Chapter 2

Lecture 6

Bayes estimation

We have the setup from the previous lecture: $(S, \mathcal{A}, P_{\theta}), \theta \in \Theta$. We want to estimate $g(\theta)$. Let \mathcal{B} be a σ -field in Θ and λ a probability on \mathcal{B} . We assume that g is \mathcal{B} -measurable and that $g \in L^2(\Theta, \mathcal{B}, \lambda)$ – i.e., that $\int_{\Theta} g(\theta)^2 d\lambda(\theta) < \infty$. We regard θ as a random element and $P_{\theta}(A)$ as a conditional probability that $s \in A$, given θ . Let $w = (s, \theta), \ \Omega = S \times \Theta$ and $\mathcal{C} = \mathcal{A} \times \mathcal{B}$ be the smallest σ -field containing all sets of the form $A \times B$ with $A \in \mathcal{A}$ and $B \in \mathcal{B}$. We assume that $\theta \mapsto P_{\theta}(A)$ is \mathcal{B} -measurable for all $A \in \mathcal{A}$.

Lemma 1. There exists a unique probability measure M on C such that

$$M(A \times B) = \int_{B} P_{\theta}(A) d\lambda(\theta) \ \forall A \in \mathcal{A}, B \in \mathcal{B}.$$

 $(\lambda \text{ is the distribution of } \theta, P_{\theta} \text{ is the distribution of } s \text{ given } \theta \text{ and } M \text{ is the joint distribution of } w = (s, \theta).$ We will see the explicit formula for Q_s – the distribution of θ given s – soon.)

Consider an estimate t. Our assumption on g is that

$$E(g^2) = \int_{\Omega} g^2 dM = \int_{\Theta} g^2 d\lambda < \infty,$$

so

$$\overline{R}_t = \int_{\Theta} R_t(\theta) d\lambda(\theta) = \int_{\Theta} E_{\theta} (t - g(\theta))^2 d\lambda(\theta)$$
$$= E (E((t - g)^2 \mid \theta)) = E(t - g)^2 = ||t - g||^2$$

(the norm taken in $L^2(\Omega, \mathcal{C}, M)$). We would like to choose a t to minimize this quantity. Since t is a function only of s, the desired minimizing estimate – which we will denote by t^* – is the projection of g to the subspace of all \mathcal{A} -measurable functions t(s) satisfying $E_M(t(s)^2) < \infty$. We know that $t^*(s) = E(g(\theta) | s)$.

- 4. a. There exists a minimizing t^* (this is the Bayes estimate for g with respect to λ).
 - b. The minimizing t^* is unique up to \overline{P} -equivalence, where

$$\overline{P}(A) = \int_{\Theta} P_{\theta}(A) d\lambda(\theta)$$

for $A \in \mathcal{A}$.

c.

$$\overline{R}_{t^*} = \inf_t \overline{R}_t = ||t^* - g||^2 = ||g||^2 - ||t^*||^2$$
$$= \int_{\Omega} g^2 dM - \int_{\Omega} (t^*)^2 dM = \int_{\Theta} g(\theta)^2 d\lambda(\theta) - \int_{S} t^*(s)^2 d\overline{P}(s).$$

d. $t^*(s) = E(g(\theta) \mid s)$, where (s, θ) is distributed according to M.

Note. \overline{P} is the marginal distribution of s.

Some explicit formulas

Suppose we begin with a dominated family $\{P_{\theta} : \theta \in \Theta\}$ – i.e., a family such that there exists a σ -finite μ such that each P_{θ} admits a density, say ℓ_{θ} with respect to μ such that ℓ_{θ} is measurable, $0 \leq \ell_{\theta}(s) < \infty$ and

$$P_{\theta}(A) = \int_{A} \ell_{\theta}(s) d\mu(s) \ \forall A \in \mathcal{A}.$$

Two basic examples are:

- i. $S = \{s_1, s_2, \ldots\}$ is countable and μ is counting measure. Then $\ell_{\theta}(s)$ is the P_{θ} -probability of the atomic set $\{s\}$.
- ii. $S = \mathbb{R}^k$, $\mathcal{A} = \mathcal{B}^k$ and μ is Lebesgue measure on \mathbb{R}^k . Then ℓ_{θ} is the probability density in the familiar sense.

