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Weighted FWE-controlling methods in
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Peter H. Westfall1, Siegfried Kropf2, and Livio Finos3
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Abstract: With high dimensionality, standard Bonferroni-style procedures
can suffer from loss of power, since the significance level α must be divided
by k to declare significance. Kropf and Läuter (KL) show that certain data-
dependent quadratic forms can be used to “pre-specify” hypotheses, which
can then be tested in a fixed, data-dependent order, without multiplicity ad-
justment. In this article we extend the KL procedure to a class of weighted
procedures, using the same quadratic forms. The class includes the KL method,
the Bonferroni-Holm method, and other, new procedures. We establish strong
FWE control for all procedures, and compare power and level of various weight-
ing methods using analytical and simulation results. The method is applied
using a high-dimensional mixture model that is suggested by the analysis of
real gene expression data.

1. Introduction

With the genomics revolution, methods for detecting signals in large data sets are
increasingly in demand. In studies relating single nucleotide polymorphisms (SNPs)
to disease status, there can easily be thousands of genotypes to be tested; the num-
ber of tests is in the millions and even billions when interacting genotype effects are
considered. With so many tests, the standard Type I error rate criterion upon which
tests are evaluated becomes less meaningful, as hundreds of “significances” might
easily be, in effect, Type I errors. On the other hand, attempts to rigorously control
the familywise Type I error rate (FWE) typically are excessively conservative. For
example, if the Bonferroni method is used to control the FWE with k tests, then a
test will have to be significant at the α/k level to be declared “real.” The two most
often voiced complaints about this method are (i) the dependence of the procedure
on k seems arbitrary, and related to that (ii) the method is exceedingly conservative
for large k.

Holm’s (1979) step-down approach is a slight improvement on the simple Bon-
ferroni method, but gains little in terms of power when k is large. Holm’s method
rejects the hypothesis corresponding to the most significant (smallest p-value) test
if the p-value is less than α/k; if this hypothesis is rejected, then the second-smallest
p-value is compared to α/(k − 1), and so on.

The false discovery rate (FDR) controlling method of Benjamini and Hochberg
(1995; hereafter the BH method) has been proposed as alternative to FWE-control-
ling methods that, to an extent, meliorates problems (i) and (ii). FDR-controlling
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procedures do not generally control the FWE, thus they allow that some frac-
tion of detected significances are in error. While FDR-controlling procedures have
more power and attractive optimality properties, significances obtained using FWE-
controlling procedures remain desirable since the inferences are stronger. In this
article we consider a class of weighted FWE-controlling procedures.

Weighted methods are useful when some hypotheses Hi are deemed more im-
portant than others. For example, in clinical trials, the various patient outcomes
might be ranked a priori, and the testing procedure designed to give more power to
the more important hypotheses. The simplest weighting multiple testing procedure,
discussed in e.g., Rosenthal and Rubin (1983), is to reject Hi if pi ≤ wiα, where the
weights wi lie in the simplex wi ≥ 0; Σwi = 1, and where pi is the p-value of the
test. The wi may be chosen based purely on a priori importance of the hypotheses,
or to optimize power based on prior information (Spjøtvoll, 1972; Benjamini and
Hochberg, 1997; Westfall et al., 1998).

Using concurrent data sets to generate and test hypotheses is generally con-
sidered “data snooping,” and such methods typically inflate Type I error rates.
However, when properly chosen, weights can be taken from the concurrent data set
so as to improve power without compromising significance levels. For example, in
the two-sample Fisher exact test of binomial proportions, the marginal totals con-
tain no information about the significance level; thus, “unusually large” marginal
totals may be used to pre-select particular tests (Louis and Bailey, 1990; West-
fall and Soper, 2001). In the parametric setting, Läuter, Glimm, and Kropf (1996)
noted that linear combination weight vectors may depend on the data through cer-
tain quadratic forms, and the resulting (ordinary) t-tests retain their levels. Thus,
by choosing the weight vectors suitably, the procedures may be used to weight the
procedure in favor of particular hypotheses selected by the data.

