that W G C(R+,<Sp) for p > 3/2. In general we will prove
the following: Let QriΦiΨ) = < φ, Ψ > n V</>, φ G Φ and r > 0, and let
ty = (Wt)t>o be the corresponding <5>'-valued Wiener process. Define

WΓ[φ] = Wt[D2φ]

then W^ is a <S'-valued Wiener process such that

p > r + 3/2.

Clearly

Q^\φ, Ψ) =< D2φ, D2ψ >r φ,

then from Example 1.3.1 for φ £ Φ

2 r

<D2Φ,Φn

0 0 / 1 \ 2 r

= Σ ( n + o <Φ,D2φn
n=l V Z /

It follows from the proof of lemma 1.3.4 that

n=l
0 0

(3.2.12)

£ C(R+,<S;)for

and hence

- 1

<Pn-2{?)

Therefore

2 r

2 r

) 2n — 1 v n ( n + 1) j . \
-φn-2 ^ Φn -ξ Φn+2 )
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+(2n - I ) 2 < φ, φn >2

Q +n(n + l)<φ, φn+2

3

«\\φ\\l+1

where a is a constant. Since the injection Sp —> <Sr+i is Hilbert-Schmidt for
p > r + l + | = r + | , we have shown that the S'- valued Wiener process
given by (3.2.12) is such that, for p > r + 3/2,

a.s.

3.3 Stochastic integral with respect to H-c.B.m
and Φr-Wiener process

In this section, we discuss stochastic integrals with respect to iϊ-c.B.m. and
with respect to Φ'-valued Wiener process. We shall also obtain stochastic
representations for iϋΓ-valued and Φ'-valued continuous martingales.

3.3.1 Stochastic integral

Let H and K be two separable Hubert spaces and let B be an iί-c.B.m. Let
L\ be the collection of all L(2)( ff, ΛT)-valued predictable processes / such
that

J < o o l VT > 0.

Definition 3.3.1 For f G L%, we define

h(f) = Σ ( Σ jf < fM'9i>fi >H dBs(fi)\ 9jί t > 0

where {fj} and {gj} are CONS of H and K respectively and f{s,ω)1 G

L(K}H) denotes the dual operator of f(s,ω) £ L(K,H).

Theorem 3.3.1 /(/) G M2>C(K) is well-defined.

Proof: First we show that Vj > 1,

W)i = Σ Γ < fM'9i,fi >H d
i Jo
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converges. In fact

E sup
0<ί<T

n+fc

Σ f <f{8,ω)'gj,fi>HdB.Ui)
Jo

< Σ ί <f(s,ω)'g3Jt>HdBs(fi)
i=n+lJ°

n+k

E
i=n+l

as n -» oo. As a consequence, we see that /(/) j G Λ42>C(R) is well-defined,

Vj > 1.
Next we show that I(f)j does not depend on the choice of the CONS

{/<} of H. Let {/i} be another CONS of H and let ϊ(f)d G Λ12'C(R) be
given by

W)i = Σ jf < fM'9i>fi >H dB.ifi).

Then

, |3 + E\ϊt{f)i? - 2EIt(f)Mf)j

d s + Σ Γ E < /( s ω)/5i /i >= Σ

~ 2 Σ / E < f(s>ωΪ9jJi >H< f(s,ω)'gjJr >H< fi,fr >H ds
i,r Jθ

= 2 ίtE\\f(s,ω)'gj\\2

Hds-2 [tE\\f(s,ω)lgj\\2

Hds = 0.
Jo Jo

By similar arguments, we can show that

converges and does not depend on the choice of the CONS {gj} of K. This
proves our assertion. I

As a consequence of the definition we have the following inequality.