We assume that $(s, \theta) \mapsto \ell_{\theta}(s)$ is a C-measurable function. We write $\nu = \mu \times \lambda$.

5. a. M is given by

$$\frac{dM}{d\nu}(s,\theta) = \ell_{\theta}(s).$$

b. \overline{P} is given by

$$rac{d\overline{P}}{d\mu}(s) = \int_{\Theta} \ell_{ heta}(s) d\lambda(heta).$$

c. For all $s \in S$, Q_s , the conditional probability on Θ given s when (s, θ) is distributed according to M, is well-defined and given by

$$rac{dQ_s}{d\lambda}(heta) = rac{\ell_{ heta}(s)}{\overline{\ell}(s)},$$

where $\overline{\ell}(s) = \frac{d\overline{P}}{du}$. d. For all $g \in L^2$,

$$E(g \mid s) = t^*(s) = \int_{\Theta} g(\theta) dQ_s(\theta) = \int_{\Theta} g(\theta) \frac{\ell_{\theta}(s)}{\overline{\ell}(s)} d\lambda(\theta).$$

Proof. These are all easy consequences of Fubini's theorem. (For example, since

$$\Pr(s \in A, \theta \in B) = E(I_A(s)I_B(\theta)) = E(I_B(\theta)E(I_A(s) \mid \theta))$$

= $E(I_B(\theta)P_{\theta}(A))$
= $E(I_B(\theta)\int_A \ell_{\theta}d\mu) = \int_{\Theta} I_B(\theta) \Big[\int_A \ell_{\theta}(s)d\mu(s)\Big]d\lambda(\theta) = \int_{A \times B} \ell_{\theta}(s)d\nu(s,\theta),$
we have (a).)

we have (a).)

Lecture 7

Note. In any $V = L^2(\Omega, \mathcal{C}, M)$, the constant functions form a subspace, which we will denote by $W_c = W_c(\Omega, \mathcal{C}, M)$. The projection of $f \in V$ on W_c is just E(f).

Note. In the present context, with $w = (s, \theta)$ and $\Omega = S \times \Theta$, s is the datum and θ is the unknown parameter. λ is the prior distribution of θ , Q_s is the posterior distribution (after s is observed) of θ , $t^*(s) = E(g \mid s)$ is the posterior mean of $g(\theta)$, $\theta \mapsto \ell_{\theta}(s)$ is the likelihood function and $\ell_{\theta} = \frac{dP_{\theta}}{d\mu}$.

Note. If we do have a λ on hand but no data, then the Bayes estimate is just Eq = $\int_{\Theta} g(\theta) d\lambda(\theta).$

6. If t^* is a Bayes estimate of g, then t^* cannot be unbiased, except in trivial cases.

Proof. Suppose that t^* is unbiased and Bayes (with respect to λ). Then, by unbiasedness,

$$(t^*,g) = E(t^*g) = E(E(t^*g \mid \theta)) = E(g(\theta)E(t^* \mid \theta)) = E(g(\theta)^2) = ||g||^2;$$

but also, since t^* is a Bayes estimate,

$$(t^*,g) = E(E(t^*g \mid s)) = E(t^*(s)E(g \mid s)) = ||t^*||^2.$$

From this we conclude that:

$$||t^* - g||^2 = ||g||^2 - ||t^*||^2 = 0 \Leftrightarrow M(\{w : t^*(s) \neq g(\theta)\}) = 0$$

$$\Leftrightarrow \int_{\Theta} P_{\theta}(t^*(s) \neq g(\theta)) d\lambda(\theta) = 0 \Leftrightarrow P_{\theta}(t^*(s) = g(\theta)) = 1 \text{ a.e.}(\lambda)$$

This last statement, though, holds iff there is an estimate t such that $P_{\theta}(t(s) = g(\theta)) = 1$ a.e. (λ) . Hence, except in the trivial case, t^* cannot be both Bayes and unbiased.