In either of the cases mentioned above, determination of “unusually large” tar-
geting functions requires either historical data or an assumption of marginal homo-
geneity. For example, in the binomial case, if there is historical data suggesting that
the rate should be π0i, then Hi might be weighted using a measure of discrepancy
of the marginal total from the a priori expected total (Westfall and Soper, 2001).
On the other hand, if historical information is unavailable but the binomial propor-
tions can be assumed to be reasonably homogeneous across tests, then the targeting
function may be taken as the marginal total itself. This latter approach is essen-
tially taken by Kropf and Läuter (2002; hereafter KL), but in the case of normally
distributed data, where the targeting functions are certain quadratic forms.

In this paper we consider a class of weighted FWE-controlling testing procedures
that utilize the KL quadratic forms. As in Westfall and Krishen (2001, hereafter
WK), we let the weight be indexed by a parameter η, 0 ≤ η ≤ ∞, where η = 0
corresponds to the Holm procedure, η = ∞ corresponds to the fixed sequence
KL procedure, and intermediate values of η refer to new procedures. Strong FWE
control is proven for all members of the class, power comparisons among various
members of the class are considered, and recommendations are offered.

Popular FWE-controlling alternatives to the methods considered here include
non-parametric and semi-parametric resampling methods, including bootstrap and
permutation methods. The Westfall-Young “method” (Westfall and Young, 1993,
actually a collection of methods) involves resampling data under the complete null
hypothesis and computing step-wise p-value adjustments that incorporate distrib-
utional and correlation characteristics. These methods are reviewed and extended
in recent publications with particular emphasis on gene expression data; see Dudoit
et al. (2003), Ge et al. (2003), and Troendle et al. (2003). While it is useful to con-
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sider how different methods work in different situations, the resampling methods are
of somewhat tangential interest as regards the current paper, as we are concerned
primarily with a class of exact parametric tests. Nevertheless, some analyses using
resampling methods are given in this paper for brief comparison. For discussions of
the problem form a nonparametric standpoint, see Kropf et al. (2004).

2. A class of weighted testing procedures

Holm (1979) presented the following weighted testing procedure: Order the weighted
p-values qi = pi/wi as q(1) ≤ · · · ≤ q(k), where q(j) = qij ; i.e., ij denotes the index
of the jth ordered weighted p-value. Define the sets Sj = {ij, . . . , ik}, j = 1, . . . , k.
Letting the hypothesis corresponding to q(j) be denoted Hw

(j), the method rejects
Hw

(j) if q(i) ≤ α/Σh∈Siwh, for all i = 1, . . . , j. When the weights are equal, the
method reduces to the ordinary step-down Holm method.

Consider a sequence of positive weight vectors w(η) = (w1(η), . . . , wk(η)), where
η → ∞, satisfying wi+1(η)/wi(η) → 0, for i = 1, . . . , k − 1. Westfall and Krishen
proved that the critical function of the weighted Holm method converges almost
surely to that of the fixed sequence procedure wherein hypotheses are tested in the
fixed sequence H1, H2, . . . , stopping as soon as an insignificant result is obtained
(see, e.g., Maurer et al. 1995).

Suppose now that there exist absolutely continuous data-dependent positive ran-
dom variables gi = gi(x) where x denotes the data (later we shall define the gi as
KL quadratic forms). For almost all x, we have strict equality of the order statistics,
g(1) > · · · > g(k). Letting wi(η) = gη

i , we have the condition w(i+1)(η)/w(i)(η) → 0,
for i = 1, . . . , k − 1, for almost all x. Thus, applying Theorem 4 of WK, the
weighted step-down Holm method converges almost surely to the fixed-sequence
procedure, with the ordering of the hypotheses determined by the order of the
data-dependent gi.

Thus, we have a class of data-dependent multiple testing procedures, indexed
by η, for which η = 0 implies the ordinary step-down Holm procedure, and for
which η = ∞ gives the KL procedure. Strong FWE control for the KL procedure
is given by KL; while strong FWE control for all members in the class is shown
(for suitable gi) in the following section. It is also worth noting that the FWE and
power functions for the weighted procedures converge to those of the KL procedure;
this is a consequence of the Lebesgue dominated convergence theorem as can be
shown using the method of Theorem 3 of WK.

