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Multiple comparisons with more

than one control

John D. Spurrier1 and Eleanne Solorzano2

University of South Carolina and University of New Hampshire

Abstract: This article provides a survey of recent work on comparing more
than one experimental treatment to more than one control based on differences
in the location parameters. The primary focus is on simultaneous confidence
intervals for the amount of improvement that the experimental treatments offer
relative to each control. Some discussion of single-step and step-down tests is
also included. Both the parametric and nonparametric cases are considered.
Data from a medical example are used to illustrate the techniques.

1. Introduction

Dunnett (1955) proposed the problem of comparing the means of kt experimental
treatments to the mean of a control or standard treatment in the one-way lay-
out under the assumption of i.i.d. normal errors. Numerous papers on comparing
experimental treatments to one control followed Dunnett’s seminal paper.

In many settings, one wishes to compare the kt experimental treatments to
kc > 1 controls or standard treatments. Hoover (1991) discusses the example of
comparing experimental pain relievers to kc = 2 standard treatments, aspirin and
acetaminophen. Blake and Boockfor (1997) studied the effects of four compounds
injected into rats via a corn oil vehicle. They used kc = 2 controls, an active control
in which rats received an injection of only corn oil and a passive control in which rats
received no injection. Shaffer (1977) discusses comparing each mean in one group of
treatments to each mean in another group of treatments. The second group could
be a set of controls or standard treatments but does not have to be. Finally, Hilden
(2000) suggested comparing an experimental treatment to a highly effective, but
not practical, “ideal” treatment and to a control. His interest is in what fraction of
the improvement offered by the “ideal” treatment relative to the control is obtained
by the experimental treatment.

This article provides a survey of the literature on comparisons with more than
one control. Although the focus will primarily be on 100(1–α)% simultaneous confi-
dence bounds, both single-step and step-down testing procedures will be discussed.
We will index the kt experimental treatments by i = 1, . . . , kt and the kc controls
or standard treatments by j = 1, . . . , kc. Section 2 considers procedures for the
one-way layout under the assumption of i.i.d. normal errors. Section 3 deals with a
nonparametric analysis of the one-way layout under the assumption of i.i.d. contin-
uous errors. Section 4 discusses a class of incomplete block designs for comparing
more than one experimental treatment with more than one control. In Section 5,
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Hilden’s (2000) fractional improvement problem is discussed. An example analyzing
some of Blake and Boockfor’s (1997) data is given in Section 6.

2. One-way layout, normal errors

Consider a one-way layout with i.i.d. N(0, σ2) errors having nt observations from
each experimental treatment and nc observations from each control (or standard
treatment). Denote the expected response and the sample mean of experimental
treatment i by ξi and X i, i = 1, . . . , kt. Denote the expected response and the
sample mean of control j by ηj and Y j , j = 1, . . . , kc. Let S2 denote the pooled
estimator of σ2. This estimator has ν = kt(nt − 1) + kc(nc − 1) degrees of freedom.

2.1. Simultaneous intervals

Shaffer (1977) constructs 100(1 − α)% simultaneous two-sided confidence bounds
for all ξi − ηj by using the pivotal variables

Tij =
(X i − Y j) − (ξi − ηj)

S(1/nt + 1/nc)1/2
, i = 1, . . . , kt; j = 1, . . . , kc. (1)

The simultaneous bounds

ξi − ηj ∈ (Xi − Y j) ± a2S(1/nt + 1/nc)1/2, i = 1, . . . , kt; j = 1, . . . , kc (2)

follow from inverting the probability statement

P (|Tij | ≤ a2, i = 1, . . . , kt; j = 1, . . . , kc) = 1 − α. (3)

Hoover (1991) uses analogous methods to get the one-sided simultaneous lower
bounds

ξi − ηj ≥ (X i − Y j) − a1S(1/nt + 1/nc)1/2, i = 1, . . . , kt; j = 1, . . . , kc (4)

by inverting the probability statement

P (Tij ≤ a1, i = 1, . . . , kt; j = 1, . . . , kc) = 1 − α. (5)

We must evaluate a1 and a2 to use these methods.
Following Hoover (1991), we can write