Example 1(a). $s = (X_1, X_2, ..., X_n), X_i \stackrel{\text{iid}}{\sim} N(\theta, 1) \text{ and } \Theta = \mathbb{R}^1$. Let μ be Lebesgue measure; then $d\mu = dX_1 \cdots dX_n$ and $\ell_{\theta}(s) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(X_i - \theta)^2}$. Consider the estimation of $g(\theta) = \theta$. $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ is an unbiased estimate of g (in fact, it is the UMVUE of g), so \overline{X} is not Bayes with respect to any λ . We will see later that:

- i. \overline{X} is minimax,
- ii. \overline{X} is the pointwise limit of Bayes estimates and
- iii. \overline{X} is admissible.

Suppose that λ is the $N(0, \sigma^2)$ distribution, so that $d\lambda(\theta) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2\sigma^2}\theta^2} d\theta$. Given s, $\frac{dQ_s}{d\lambda}(\theta)$ is proportional to $\ell_{\theta}(s)$, i.e., $dQ_s(\theta) = \varphi_1(s)\ell_{\theta}(s)d\lambda(\theta)$ for some function φ_1 of s.

Now

$$\ell_{\theta}(s) = \left(\frac{1}{2\pi}\right)^n e^{-\frac{n}{2}(\overline{X}-\theta)^2 - \frac{n}{2}v},$$

where $v = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$, so that $dQ_s(\theta) = \varphi_1(s)\varphi_2(s)e^{-\frac{n}{2}(\overline{X}-\theta)^2}e^{-\frac{\theta^2}{2\sigma^2}}d\theta$. Let $\sigma^2 = \frac{1}{nh^2}$ for some h > 0, so that

$$dQ_s(\theta) = \varphi_3(s)e^{n\overline{X}\theta - \frac{n}{2}h^2\theta^2 - \frac{n}{2}\theta^2}d\theta = \varphi_4(s)e^{-\frac{n(1+h^2)}{2}\left[\theta - \frac{\overline{X}}{1+h^2}\right]^2}d\theta.$$

Thus $Q_s \sim N\left(\frac{\overline{X}}{1+h^2}, \frac{1}{n(1+h^2)}\right)$ (where $h^2 = \left(\frac{1}{n}\right)/\sigma^2$ is the ratio of observation variance to prior variance) and $t^*(s) = E(\theta \mid s) = \frac{\overline{X}}{1+h^2}$. Therefore

$$t^{*}(s) = \frac{h^{2}}{1+h^{2}} \cdot \underbrace{0}_{\dagger} + \frac{1}{1+h^{2}} \overline{X} = \underbrace{\frac{1/\sigma^{2}}{n+1/\sigma^{2}} \cdot 0 + \frac{n}{n+1/\sigma^{2}} \overline{X}}_{\ddagger},$$

where the 0 (labelled † above) arises from the fact that we are dealing with a Bayes estimate with no data; and the terms marked ‡ represent a weighted average of prior and data mean, with weights proportional to inverse variance.

We have

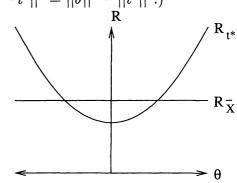
$$R_{\overline{X}}(\theta) = \operatorname{Var}_{\theta}(\overline{X}) + 0 = \frac{1}{n},$$

$$R_{t^*}(\theta) = \operatorname{Var}_{\theta}(t^*) + \left(\frac{\theta}{1+h^2} - \theta\right)^2 = \frac{1}{(1+h^2)^2} \frac{1}{n} + \left(\frac{h^2}{1+h^2}\right)^2 \theta^2$$

and

$$\overline{R}_{t^*} = \frac{1}{(1+h^2)^2} \frac{1}{n} + \left(\frac{h^2}{1+h^2}\right)^2 \sigma^2 = \frac{1}{n(1+h^2)}.$$

(The last can be checked by noting that $\overline{R}_{t^*} = ||\theta - t^*||^2 = ||\theta||^2 - ||t^*||^2$.)