3. Assumptions and FWE control

3.1. The multivariate single-sample case

Assume that we have a sample of size n from a k-dimensional normal population

xj =




xj1

...
xjk


 ∼ Nk(µ,Σ), j = 1, . . . , n,

µ =




µ1
...

µk


 , Σ =


 σ11 . . . σ1k

...
. . .

...
σk1 . . . σkk




and that we want to test the local null hypotheses Hi : µi = 0 (i = 1, . . . , k). Let
xi =

∑n
j=1 xji/n, s2

i =
∑n

j=1(xji − xi)2/(n− 1); giving the usual one-sample t test
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statistic ti = xi/(si/
√

n) and the two-sided p-values pi = 2(1 − Ft(n−1)(| ti |)).
The hypotheses will be targeted using weights wi(η) = gη

i , where gi =
∑n

j=1 x2
ji

(i = 1, . . . , k).

Theorem 1. Holm’s weighted testing procedure described in Section 2, with data-
dependent weights wi(η), strongly controls the FWE.

Proof. For convenience, let wi = wi(η).
Let M0 be the fixed but unknown “null set” of variables xi, for which µi = 0,

with size k0. Theorem 2 of WK states that the weighted step-down procedure is
simply a closed testing procedure using min pi/wi as a test statistic at each node.
Thus, we can apply the main theorem of Marcus et al. (1976; stated as Theorem 1 of
WK) to prove FWE control, provided that mini:xi∈M0 pi/wi < α/

∑k
i=1 wi occurs

with probability α at most. If M0 is empty (k0 = 0) then no Type I error can occur,
so we consider k0 > 0.

We denote by Y =




y′
1
...

y′
n


 the matrix of k0-dimensional subvectors yj from

the sample vectors xj (j = 1, . . . , n), consisting of those variables only that belong
to M0. Then the row vectors of Y are iid yj ∼ Nk0(0,Σ0) with some positive
semidefinite matrix Σ0, or in matrix notation Y ∼ Nn×k0(0n×k0 , In ⊗Σ0) . Hence,
Y is left-spherically distributed (see Fang and Zhang, 1990, e.g.).

We now consider the distribution of Y and that of the derived test statistics
for fixed W0 = Y′Y. According to the properties of left-spherically-distributed
matrices, this is again a left-spherical matrix distribution. Also all columns (corre-
sponding to the single variables in M0) are left-spherically distributed. According
to Fang and Zhang (1990), Theorem 5.1.1, a test statistic t(X) is distribution-free
on the class of left-spherically distributed matrices of size n × p (here n × 1), if
t(XA) = t(X) for each constant upper triangular p × p-matrix A with positive
diagonal elements. As the t tests ti are invariant to scale changes, their conditional
distributions for fixed W0 are the same as with iid standard normal variables, such
that they exactly maintain the Type I error. For fixed W0 = Y′Y, the weights wi

are also fixed for the variables in M0 because the wi are functions of the diagonal
elements of W0. Therefore, for each variable in M0 we have

P

(
pi

wi
≤ α∑

l:xl∈M0
wl

)
= P

(
pi ≤

αwi∑
l:xl∈M0

wl

)
=

αwi∑
l:xl∈M0

wl

and therefore with non-negative weights for the variables outside M0

P

(
min

i:xi∈M0

pi

wi
≤ α∑k

l=1 wl

)
≤ P

(
min

i:xi∈M0

pi

wi
≤ α∑

l:xl∈M0
wl

)

= P

( ⋃
i:xi∈M0

(
pi

wi
≤ α∑

l:xl∈M0
wl

))
≤

∑
i:xi∈M0

αwi∑
l:xl∈M0

wl
= α.

As this is true for each matrix W0 to be conditioned on, it is true for the uncondi-
tional distribution as well.