T h e o r e m 3.3.2 For 2 < p < oo, there exist constants Cp depending only

on p such that for a predictable Lt2(H} K)-valued process f with

E
rτ Ί P/2'

' ||/(5,«)||ld5y < oo
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one has

\t<τ \\Jo
f(s,ω)dWs <CΌE

κ\
Proof: It follows from Burkholder's inequality for finite dimensional martin-
gale (/«(/)!,...,/*(/),*) that

E

,P/2'

U = 1

<CPE ,Σ/0

,P/2"

The required inequality follows from this, using Fatou's lemma. I

Let W be a Φ'-valued Wiener process with covariance Q. The space of
integrands, LQ consists of those predictable functions / : R+ xΩ -» L(Φ', Φ;)
for which

fτ

E / Q(f(s}ω)'φ, f(s,ω)'φ)ds < oo, VT > 0, φ G Φ.
Jo

Theorem 3.3.3 Let f G L2Q. Then for T > 0, ίΛere exists p Ξ py > 0 swc/ι
Λ̂α̂  / can be regarded as a predictable map from [0, T] x Ω to L(2)(iΪQ, Φ_p)

and
|2

^y o ιι/(*,«)iii(a)(Hgi ^ )ώ<oo.
Proof: Define a map VT from Φ to [0, oo) by

VT(Φ)2 = E [TQ(f(s,ω)'φJ(s,ω)'φ)ds.
Jo

It is easy to see that VT satisfies the conditions of Lemma 1.3.1 and hence,
there exist θ > 0 and r > 0 such that

Vτ(φ)<θ\\φ\\rί V^GΦ.

Let p > r be such that the canonical injection from Φp to Φr is Hilbert-
Schmidt. Note that for φ G Φ C Φp C H'Q,

\\Φ\\H>Q =

= sup {Q(ψ, φ)2/Q(<ψ, = Q(φt φ).

Hence

E (TΣ\\f{s,ω)'<%fHlds = E [TΣQ(f(8,ω)%f(β,ωy<%)d8
JO j V ^ o j
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Therefore f(t,ω)' e L(2)(%,H'Q), dtdP-a.e. and hence,

f(t,ω) = f(t,ω)" e L(2)(iΪQ,Φ_p) dtdP-a.e.

such that

E[ \\f(s,ω)\\l{2){HQιΦ_p)ds = E £ \\f(s}ω)'\\l{2)(φp<HlQ)ds < oo.

Let {VJ} be a CONS of HQ. AS

L{2)(HQ, Φ_p) n L(Φ', Φ') = I / e L(Φ', Φ') : Σ WtoiW2-, <

is a measurable subset of ^(Φ', Φ'), / can be regarded as a predictable map
from [0, T] x Ω to L(2)(HQ, Φ _ P ) . I

Based on Theorems 3.3.1 and 3.3.3, we now introduce the stochastic
integral with respect to a Φr-Wiener process W.

Definition 3.3.2 Let B be the HQ-c.B.m. given by W in Theorem 3.2.5
and f e LQ. For any T > 0, let p = pψ be given by Theorem 3.3.3. For
t <T, we define

M*= Γ f(s,ω)dWs= f
Jo Jo

Mt[Φ] = Σ /*(/(«.< 0«;)M<».(w;) (3-3.1)
3 J°

i.e.

where {VJ} is a CONS of HQ. AS

El ||/(β,

J 0

M t, given by (3.3.1), is a well-defined Φ-p-valued martingale for t G [0,T].

The following theorem follows directly from Theorems 3.3.1, 3.3.3 and

Definition 3.3.2.

Theorem 3.3.4 M in Definition 3.3.2 is a well-defined element in ΛΊ2>C(Φ').

Further, if p — PT is given by Theorem 3.3.3, then

M| [o,τ]€C([0,T],Φ_p).
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3.3.2 Representation theorems

Now we consider the stochastic integral representation for ίf-valued con-
tinuous square-integrable martingales. First we fix Γ > 0 and let M be
an ίf-valued continuous square-integrable martingale. Let / : [0,Γ] x Ω —>
L(2)(iϊ, H) be predictable and

< Mt(h}),Mt{h2) >= f < f(s,ω)h\f(s}ω)h2 >H ds (3.3.2)
Jo

where hP G iJ, Mt{hP) =< MuhP >H, j = 1,2, and the left hand side of
(3.3.2) is the quadratic covariation process of the martingales M^h1) and
Mt{h2).