Lecture 8

In the framework $(S, \mathcal{A}, P_{\theta}), \theta \in \Theta$, set up in the previous lectures, suppose that $dP_{\theta} = \ell_{\theta}d\mu$ on S, where $d\mu$ is a fixed measure (this is another way of saying that ℓ_{θ} is the likelihood function). Given s, suppose $\hat{\theta} = \hat{\theta}(s)$ is the point in Θ such that $\ell_{\hat{\theta}(s)}(s) = \sup_{\theta \in \Theta} \ell_{\theta}(s)$. Then $\hat{\theta}$ is the (or an) ML estimate of θ .

Given a function g on Θ , $g(\hat{\theta}(s))$ is the ML estimate of $g(\theta)$.

Homework 2

1. What is $\hat{\theta}$ in Example 1(b) (on page 10)? In Example 1(c) (no explicit answer is available in this case)? Assume that $\Theta = \mathbb{R}^1$.

We return to our investigation of Example 1(a).

Example 1. Here μ is *n*-dimensional Lebesgue measure and $\ell_{\theta}(s) = \varphi(s)e^{-\frac{n}{2}(\overline{X}-\theta)^2}$, so that $\hat{\theta}(s) = \overline{X}$. The ML estimate of θ^2 is \overline{X}^2 , the ML estimate of $|\theta|$ is $|\overline{X}|$, etc.

Under square error loss, we know that, if λ is distributed as $N(0, \sigma^2)$ with $\sigma^2 = \frac{1}{nh^2}$, then the Bayes estimate of θ is $t^*(s) = \frac{\overline{X}}{1+h^2}$. The Bayes estimate of θ^2 is

$$\int_{\mathbb{R}^1} \theta^2 dQ_s(\theta) = \frac{1}{n(1+h^2)} + \frac{\overline{X}^2}{(1+h^2)^2}$$

and the Bayes estimate of $|\theta|$ is $\int_{\mathbb{R}^1} |\theta| dQ_s(\theta)$, which is a sum involving special functions.

Note.

- i. We have seen that the Bayes estimates of θ converge to \overline{X} , which is ML and UMVUE, as $h \to 0$ (i.e., $\sigma^2 \to +\infty$). This does not always happen, however: The Bayes estimates of θ^2 converge to $\overline{X}^2 + \frac{1}{n}$; the ML estimate of θ^2 is \overline{X}^2 and the UMVUE of θ^2 is $\overline{X}^2 - \frac{1}{n}$. These three are not identical, but they are close if n is large.
- ii. The case h = 0 ($\sigma^2 = +\infty$) corresponds to uniform prior ignorance about θ ; i.e., for two intervals (a, b) and (c, d) in $\mathbb{R}^1 = \Theta$, $\frac{\lambda(a, b)}{\lambda(c, d)} \rightarrow \frac{b-a}{d-c}$ as $h \downarrow 0$ (from Homework 2).
- iii. $t^*(s) = \frac{\overline{X}}{1+h^2}$ (*h* fixed) is admissible because t^* is an essentially unique Bayes estimate in $L^2(M)$ (i.e., if t_0 is also Bayes, then $\overline{P}(t_0 = t^*) = 1$, which is equivalent to saying that $P_{\theta}(t_0 = t^*) = 1$ for all $\theta \in \Theta$). It follows that, for any constant $c, t(s) = \alpha \overline{X} + (1-\alpha)c$ is admissible for any $0 \le \alpha \le 1$. (Let $X'_i = X_i + c$ and $\theta' = \theta + c$, and apply the above result.)