Weighted FWE-controlling methods 147

3.2. The multivariate two-sample case

In the case of two independent samples from two k-dimensional normal populations
with equal covariance matrix

xhj =




xhj1

...
xhjk


 ∼ Nk(µh,Σ), h = 1, 2; j = 1, . . . , nh, n = n1 + n2,

we consider the usual two-sample t statistics

ti =
x1i − x2i√∑2

h=1

∑nh

j=1(xhji − xhi)2

√
(n − 2)n1n2

n

and their p-values pi = 2(1 − Ft(n−2)(| ti |)). The weights are defined as wi(η) =
gη

i , where gi =
∑2

h=1

∑nh

j=1(xhji − xi)2 and xi =
∑2

h=1

∑nh

j=1 xhji/n. The formal
procedure is then the same as in the one-sample case.

For the proof that the procedure keeps the familywise error, we appeal once
again to closure arguments and consider the null set M0, of size k0, of variables
xi for which the local hypothesis Hi : µ1i = µ2i = µ̃i is true. The correspond-
ing n × k0-submatrix of the matrix of sample vectors is again denoted as Y ∼
Nn×k0(1nµ̃′, In ⊗ Σ0), where µ̃ = (µ̃1,...,µ̃k0)′. In this two-sample case, the ma-
trix Y = (y1, . . . ,yk0 ) is no longer left-spherically distributed as the expecta-
tion is different from zero. However, we can consider the transformed data ma-
trix Ỹ = E′Y now, where the n × (n − 1)-matrix E is defined by E = (k1,K2)

with the n × 1-vector k1 =
√

n1n2
n

(
+1n1/n1

−1n2/n2

)
, 1m as vector of m 1s, and

K2 as n × (n − 2)-matrix such that (1n/
√

n,k1,K2 ) is an orthogonal matrix.
Because all columns of E are orthogonal to each other and to the vector 1n,
Ỹ ∼ N(n−1)×k0(E

′1nµ̃′,E′InE ⊗ Σ0) = N(n−1)×k0(0, In−1 ⊗ Σ0) under the null
hypothesis of no mean differences between both populations, such that Ỹ is left-
spherically distributed. Then again the conditional distribution of Ỹ and of all its
columns for fixed

Ỹ′Ỹ = Y′EE′Y = Y′
(
In − 1

n
1n1′

n

)
Y

is also left-spherical. Finally, utilizing

2∑
h=1

nk∑
j=1

(
yhji − yhi

)2 =
2∑

h=1

nk∑
j=1

y2
hji − ny2

i −
n1n2

n

(
y1i − y2i

)2

= y′
i

(
In − 1

n
1n1′

n − k1k′
1

)
yi = yiK2K′

2yi

(yhi and yi are the groupwise and total mean of the ith variable, whose values
are collected in the ith column yi of Y), we can reformulate the local test statistics
ti in terms of Ỹ = (ỹji) as

ti =
y1i − y2i√∑2

h=1

∑nk

j=1(yhji − yhi)2

√
(n − 2)n1n2

n
=

k′
1yi√

y′
i
K2K′

2yi

n−2

=
ỹ1i√∑n−1

j=1
ỹ2

ji

n−2

.



148 Peter H. Westfall et al.

As these test statistics each have the t distribution with d.f. n−2 for independent
standard normal variables ỹji (i = 1, . . . , n−1), they have the same distribution with
left-spherically distributed variables (according to the above mentioned theorem).
If we now notice that the weights gi are fixed for fixed Ỹ′Ỹ (they are just the
diagonal elements), then the rest of the proof is quite analogous to the one-sample
case.