Definition 3.3.3 We say a stochastic basis (Ω,.F, P, ft) is an extension
of a stochastic basis (Ω, JΓ, P, Tt) if there exists a map π : Ω —> Ω which is
TjT-measurable such that i) Tt D τr~1(^Γ

t); ii) P = P π " 1 and Hi) for every
bounded random variable X on Ω,

E(X{ω)\Tt) = E(X\ft)(πώ) P-a.s.,

where X(ύ) = X(7rα>); for Ω G Ω. We shall denote X by X if its meaning is
clear from the context.

(Ω, T) P, ft) is called a standard extension of a stochastic basis (Ω, J",
P, Tt) if we have another stochastic basis (Ω', T', P', T[) such that

(Ω, TΛ P, ft) = (Ω, T, P, Tt) x (Ω', T\ P\ T[)

and πώ — ω for ώ = (ω, ω1) G Ω.

Theorem 3.3.5 Let M G M2>C(H) such that (3.3.2) holds and

Ej*\\f(s}ω)\\2

{2)ds<oo.

Then, on a standard extension (Ω, T, P, Tt) of (Ω, J", P, Tt), there exists an
H-c.B.m Bt such that

Mt= ί f(s,ω)dBs. (3.3.3)
Jo

Proof: We divide the proof into three steps. For simplicity of notations, we
suppress ω and write /(s), gn(s), R(s) for /(s,ω), gn(s,ω), R(s,ω).
Step 1. We construct an iί-c.B.m. Bt under the assumption that V(s,u;) G
[0,Γ] X Ω, f(s,ω) is a non-negative definite self-adjoint Hilbert-Schmidt op-
erator.
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Let gn(s) = /(s)(/(5) 2+n~ 17)- 1 . It is easy to see that \\f(s)gn(s)\\L(H>H)

< 1 and ||ί/n(s)||.L(iϊ,lϊ) < 2 ^et R(s) ^ e t n e (orthogonal) projection
operator from H to the range of f(s)2. Then f(s)gn(s) = gn{s)f(s) —> R(s)
in L(iϊ, i ϊ) as n —• 00. Let (Ω', T', P', fj.) be a stochastic basis and B[ be an
ff-c.B.m on this basis. Let (Ω, T, P, Tt) = (Ω, Γ, P, ft) X (Ω't T', P', Tfi be
a standard extension of the stochastic basis (Ω, T, P, ft). On this extension,
let

Bln J)(h) = W * <gn(s)h,fj>HdMs(fj)

Σ <(I-R(s))hJ3>HdB's(fj)

for any ί G [0,T], Λ G # , n, J € N, where {/,-} is a CONS of H. Then for
h1, h2 G i ϊ, the quadratic covariation process is given by

[* 1 2

7o m

+ / < 7ΓJΛK:(/ - Λfa))/*1, (J - R(s))h2 >H ds
Jo

where πj is the projection operator from H to the linear span of {fj : 1 <
j < J} on H. By the dominated convergence theorem, as J -» oo

£7 sup |β( n> 7 + f c)(/ι)-5( n ' J)(/ι) | 2

(n'J+*)(/ι) - B ( n "

+4 ίT \\(πJ+k - πj)(I - R(s))h\\2

Hds - 0. (3.3.4)
Jo

Therefore B(n>J\h) converges to a real-valued continuous square-integrable

martingale, say B^n\h). Then

< B^{h}), B^\h2) >t = Γ < f(8)gn(s)h\ f{s)9m{s)h2 >H ds
Jo

+ f <(I-R(s))h\h2>Hds
Jo

and
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= /
JO

>H

- R{s))h\ {I - R(s))h2 >H ds.

Proceeding as in (3.3.4) we can prove that B^n\h) converges to a real-valued
continuous square-integrable martingale, say B(h), and

< Bίh1), B(h2) >t = ί < R(s)h\h2 >H ds
Jo

+ [ <(I-R(s))h\h2>Hds
Jo

= t<hί,h2>H.

It is easy to verify the conditions of Definition 3.2.1 and hence, B is an iJ-
c.B.m.
Step 2. We now obtain the representation (3.3.3). Let

= inf{t € [0,Π : ||/(t)ll(2) > m}.