Homework 2

2. Find a necessary and sufficient condition such that $b_0 + b_1 X_1 + \cdots + b_n X_n$ be admissible for θ .

For any h > 0, $R_{t^*}(\theta) = u + v\theta^2$, so $\sup_{\theta \in \Theta} R_{t^*}(\theta) = +\infty$ and t^* is not minimax. We do have, however, that:

i. \overline{X} is minimax.

Proof. Choose any estimate t.

$$\sup_{\theta} R_t(\theta) \ge \overline{R}_t \ge \overline{R}_{t^*} = \frac{1}{n(1+h^2)};$$

so, since h is arbitrary, $\sup_{\theta} R_t(\theta) \geq \frac{1}{n}$, which is the (constant) risk of \overline{X} . Thus \overline{X} is minimax.

ii. \overline{X} is admissible.

Proof. Let t be an estimate such that

$$R_t(\theta) \le R_{\overline{X}}(\theta) = \frac{1}{n} \ \forall \theta \in \Theta$$

and let, for h > 0, λ be distributed as $N(0, 1/nh^2)$. We have that $\overline{R}_t \ge \overline{R}_{t^*}$ because t^* is Bayes for λ .

Now
$$t - \theta = (t - t^*) + (t^* - \theta)$$
 and $(t - t^*) \perp (t^* - \theta)$, so
 $||t - t^*||^2 = ||t - \theta||^2 - ||t^* - \theta||^2 = \overline{R}_t - \overline{R}_{t^*}$
 $\leq \frac{1}{n} - \overline{R}_{t^*} = \frac{1}{n} - \frac{1}{n(1+h^2)} = \frac{h^2}{n(1+h^2)}.$

We have also that

$$||t - t^*||^2 = \int_{\mathbb{R}^{n+1}} (t - t^*)^2 dM = \int_{\mathbb{R}^n} (t - t^*)^2 d\overline{P}$$

= $\int_{\mathbb{R}^n} (t(s) - t^*(s))^2 \int_{\Theta} \frac{\sqrt{nh}}{\sqrt{2\pi}} e^{-\frac{nh^2}{2}\theta^2} \ell_{\theta}(s) d\theta \, d\mu(s)$
= $\int_{\mathbb{R}^{n+1}} (t(s) - t^*(s))^2 \frac{\sqrt{nh}}{\sqrt{2\pi}} e^{-\frac{nh^2}{2}\theta^2} \ell_{\theta}(s) d\theta \, d\mu(s).$

From these two equalities we conclude that

$$\int_{\mathbb{R}^{n+1}} (t(s) - t^*(s))^2 \sqrt{\frac{n}{2\pi}} e^{-\frac{nh^2}{2}\theta^2} \ell_{\theta}(s) d\mu(s) d\theta \le \frac{h}{n(1+h^2)}$$

Letting $h \to 0$ and using Fatou's lemma and the fact that $t^* \to \overline{X}$ (as $h \to 0$), we have that

$$\int_{\mathbb{R}^{n+1}} (t(s) - \overline{X})^2 \ell_{\theta}(s) d\mu(s) d\theta = 0$$

and hence that $(t(s) - \overline{X})^2 \ell_{\theta}(s) = 0$ a.e. (with respect to Lebesgue measure) in \mathbb{R}^{n+1} . Since $\ell_{\theta}(s) > 0$ for all $(s, \theta) \in \mathbb{R}^{n+1}$ by presumption, we have that

$$\begin{aligned} (t(s) - \overline{X} &= 0 \text{ a.e. (with respect to Lebesgue measure) on } \mathbb{R}^{n+1}) \\ &\Rightarrow (t(s) = \overline{X} \text{ a.e. (with respect to Lebesgue measure) on } S = \mathbb{R}^n) \\ &\Rightarrow (P_{\theta}(t(s) = \overline{X}) = 1 \ \forall \theta \in \Theta) \Rightarrow (R_t(\theta) = R_{\overline{X}}(\theta) = \frac{1}{n} \ \forall \theta \in \Theta). \end{aligned}$$

Lecture 9

Homework 2

3. In Example 1(a), what is the marginal distribution \overline{P} of s? Are the X_i s normal and independent under \overline{P} ? What is the distribution of \overline{X} under \overline{P} ? Here the prior is assumed to be $\lambda \sim N(0, 1/nh^2)$.