4. A simulation study

We consider the following model for multivariate two-sample data. First, the vari-
ances of each of the k = 5000 measurements are assumed to be independently
generated as σ2

i ∼ τ0λ/χ2
λ, i = 1, . . . , k, where χ2

λ denotes a chi-square distrib-
uted random variable with λ degrees of freedom. The parameter τ0 is a nuisance
parameter reflecting overall scale; for convenience it is taken to be unity in the sim-
ulations. The parameter λ is specified in the simulations; small λ corresponds to
large variance heterogeneity across variables, while λ = ∞ corresponds to variance
homogeneity across variables; we take λ = 1 and λ = 200 in the simulations. We as-
sume variance homogeneity across the two samples: σ2

i1 = σ2
i2 = σ2

i , all i = 1, . . . , k.
Next, conditional on σ2

i , the effect sizes Vi = θi/σi are assumed to be drawn
independently from a mixture of N(0, σ2

eff) and single point (0) distributions, where
θi = µ1i−µ2i. The parameter σ2

eff is specified in the simulations; larger σ2
eff denotes

generally larger alternatives. We take σ2
eff = 10 in all simulations. The mixing

parameter is denoted π, with π = P (θi = 0), and is specified as π = 0.8 in all
simulations. Finally, conditional upon the means and variances, the measurement
vector is assumed to come from a k-dimensional multivariate normal distribution
with compound symmetry correlation for some fixed ρ.

FWE control proven in the previous section holds for fixed variances and noncen-
trality parameters; since FWE control holds conditionally, it holds unconditionally
as well.

Power is taken to be the average fraction of true rejected hypotheses per simula-
tion. Specifically, defining S1 = {i |Hi is rejected} and S2 = {i | θi �= 0}, we define
Power = E(|S1 ∩ S2|/|S2|

∣∣ |S2| > 0).
Figure 1 shows the effects of sample size, variance heterogeneity and correlation

on the power of weighted procedures that use wi(η) = gη
i as weights, when k = 5000,

using 1000 simulated data sets to estimate power. FWF = 0.05 for all cases. The
“maxT” (MT) version of the Westfall-Young procedure (Dudoit et al., 2003) using
199 samples from the permutation distribution is included for comparison. Clearly,
the limiting case η = ∞ of KL is attractive for the case of small sample sizes
and variance homogeneity, while the standard Bonferroni-Holm and MT procedures
becomes more attractive for larger sample sizes and/or large variance heterogeneity.

5. Analysis of the gene expression data sets

5.1. Yeast genome expression with and without amino acids

A gene expression data set (courtesy of Jennifer Fostel, Pharmacia Corporation)
consists of six Affymetrix-type arrays using the yeast genome. Three arrays are
grown in a medium lacking amino acids, another three are grown in a medium
containing amino acids, thus n1 = n2 = 3. There are k = 9732 genes evaluated
using six arrays. For convenience, the genes are labeled simply as “1, 2, 3,. . . ”,
where the ordering is determined by the ordering of the combined sample quadratics
gi =

∑2
h=1

∑3
j=1(xhji −xi)2 and xi =

∑2
h=1

∑3
j=1 xhji/6. (The raw data and more

detailed gene labels are available from the first author.)



Weighted FWE-controlling methods 149

Figure 1: Power as a function of η, for ni = 3, λ = 200 (1a), ni = 3, λ = 1 (1b),
ni = 10, λ = 200 (1c), and ni = 10, λ = 1 (1d). Diamonds indicate ρ = 0.0, squares
ρ = 0.6, and triangles ρ = 0.9

Figures 2a and 2b displays the spectrum of results for the weighted proce-
dures, from η = 0 (Holm’s method) to η = ∞ (KL method). In this example, the
Holm and KL extremes are comparable in that both reject about the same num-
ber of hypotheses, although it appears in this example that intermediate values η
may provide greater sensitivity. It is unfortunate that the genes selected are quite
different at the extremes: for Holm and KL, there is only one common selection
(gene 11).

Figure 2b reports all testing results using adjusted p-values; for the weighted
procedures these are defined sequentially as p̃(1) = Σh∈S1whq(1), p̃(2) = max{Σh∈S2

whq(2), p̃(1)}, . . .; for the KL procedure these are defined as p̃(1) = p1, p̃(2) =
max{p2, p̃(1)}, . . ., assuming that the labels 1, 2, . . . correspond to the ordering
g1 > g2 > · · ·. All genes with adjusted p-values less than α are thus rejected
at FWE= α, and the size of the adjusted p-value indicates multiplicity adjusted
strength of evidence. In this example, no dramatic differences in adjusted p-values
are noted.