Note that

< (3.3.5)

τ" 9n(s)πjf(s)h, fk >H dMs{fk)

J L ftΛTm

+ Σ <(I- R(s))πjf(s)h, fk >H dB'a(fk).

\\f(s)πκ9n(s)(irJ+k - πj)f(s)h\\2

H < m^\\hfH

As for s <τn

and

it follows from the dominated convergence theorem that, as J

2

E y ^ /tΛTV"
3=J+1J°

J+k

= Σ E

i,j=J+l

oo,

Jo
<f(3)hJi>H<f(s)hJj>H
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f(s)πκgn(s)fi, f(s)πκgn(s)fj >H ds

ftΛτm

E <f(.8)hJi>H<f{8)h,fj>H

iJ=J+l J θ

< πκ(I - R(s))fi, (I - RWfj >H ds

= E / \\f(s)πκgn(s)(wJ+k - πj)f(s)h\\2

Hds
Jo

+E / \\πκ(I - R(s))(πJ+k - τrj)f{s)h\\2

Hds - 0,
Jo

i.e. the left hand side of (3.3.5) converges to

0 0 rtAτm

Σ <f(s)h,fJ>BdBjr^(f^.

We can similarly derive the limit (as J —• oo) of the right hand side of
(3.3.5). Then

Σ
3=1JQ

= Σ <9n(*)f(s)h,fk>HdM.(fk)

ttΛτm" ft

+ Σ < V - Ris))f(s)h> Sk >H dί
h,—1 ** 0

JK rtΛτm

= ΣJO <9n(s)S(s)h,fk>HdMs(fk).

Note that as K -*• oo, we have
E

°°Λ [tΛτm

Σ / < f(sϊh> fj >H

= lim V E [ Tm < f(s)h, fi >H< f(s)h, fj >H

J^oo rj^1 Jo

(f(s)(I - πκ)gn(s)fi, f(s)(I - πκ)9n{s)fj)H

 ds

+ lim } E / < f(s)h,fi >H< f(s)h,fj >H

((/ . ^ ) ( / _ R(8))fiί (/ _ R(s))fJ)H ds

= lim E ftATrn{\\f(s)(I - τrκ)9n(s)πjf(s)h\\2

H

J—»-oo Jo
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+\\{I-*κ)(I-R{s))rjf(s)h\\t

H}d8

I \\f(S)(I-πκ)gn(s)f(S)h\\2

Hds^0

o

and

E
K+ί ftΛτm

Σ / <9n(s)f{s)h,fk>HdMs(fk)
fctf+1

Σ EΣ
i *Λτm

/ < 9n(s)f(s)h, fj >H< gn(s)f(s)h, fk >H

f(s)fjt /(s)Λ >a ds

Tm \\f(s)(πκ+t - τrκ)gn(s)f(s)h\\2

Hds -, 0

and therefore

Σ/

fc=l

= Σ / < 9n(s)f(s)h, fk >H dMs(fk).

Similarly, as n —»• oo,

3=1

ijj >H dB.(fj),

and

E

= E

= lim

, Λ

(J - gn{

= E ΓTm \\f(s)(I - gn(s)f(s))h\\2

Hds
Jo

1 ΓTm\\f(S)(I-R(S))h\\2

HdS = 0.
Jo

Therefore

E

AfttΛτv
<f{s,ω)h,f]>HdBa{f]).
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Letting m —• oo, we see that (3.3.3) holds.
Step 3. For general /, let p(s) be an L(H, ίf)-valued predictable process
such that p(s)'p(s) = I and (f(s)'f{s))^2 = f(s)p(s). As

< Mt{hx),Mt(h2) >=

by previous steps, there exists an iϊ-c.B.m Bt such that

Mt= ί\f(s)ff(s)γ2dBs.
Jo

Bt(h) = £ f < p{s)'h, fά >H dBsUj) VΛ G H.
j Jo

Let

Note that

< Bt{h) >= Σ Γ < K M Si >H ds = t\\h\\2

H,
• JO

it is easy to show that JBS is an i/-c.B.m. Using similar arguments as in step
2, we see that (3.3.3) holds with B replaced by B. I

Finally we consider the stochastic integral representation for Φ'-valued

continuous square-integrable martingales.