Example 2(a). Let n be a fixed positive integer and $s = (X_1, \ldots, X_n)$ with the X_i iid random variables assuming the values 1 and 0 with probabilities θ and $1 - \theta$ respectively and $\Theta = [0, 1]$. Let μ be counting measure on S, the set of 2^n possible values assumed by s. Then

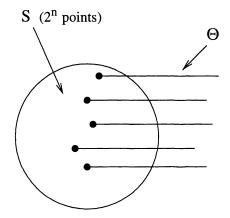
$$\ell_{\theta}(s) = P_{\theta}(\{s\}) = \theta^{T(s)}(1-\theta)^{n-T(s)}$$

where $T(s) = \sum_{i=1}^{n} X_i$. The ML estimate is $\hat{\theta}(s) = T(s)/n = \overline{X}$, which is unbiased for θ . (We will see that in fact \overline{X} is the UMVUE.) $R_{\overline{X}}(\theta) = \operatorname{Var}_{\theta}(\overline{X}) = \theta(1-\theta)/n$. The ML estimate of $\theta(1-\theta)/n$ is just $\overline{X}(1-\overline{X})/n$, which is not unbiased. We shall see later that $\frac{1}{n}\left(\frac{T}{n}-\frac{T}{n}\frac{T-1}{n-1}\right)$ is the UMVUE for $\theta(1-\theta)/n$. Let λ be the Beta distribution B(a, b), i.e.,

$$d\lambda(\theta) = \frac{\theta^{a-1}(1-\theta)^{b-1}}{B(a,b)}d\theta$$

for $0 \leq \theta \leq 1$, with parameters a, b > 0. Here $B(a, b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$ is the Beta function; it is easy to check that $E_{\lambda}(\theta) = \frac{a}{a+b}$ and $\operatorname{Var}_{\lambda}(\theta) = \frac{ab}{(a+b)^2(a+b+1)}$. We visualize the product space $\Omega = S \times \Theta$ as a unit interval attached to each

point of S:



We let μ be counting measure on S, λ prior measure on Θ and $\nu = \mu \times \lambda$ the product measure on Ω . We have $dM(s,\theta) = \ell_{\theta}(s)d\nu(s,\theta)$ on Ω , so that M(C) = $\int_{C} \ell_{\theta}(s) d\nu(s, \theta)$ for all $C \in \mathcal{C} = \mathcal{A} \times \mathcal{B}$, and

$$dQ_s(\theta) = \frac{\ell_{\theta}(s)}{\overline{\ell}(s)} d\lambda(\theta) = \varphi_1(s)\ell_{\theta}(s)d\lambda(\theta)$$

= $\varphi_2(s)\theta^{T(s)}(1-\theta)^{n-T(s)}d\lambda(\theta)$
= $\varphi_2'(s)\theta^{a+T(s)-1}(1-\theta)^{b+n-T(s)-1}d\theta$,

where $\varphi'_{2}(s) = B(a + T(s), b + n - T(s))^{-1}$, so that Q_{s} is the B(a + T(s), b + n - T(s))distribution.

The Bayes estimate for θ is $t^*(s) = E_{Q_s}(\theta) = \frac{a+T(s)}{a+b+n}$; similarly, the Bayes estimate for $\theta(1-\theta)$ is $E_{Q_s}(\theta) - E_{Q_s}(\theta^2)$.