As suggested by Figure 1, the MT procedure yields a result that is most compa-
rable to the η = 0 results, since the standard MT procedure does not use weights.
In this case with such small samples, direct enumeration of the

(
6
3

)
= 20 permuta-

tion samples is possible. Because the sample sizes are very small, the MT procedure
is not as useful because of the “graininess” of the permutation distribution. The
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Figure 2a: Gene labels rejected at FWE = .10 level for various η, yeast
genome/amino acid study

η = 0.0 η = 0.5 η = 1 η = 2 η = 4 η = 8 η = 16 η = 32 η = ∞

1484 1484 11 11 11 11 1 1 1
377 11 377 7 7 1 3 3 2

3526 377 1484 377 1 3 11 2 3
11 398 398 226 3 7 2 5 4

1553 226 226 8 8 2 7 6 5
2643 1553 97 97 9 8 6 4 6
5127 3526 7 9 2 9 5 7 7
398 640 424 3 19 6 8 11 8

2175 424 640 398 17 5 4 8 9
3661 97 8 1 6 4 9 9 10
226 2643 53 43 43 17 10 10 11

579 131 19 5 10 12 12 12
980 43 53 97 19 17

2175 579 17 10 12
1713 1553 2 53
698 9 131
507 507

Figure 2b: Adjusted p-values corresponding to genes listed in Figure 1a

η = 0.0 η = 0.5 η = 1 η = 2 η = 4 η = 8 η = 16 η = 32 η = ∞

0.0012 0.0008 0.0004 0.0002 0.0002 0.0010 0.0030 0.0030 0.0030
0.0128 0.0014 0.0022 0.0088 0.0068 0.0042 0.0052 0.0044 0.0042
0.0131 0.0023 0.0028 0.0102 0.0097 0.0068 0.0052 0.0059 0.0042
0.0278 0.0069 0.0068 0.0214 0.0111 0.0068 0.0087 0.0696 0.0612
0.0319 0.0122 0.0085 0.0228 0.0111 0.0132 0.0163 0.0696 0.0612
0.0334 0.0224 0.0188 0.0228 0.0152 0.0132 0.0526 0.0696 0.0612
0.0336 0.0268 0.0258 0.0294 0.0234 0.0200 0.0526 0.0696 0.0612
0.0364 0.0345 0.0367 0.0329 0.0467 0.0465 0.0526 0.0696 0.0612
0.0734 0.0352 0.0507 0.0329 0.0540 0.0465 0.0627 0.0696 0.0612
0.0806 0.0381 0.0660 0.0342 0.0716 0.0815 0.0627 0.0696 0.0612
0.0921 0.0449 0.0692 0.0453 0.0762 0.0815 0.0627 0.0696 0.0612

0.0547 0.0706 0.0473 0.0787 0.0815 0.0627 0.0696 0.0612
0.0642 0.0716 0.0493 0.0787 0.0815 0.0627
0.0777 0.0725 0.0693 0.0892 0.0815
0.0799 0.0812 0.0752 0.0892
0.0800 0.0822 0.0834
0.0820 0.0970

Figure 2: Analysis of yeast data
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smallest observed MT adjusted p-value for these data is 0.10, occurring for only 9
of the top 11 genes flagged as significant by B-H (corresponding to η = 0), and no
MT significances were found at the FWE=0.05 level as compared to 8 flagged.by
B-H (Figure 2b).

5.2. Comparing expression levels of different leukemia types

Data analyzed by Golub et al. (1999) (http://www-genome.wi.mit.edu/cancer/)
relate gene expression from 7129 genes to disease status (the article by Golub et
al. actually screens out several of the 7129, leaving 6817 for their analysis). There
are n1 = 11 patients with acute myeloid leukemia (AML) and n2 = 27 with acute
lymphoblastic leukemia (ALL).