Theorem 3.3.6 Let Q be a covariance function on Φ x Φ. Suppose that

M G ΛΊ2)C(Φ') and there exists f G L% such that

<Mt[φ]>= fQ{f{s)'φ,f{s)'φ)ds.
Jo

Then on an extension (Ω, f% P, Ttj of (Ω, J7, P, F^), there exists a &-Wiener

process W with covariance Q such that

Mt = [ f{s)dWs. (3.3.6)
Jo

Proof: For each n G N, let pn be given by Theorem 3.3.3 (with T = n).
Then M|[0,n] ι s a Φ-Pn-valued continuous square-integrable martingale such
that VΛ G Φ _ P n , t G [0,n]

< M(h) >t= / \θ-pn\IQPnf{s)tθPnh\ ds.
Jo II v 'I -Pn
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Taking H = Φ_P n, it follows from Theorem 3.3.5 that there exists a standard
extension (Ω, T, P, Ft) X (Ωn, Tn, P n , Jf) of the stochastic basis (Ω, T, P, ft)

and a Φ_Pn-c.B.m. Bn such that

For any υ G Φ_Pn., let B^{^/Q^υ) = B^(v). Then B? is an tfρ-c.B.m. for
5 G [0, n] and, for any <£ G Φ

. (3.3.7)
• «/U \ / \ /

Let

(Ω', ̂ , Pf, F't) =
n=l

On the extension (Ω, T, P, Pt) = (Ω, J", P, Ft) x (Ω;, J*', P', J^), we define 5
inductively:

for te [0,1];
for t e [n,n+ 1), n > 1.

It is easy to see that J3 is an iΪQ-c.B.m. Let W be the Φ;-Wiener process
with covariance Q corresponding to B by Theorem 3.2.5. By Definition 3.3.2
and (3.3.7), we see that (3.3.6) holds. I

3.4 Stochastic integral with respect to Poisson
random measure

In this section, we study the stochastic integral of Φ'-valued processes with
respect to Poisson random measures. We shall derive a representation the-
orem for a class of purely-discontinuous Φ'-valued martingales.

First we recall some basic facts without proof about real-valued semi-
martingales. We refer the reader to the books of Ikeda and Watanabe [18]
and Jacod and Shiryaev [22] for more details. Denote by ΛΊ2(R) (Λ42)C(R))
the collection of all (continuous) real-valued square-integrable martingales.
Let Λ be the collection of all adapted processes whose sample paths are of
finite variations on any finite intervals.
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Definition 3.4.1 M G ΛΊ2(R) is purely-discontinuous if MQ = 0 and
for any N G ΛΊ2 > C(R), MiV 25 α martingale. We denote the collection of all
purely-discontinuous real-valued square-integrable martingales by M2'd(R).

Theorem 3.4.1 For any M G ΛΊ2(R), there exists a unique decomposition
M = Mc + Md such that Mc G ΛΊ2 'C(R) and Md G M2*d(R). ΓΛey are
called respectively the continuous and the purely-discontinuous part of
M.

For any M,N G Λ12(R), we define the quadratic variation process

[M, N]t = lim Σ ( M t j + 1 - Mtj)(ΛΓίj+1 - Ntj)
"* i=o

where 0 = ί0 < *i < * < tn = ί and λ = max{ίJ+1 - tj : 0 < j < n}.

Theorem 3.4.2 For any M,N e M2(R), we have [M, N] G Λ and MN -
[Mj N] is a real-valued martingale. Further

[M, N]t =< Mc, Nc >t + 5^ AMSANS,
s<t

where AMS = Ms — M s _. 4̂̂  α consequence, M G A^2(R) z*5 purely-

discontinuous iffVt > 0

Definition 3.4.2 £e/ (ί7, ̂ ) 6e α measurable space. A map N : Ωx(/?(R_f_)x
£) —> R is called a random measure if N(ω, •) is a measure on R + X U for
each ω and iV( , JB) is a random variable for each B G /?(R+) X E. A random
measure N is called adapted if N(-, B) is Tt-measurable for B C [0, t] X U.
A random measure N is σ-finite if there exists a sequence Un increasing to
U such that E\N(Ί [0, t]xUn)\ < oo for each n G N and t>0.