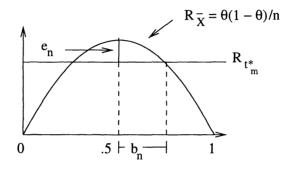
$$R_{t^*}(\theta) = \operatorname{Var}(t^*) + \left[b_{t^*}(\theta)\right]^2 = \frac{n\theta(1-\theta)}{(a+b+n)^2} + \left[\frac{a+n\theta}{a+b+n} - \theta\right]^2.$$

~

If we choose $a = \frac{\sqrt{n}}{2} = b$, then t^* becomes $t_m^* = \frac{T + \sqrt{n}/2}{n + \sqrt{n}}$ and

$$R_{t_m^*}(\theta) = \frac{n}{4(\sqrt{n}+n)^2} < \frac{1}{4n}$$

Hence t_m^* is a Bayes estimate with constant risk; therefore it must be minimax. The graphs for the risk functions of \overline{X} and t_m^* look like:



As $n \to \infty$, $b_n \to 0$ and $\frac{e_n}{1/(4n)} \to 0$. Neither \overline{X} nor t_m^* is perfect; for example, if n = 100 and T = 0, then $\overline{X} = \hat{\theta} = 0$, which is too low, but $t_m^* = \frac{0+5}{100+10} \approx 4\frac{1}{2}\%$, which may be too high.

Note. With $a = \frac{\sqrt{n}}{2} = b$, the prior mean is $\frac{1}{2}$ and the prior variance is $\frac{n/4}{n(\sqrt{n}+1)} = \frac{1}{4(\sqrt{n}+1)}$.

Homework 2

- 4. Show that $\overline{X} = \frac{T(s)}{n}$ is admissible in two ways:
 - a. Show that \overline{X} is the pointwise limit of t^* as $a \downarrow 0$ and $b \downarrow 0$.
 - b. Redefine the loss function by $L(t,\theta) = \frac{(t-\theta)^2}{\theta(1-\theta)}$, so that $R_t(\theta) = \frac{E_{\theta}(t-\theta)^2}{\theta(1-\theta)}$. (Admissibility with respect to this loss function is equivalent to admissibility with respect to the loss function $L(t,\theta) = (t-\theta)^2$.)
- 5. Show that \overline{X} is the unique Bayes estimate with respect to some λ .

Lecture 10

Example 2(b) (negative binomial sampling). We have $\theta \in \Theta = (0, 1)$. We choose a positive integer k and observe the iid

$$X_i = \begin{cases} 1 & \text{with probability } \theta \\ 0 & \text{with probability } 1 - \theta \end{cases}$$

until exactly k 1's are observed.

Let N be the total number of X_i s observed. Here $s = (X_1, \ldots, X_N)$ and N is a random variable.

Now let S be the set of all possible values of s; then S is countable (obviously $N \geq k$. There are $\binom{r-1}{k-1}$ values of s corresponding to N = r). Let μ be counting measure on S (such that sample points with N the same have the same probability). Then

$$\ell_{\theta}(s) = P_{\theta}(\text{observing } s) = \theta^{k-1} (1-\theta)^{(N(s)-1)-(k-1)} \theta = \theta^k (1-\theta)^{N(s)-k}$$

The MLE of θ is $\overline{X} = \frac{k}{N(s)}$, which is not unbiased. Note that $N = N_1 + \cdots + N_k$, where N_1 is the number of trials until the first 'success' (i.e., observation of a 1), N_2 is the number of additional trials required for the second success etc. The N_i s are iid, so that $E_{\theta}(N) = k E_{\theta}(N_1)$ and $\operatorname{Var}_{\theta}(N) = k \operatorname{Var}_{\theta}(N_1)$. Since $P_{\theta}(N_1 = r) = (1 - \theta)^{r-1} \theta$ (for r = 1, 2, ...), we have $E_{\theta}(N_1) = 1/\theta$ and $\operatorname{Var}_{\theta}(N_1) = (1-\theta)/\theta^2$. Thus