Tij =

(
nc

nc+nt

)1/2
Zti −

(
nt

nc+nt

)1/2
Zcj

S/σ
, (6)

where Zti = Xi−ξi

σ/(nt)1/2 and Zcj = Y j−ηj

σ/(nc)1/2 for i = 1, . . . , kt; j = 1, . . . , kc. Let Zc(1)

and Zc(kc) denote the smallest and largest order statistics of the Zcj ’s, respectively.
Now, equation (5) is equivalent to

P

[(
nc

nc + nt

)1/2

Zti ≤
(

nt

nc + nt

)1/2

Zc(1) +
a1S

σ
, i = 1, . . . , kt

]

=
∫ ∞

0

∫ ∞

−∞

{
Φ

[(
nt

nc

)1/2

z +
(

nc + nt

nc

)1/2

a1u

]}kt

f(z)g(u) dz du = 1 − α, (7)
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where f(z) and g(u) are the density functions of Zc(1) and S/σ, respectively. This
double integral can be evaluated numerically, and a root finding technique can be
used to solve equation (7) for a1. Equation (3) is equivalent to

P

[(
nt

nc + nt

)1/2

Zc(kc) −
a2S

σ
≤

(
nc

nc + nt

)1/2

Zti ≤
(

nt

nc + nt

)1/2

Zc(1)

+
a2S

σ
, i = 1, . . . , kt

]
(8)

which can be rewritten involving a triple integral by conditioning on the values of
Zc(1), Zc(kc), and S/σ. Again, numerical methods can be used to solve equation (3)
for a2. Hoover (1991) and Solorzano and Spurrier (1999) provide tables of the
probability points.

Hoover (1991) shows one minimizes the standard errors of the treatment versus
control contrast estimators for a fixed total sample size by taking

nc ≈ (kt/kc)1/2nt. (9)

Thus, one should only use equal sample sizes only if kc = kt.

2.2. Simultaneous hypothesis tests

Let us now turn our attention to simultaneously testing the null hypotheses
H0: ξi = ηj for i = 1, . . . , kt; j = 1, . . . , kc versus (10)
Ha: ξi �= ηj for at least one (i, j)

with an experimentwise type I error rate of α. The simultaneous tests are based on
the statistics

T ∗
ij =

(X i − Y j)
S(1/nt + 1/nc)1/2

, i = 1, . . . , kt; j = 1, . . . , kc. (11)

The single step testing procedure declares ξi �= ηj if |T ∗
ij | ≥ a2.

For the step-down testing procedure, one orders the T ∗
ij statistics from largest

to smallest with respect to absolute value. Let |T ∗
q | denote the qth largest |T ∗

ij |,
q = 1, . . . , ktkc. Let A1 = {(i, j), i = 1, . . . , kt; j = 1, . . . , kc}. Let a21 = a2.

In the first step of the step-down procedure, we stop if |T ∗
1 | < a21. Otherwise,

we declare ξi �= ηj for the (i, j) pair corresponding to the statistic |T ∗
1 | and continue

to step 2.
In the qth step for q = 2, . . . , ktkc, we let Aq be the set of (i, j) pairs in Aq−1

minus the (i, j) pair corresponding to the statistic |T ∗
q−1|. Let a2q be the probability

point such that
P

[∣∣T ∗
ij

∣∣ ≤ a2q for all (i, j) ∈ Aq | H0

]
= 1 − α. (12)

We stop if |T ∗
q | < a2q. Otherwise, we declare ξi �= ηj for the (i, j) pair corresponding

to the statistic |T ∗
q |, and continue to step q + 1.

The value of a2q, which depends on which (i, j) pairs are in Aq, is the solution
of
1 − α = P

[∣∣T ∗
ij

∣∣ ≤ a2q for all (i, j) ∈ Aq | H0

]
= P

[
−a2q ≤ (1/2)1/2(Zti − Zcj)

S/σ
≤ a2q for all (i, j) ∈ Aq | H0

]

= P
[
Zcj − 21/2a2qS/σ ≤ Zti ≤ Zcj + 21/2a2qS/σ for all (i, j)∈Aq | H0

]
(13)

Note that a2q is decreasing in q.
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For the case of kc = 2, let b1q denote the number of i’s such that (i, 1) and (i, 2)
are both in Aq. Let b2q denote the number of i’s such that (i, 1) is in Aq but (i, 2)
is not. Let b3q denote the number of i’s such that (i, 2) is in Aq but (i, 1) is not. If
b2q = b3q = 0, the value of a2q can be found in Hoover’s (1991) Table 2. Otherwise,
one may need to find the value.