Figures 3a and 3b displays the results for these data. Unfortunately, in this
data set, the largest gi happened to correspond to an insignificant (p = 0.5835,
unadjusted) gene, so the case η = ∞ produced no significant result. However, there
is large variance heterogeneity in the data, which can be somewhat alleviated using
the cube root transformation as suggested by Tusher et al. (2001), applying this
method yields two significances for η = ∞ at the α = 0.10 level. Cube root or not,
in this example there are dramatic differences favoring small η, likely because of
the larger sample sizes, as suggested by Figure 1. The analyses of Figure 3 use the
untransformed data.

We find an additional 10 significant genes at the 0.10 level and an additional
3 significant genes at the 0.05 level using MT and 1,000,000 samples from the
permutation distribution. One suspects that additional genes are flagged here be-
cause the method utilizes correlation information (see Westfall and Young, 1993,
for more details); however, since the method is non-parametric, using the permu-
tation distribution instead of the normal distribution, it is possible that additional
genes are flagged because of non-normal characteristics of the data. Indeed, it some-
times happens that the MT method flags fewer genes than Bonferroni-Holm, de-
spite accounting for correlation structures (as shown in the previous example), be-
cause of the graininess of the permutation distribution, and because it accounts
for non-normalities exactly, while the parametric B-H method is only approxi-
mate.

6. Discussion

We have shown that FWE-controlling multiple testing methods are possible with
such high-dimensional data as occurs with gene expression data. Further, we have
shown that by using the random weights gi, not only can we “pre-specify” and
weight tests so as to maintain FWE control, but we can increase the power of the
tests, especially in the case of small sample sizes and variance homogeneity across
variables.

Our simulations show that there are cases where intermediate η provide more
power than the extremes at 0 and ∞. Clearly, larger values of η are preferred for
small studies with reasonably homogenous variance. Experience with similar data
and appropriate transformations may suggest whether to use a small (perhaps 0)
or large (perhaps ∞) value of η. Further research may be needed to specify a
more specific η a priori, or to estimate such an η adaptively from the data, while
maintaining FWE control.
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Figure 3a: Gene labels rejected at FWE = .10 level for various η, leukemia study

η = 0.0 η = 0.5 η = 1 η = 2 η = 4 η = 8 η = 16 η = 32 η = ∞

3320 3320 4847 4847 6201 6201
4847 4847 3320 6201 1674
2020 2020 2020 3320 1882
1745 1745 6201 4196 2186
5039 4196 4196 1882 4196
1834 5039 1745 1674 4847
461 6201 1882 2186 2402
4196 2288 2288 6200 6200
3847 1834 5039 2288 6803
2288 1882 3258 2402 1394
1249 3258 1674 2020 6806
6201 1249 6200 3258 6797
2242 6200 1249 6803
3258 3847 2186 6806
1882 2121 2402 1394
2111 1674 2121 2121

(30 more) (40 more) (33 more) (14 more)

Figure 3b: Adjusted p-values corresponding to qenes listed in Figure 3a

η = 0.0 η = 0.5 η = 1 η = 2 η = 4 η = 8 η = 16 η = 32 η = ∞

0.0000 0.0000 0.0000 0.0000 0.0001 0.0262
0.0000 0.0000 0.0000 0.0000 0.0008
0.0000 0.0000 0.0000 0.0000 0.0013
0.0001 0.0000 0.0000 0.0001 0.0029
0.0001 0.0001 0.0000 0.0001 0.0033
0.0001 0.0001 0.0001 0.0001 0.0083
0.0003 0.0001 0.0001 0.0003 0.0100
0.0004 0.0001 0.0001 0.0003 0.0109
0.0005 0.0001 0.0002 0.0004 0.0333
0.0006 0.0002 0.0002 0.0004 0.0393
0.0012 0.0002 0.0002 0.0006 0.0594
0.0012 0.0003 0.0002 0.0007 0.0750
0.0014 0.0005 0.0003 0.0008
0.0015 0.0005 0.0003 0.0014
0.0023 0.0007 0.0004 0.0016
0.0026 0.0007 0.0004 0.0016

(30 more) (40 more) (33 more) (14 more)

Figure 3: Analysis of leukemia data
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