$$E_{\theta}\left(\frac{N}{k}\right) = \frac{1}{k}E_{\theta}(N) = E_{\theta}(N_1) = \frac{1}{\theta};$$

remember, however, that, by the Cauchy-Schwarz inequality, $E(X)E(1/X) \ge 1$ for any random variable X > 0, with equality iff P(X = c) = 1, and so

$$E_{\theta}\left(\frac{k}{N}\right) > \frac{1}{1/\theta} = \theta$$

- i.e., $\overline{X} = \frac{k}{N(s)}$ is biased upwards.

It can be shown by the Rao-Blackwell theorem that the estimate $t = \frac{k-1}{N-1}$ is unbiased when $k \geq 2$. In fact, t is (by the Lehmann-Scheffé theorem or a geometrical approach) the UMVUE. (Heuristically, we see that, if $s = (X_1, \ldots, X_{N-1}, X_N)$, then necessarily $X_N \equiv 1$ (we stop as soon as we observe the kth 1) and so only (X_1, \ldots, X_{N-1}) Then t(s)constitute the active part. = $\frac{\text{number of successes in active part}}{\text{number of trials in active part}}$.) To see that t is unbiased, note that

$$P_{\theta}(N=r) = \binom{r-1}{k-1} \theta^k (1-\theta)^{r-k}$$

for $r = k, k + 1, \ldots$, so that

$$E_{\theta}(t) = \sum_{r=k}^{\infty} \frac{k-1}{r-1} P_{\theta}(N=r) = \theta$$

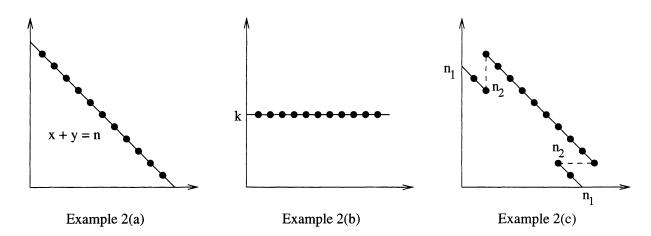
We have $\overline{X} - t(s) = \frac{k}{N(s)} - \frac{k-1}{N(s)-1} = \frac{N(s)-k}{N(s)(N(s)-1)} \ge 0$, the inequality being strict with positive probability; so $E_{\theta}(\overline{X}) > E_{\theta}(t) = \theta$.

Bayes estimates

Let λ be a prior probability measure on (0, 1). As always $dQ_s(\theta) = \varphi_1(s)\ell_\theta(s)d\lambda(\theta)$. Since $\ell_\theta(s)$ is as in Example 2(a), formally the Bayes estimate here is identical to the one there. In particular, $\frac{a+k}{a+b+N(s)}$ is admissible and Bayes with respect to the B(a, b) prior with a, b > 0.

Note. Although the MLEs in Examples 2(a) and 2(b) are formally identical, the risk functions are different. In Example 2(b), $R_{\overline{X}}(\theta) = \operatorname{Var}_{\theta}(\overline{X}) + \left[E_{\theta}(\overline{X} - \theta)\right]^2$ and $R_t(\theta) = \operatorname{Var}_{\theta}(t)$ are complicated expressions.

Example 2(c). Depicted here are the stopping points for Examples 2(a) and 2(b), along with those of another possible (two-stage) sampling scheme:



Here (as in any scheme) the likelihood function is $\ell_{\theta}(s) = \theta^{T(s)}(1-\theta)^{N(s)-T(s)}$, where T(s) is the number of successes (and, of course, N(s) - T(s) is the number of failures). μ is counting measure and the MLE is $\hat{\theta}(s) = \frac{T(s)}{N(s)}$ always.

 $s = (X_1, \ldots, X_N)$, where $N = n_1$ or $N = n_1 + n_2$ depending on s. How do we estimate θ ? What is the precision of this estimate?