A random measure N is called a martingale random measure if for
any A G ΓJV = {A G £ : £7|iV([0,£] X A)\ < oo Vί > 0}, the stochastic process
iV([0,ί] X A) is a martingale.

A σ-finite adapted random measure N is said to be in the class (QL)
if there exists a σ-finite random measure N such that N = N — N is a
martingale random measure and for any A G IV, ^([0,^] X A) G Λ is
continuous in t. The random measure N is called the compensator of N.

Theorem 3.4.3 Let (U> £) be a measurable space and let N be an integer-
valued adapted random measure on R+ X U. Then, there exists a sequence
of stopping times {τn} and a U-valued optional process p such that

N{ω,A) = ΣlD(ω,s)lA(8,p.{ω)), VΛ € B(ΈL+) x S,
s>0



3.4. DISCONTINUOUS STOCHASTIC INTEGRAL 121

where

D = Un{(ω,τn(ω)) : ω £ Ω} C Ω x R+.

The set D and the process p are called the jump set and the point process
corresponding to the integer-valued random measure N.

Definition 3.4.3 A random measure N is called independently scat-
tered if for any disjoint 2ϊi, ,JBn £ #(R+) X S, the random variables
i\Γ( , Si) , , JV( , Bn) are independent.

An independently scattered integer-valued adapted random measure is

called a Poisson random measure if for any B £ B(H+) X S such that

(dtdμ)(B) < oo, N(-,B) is a Poisson random variable with parameter

(dtdμ)(B). μ is called the characteristic measure of N.

It is clear that any Poisson random measure N is in class (QL) with

N([0, t] x A) = tμ(A) for any A £ £.

Definition 3.4.4 A real-valued function f(t,u,ω) defined on R+ x ί / x Ω

is predictable if it is U/β(R) measurable where Ό is the smallest σ-field

on R + x U X Ω with respect to which all g having the following properties

are measurable:

i) for each t > 0, (u,ω) —> g(t}u}ω) is £ x Tt-measurable;

ii) for each (u,ω), t —• g{t^u^ώ) is left continuous.

Let N be a Poisson random measure with characteristic measure μ. We

introduce the following classes:

Tpj _ \ r( \ / i s predictable and Vί > 0 Ί . _

For / e ίft Π fft, let

Mt= I I f(s,u,ω)N(dsdu)
Jo Ju

,p,((<;),ω)- / / f(s,u,ω)μ(du)ds (3.4.1)

where D and p(s) are the jump set and point process corresponding to N.
It is easy to prove that (3.4.1) is well-defined and M £ M2(R) such that

<M>t= I f f(s}u,ω)2μ(du)ds (3.4.2)
Jo Ju

and

= lD{ωtt)f{tίPt(ω),ω). (3.4.3)
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For f€Ffr, let

fn(t,u,ω) = l[_n,n](/(i,u>α;))ltfn(tθ/(t>tt>α;)

where Un is given by Definition 3.4.2. Then /„ € F^ Π Ffr. Define M n by
(3.4.1) with / replaced by /„. It is easy to prove that Mn converges, say
to M, in ,M 2 (R). We call M the stochastic integral of / with respect to
the compensated Poisson random measure N. It is easy to verify (3.4.2) and
(3.4.3) for M.

Theorem 3.4.4 (Itό's formula) Let N be a Poisson random measure with
.characteristic measure μ. Suppose that

X't = X3

0 + A\ + Mj+ ί ί fj(s, u, ω)N(dsdu)
Jo Ju

where A> € Λ, M> G M2>C{ΈL) and p £ F%, j = 1,2, ,d. Let F €
C2(ΈLd). Then

F(Xt) = ( ) Σ l f 3 ( ) i Y/

\ f
= i J o

(XS_ + f{s,u,ω)) - F(XS_)} N(dsdu)+ f I {F
Jo Ju

+ J* J^ {F(XS + /(β, u, ω)) - F(XS)

Theorem 3.4.5 Let N be a Poisson random measure on R+ X U and f G
Γ2

N. Then

Mt= f ί f(s,u,ω)N(dsdu) (3.4.4)
Jo Ju

iffMe M2>d(ΈL) and (3.4.3) holds.

Proof: "=»" We only need to prove that M G M24{R). Let 7 G Λ42 ) C(R).
It follows from Itό's formula that

/ Msdjs+ / / f(s)u,ω)ysN(dsdu)
Jo Jo Ju

is a martingale. Therefore < M,7 > = 0 and hence, M G Λ/ί2 > d(R).
U V Denoting the right hand side of (3.4.4) by Mt. Then M-M G M2>d(ΈL).
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On the other hand, A(M-M) = 0, i.e. M-M G Λ42'C(R). Hence M = M.

Theorem 3.4.6 Let (V,Bγ) be a measurable space and M be an adapted
integer valued random measure in class (QL) with the compensator M(dtdv)
= q(t} dv,ω)dt. Suppose that ({7, E) is a standard measurable space and there
exists a predictable V* = VΓU {d}-valued process

f(t)u,ω):[0)oo)xUxΩ->V*

such that

μ{u : /(t,u,u>) G A} = g(t, A,ω), VA G By

where d is an extra point attached to V. Then, on an extension (Ω, JF^ P} JF^
o/(Ω, T', P, Ft), there exists a Poisson random measure N with characteristic
measure μ such that

M((0,ί]xA) = / / lA(f{s,u,ω))N(dsdu)
Jo Ju

s<t

for every A G By-

After the above preparations, we now define the stochastic integral of
Φ'-valued functions with respect to Poisson random measures. Let N be a
Poisson random measure on R+ X U with characteristic measure μ and / be
a predictable map from [0, oo) X U X Ω to Φ' such that

E [ [ \f(s,u,ω)[φ]\2μ(du)ds < oo, Vt > 0, \/φ G Φ.
Jo Ju

Define

=f ί f(s,u,ω)[φ]N(dsdu), V<£GΦ. (3.4.5)
Jo Ju

It is clear that there exists M G Λ/ί2>d(Φ/), denoted by

Mt= I I f{s,u,ω)N{dsdu), \/φeΦ}
Jo Ju

such that Mf = Mt[φ] for all t > 0 and φ G Φ, where M2*d(&) is the
collection of M G M2 such that M[φ] G M24{R) for any φ G Φ.

As a consequence of Theorem 3.4.6, we have the following representation
theorem for Φ'-valued purely-discontinuous square-integrable martingales.



124 CHAPTER 3. STOCHASTIC INTEGRALS

Theorem 3.4.7 For M G Λ42'd(Φf), we define an integer-valued random
measure NM on R + x (Φ'/{0}) by

5 ) , \/A G
s<t

If NM is in class (QL) with the compensator NM(dtdυ) = q(t,dv,ω)dt and

there exists a standard measurable space ({/, £) and a predictable map

f(t, u, ω) : [0, oo) x U x Ω -> (Φ'/{0}) U {3}

such that

μ{u : f(t,u,ω) G A} = q(t,A,ω), VA € B(Φ'/{0}),

then on an extension (Ω, T, P, Tt) of (Ω,^7, P, JΓt); there exists a Poisson
random measure N with characteristic measure μ such that

Mt= [ [ f(s,u}ω)N(dsdu). (3.4.6)
Jo Ju

Proof: It follows from Theorem 3.4.6 that there exists a Poisson random

measure N with characteristic measure μ such that

NM((0,t] xA)= f j lA(f(s,u,ω))N(dsdu)
Jo Ju

for every A G #(Φ'/{0}). Therefore

AMt(ω) = lD(t,ω)f(t,pt(ω),ω), Vt > 0,α; G Ω,

where D and p(s) are the jump set and point process corresponding to N.

Hence for any φ G Φ, t > 0 and ω G Ω, we have

AMt(ω)[φ] = A f f f(s,u,ω)[φ]N(d8du),
Jo Ju

i .e

Mt(ω)[φ] - I I f(s,u,ω)[φ]N{dsdu) G > ί 2 ' c ( R ) Π M24{K) = {0}
Jo Ju

where 0 denotes the identically 0 martingale. Therefore (3.4.6) holds. I

This is probably the right place to discuss some special examples of

purely-discontinuous Φ'-martingales.
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Example 3.4.1 Let X be a domain in RΛ Let A be a closed densely de-
fined nonnegative-definite self-adjoint operator on H = L2(X, p{x)dx) where
p is an appropriately chosen measurable function on X. Suppose that the
condition (1.3.17) holds and Φ is the CHNS constructed in Example 1.3.2.

Let N be a Poisson random measure on R+ X R+ X X with characteristic
measure μ on R+ X X such that

a φ(x) μ(dadx) < oo Mφ £ Φ
Ί+xX

For any φ £ Φ, let

M* = [ [ aφ(x)N(dsdadx).
Jo JR+XX

Theorem 3.4.8 For any φ, ψ £ Φ and ί, 5 > 0; we have

where

Proof:

Q(φ}<ψ)= ί a2φ(x)ψ(x)μ(dadx).

EMt[φ]Ms[φ]

= E ί ί aφ(x)N(drdadx) Γ / aψ(x)N(drdadx)
Jo JR+XX JO JR+XX

ptΛs p

= / a2φ{x)/φ{x)drμ{dadx)
Jo JR+XX

= {tAs)Q{φ}φ).

Theorem 3.4.9 There exists M £ M2>d(Φf) such that λϊf = Mt[φ], Vt >
0, φ £ Φ, iff Q is continuous on Φ X Φ.

Proof: "=>" Let t > 0 be fixed and let V : Φ -> [0, oo) be given by

V{φ) = yJEMt[φ]2, Vφ £ Φ.

It is easy to verify the conditions of Lemma 1.3.1 and hence, 30 > 0 and
r > 0 such that

yjEMt[φ]2 < θ\\φ\\r V<£ £ Φ. (3.4.7)
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The continuity of Q then follows from Theorem 3.4.8.
"«=" Similar to (3.4.7), 30 > 0 and r > 0 such that

Q(φ,φ)<θ2\\φ\\2

r V^GΦ. (3.4.8)

Let p > r be such that the canonical injection from Φ p to Φ r is Hilbert-

Schmidt. Let

f
3

It follows from (3.4.8) and Theorem 3.4.8 that Mt is a Φ_p-valued process

such that M* = Mt[φ], Vi > 0, φ G Φ. Af G Λ42'd(Φ') then follows directly

from the definition. I

Remark 3.4.1 For most of the cases of interest to us, we have Φ c

(e.#. «S(R) in Example 1.3.1 and Remark 1.3.5, the CHNS Φ constructed

in Section 7.2). In this case, Q is continuous on Φ x Φ. In fact, let V :

Φ -» [0,oo) be given by V(φ)2 = Q(φ,φ), Vφ G Φ. The condition (1) of

Lemma 1.3.1 follows from FatouJs lemma and the conditions (2) and (3/

follows from the linearity of Q. Therefore, 30 > 0 and r > 0 such that

V{Φ) ^ ^IMIrj Vφ £ Φ The continuity of Q then follows easily.

Remark 3.4.2 Comparing with (3.4-5), in this example, we have U = R+ X

X, u = (α, cε) and f(s,u,ω)[φ] = aφ(x) [non-random integrand]. If Φ c-»

Cb(X), then f(s,u,ώ) G Φ' for all (s,u,ω) G R+ X U X Ω.

Example 3.4.2 Le^ Φ be a CHNS and let A be a measurable subset of Φ ;.

Le£ N be a Poisson random measure on R+ x R X Λ with characteristic

measure μ on R X Λ such that

I a2η[φ]2μ(dadη) < oo V ^ G Φ .
J R X Λ

any </> G Φ, /eί

M}= I I aη[φ]N(dsdadη).
JO JRxA

Similar to the previous example, we have

T h e o r e m 3.4.10 (1) For any φ, φ G Φ and t,s >0, we have

EM?M? = (tAs)Q(φ,ψ)

where

I a2η[φ]η[φ]μ{dadη).
ΈLxh

(2) There exists M G Λ42'd(Φ') such that Mf = Mt[φ], Vt>O,φe$,iffQ
is continuous on Φ X Φ.