Conditioning on Zc1 = z1, Zc2 = z2, and S/σ = u, equation (13) becomes

1 − α =
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
I
[
max(z1, z2) − 21/2a2qu < min(z1, z2) + 21/2a2qu

]

×
{
Φ

[
min(z1, z2) + 21/2a2qu

]
− Φ

[
max(z1, z2) − 21/2a2qu

]}b1q

×
{
Φ

[
z1 + 21/2a2qu

]
− Φ

[
z1 − 21/2a2qu

]}b2q

×
{
Φ

[
z2 + 21/2a2qu

]
− Φ

[
z2 − 21/2a2qu

]}b3q
φ(z1)φ(z2)g(u) dz1 dz2 du

(14)

provided that b1q > 0. If b1q = 0, the first two factors are removed from the inte-
grand. The integral in (14) can be evaluated numerically and an iterative method
can be used to solve for a2q.

The step-down testing procedures for one-sided alternatives are analogous.

3. One-way layout, nonparametric

Solorzano and Spurrier (2001a) investigate nonparametric comparisons with more
than one control under the setting of a one-way layout with i.i.d. continuous random
errors. In this setting, ξi and ηj are medians rather than means and two-sample
rank statistics are used in placed of the pivotals in (1). Under this model, subtract-
ing ξi from each treatment i observation and subtracting ηj from each control j
observation produces i.i.d. random variables.

Let Uij be the Mann–Whitney (1947) statistic for comparing experimental treat-
ment i to control j. That is, Uij is the number of times that an observation from
experimental treatment i is less than an observation from control j. Small values of
Uij suggest that ξi > ηj . To form simultaneous confidence intervals for all ξi − ηj ,
we must consider the joint behavior of the Uij ’s under the null hypothesis in (10).

We will consider two types of rankings of observations. A separate ranking will
refer to the ranking of the nt + nc observations from experimental treatment i
and control j. If ξi = ηj , then all separate rankings are equally likely. We can
represent a separate ranking by the nc-tuple with mth element equal to the number
of experimental treatment i observations smaller than mth order statistic from
control j. The nc-tuple is known as a partition. For example, the separate ranking
C T C C T C T T yields the partition (0, 1, 1, 2). There is a 1-1 correspondence
between partitions and separate rankings. The statistic Uij equals the sum of the
elements of the partition for experimental treatment i and control j.

A joint ranking will refer to the ranking of observations from all experimental
treatments and controls under consideration at a given time. There are (nt+2nc)!

nc!nc!nt!
joint rankings of the observations from one experimental treatment and two con-
trols. All joint rankings are equally likely under H0.

To form one-sided confidence bounds for all ξi − ηj , we must find the largest
integer a such that

P (minUij ≤ a | H0) ≤ α. (15)
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Let Aij be the event {Uij ≤ a}. We can write the event {minUij ≤ a} in terms of
unions and intersections of the Aij ’s. For kt = kc = 2,

P (min Uij ≤ a | H0)
= P (A11) + P (A12) + P (A21) + P (A22) − P (A11 ∩ A12) − P (A11 ∩ A21)

− P (A11 ∩ A22) − P (A12 ∩ A21) − P (A12 ∩ A22) − P (A21 ∩ A22)
+ P (A11 ∩ A12 ∩ A21) + P (A11 ∩ A12 ∩ A22) + P (A11 ∩ A21 ∩ A22)
+ P (A12 ∩ A21 ∩ A22) − P (A11 ∩ A12 ∩ A21 ∩ A22).

Using equal in distribution arguments, we get

P (minUij ≤ a | H0)

= 4P (A11) − 2P (A11 ∩ A12) − 2P (A11 ∩ A21) − 2
[
P (A11)

]2

+ 4P (A11 ∩ A12 ∩ A21) − P (A11 ∩ A12 ∩ A21 ∩ A22). (16)

Let Λ be the set of partitions whose elements sum to ≤ a. Under H0,

P (A11) =
number of elements in Λ(

nt+nc

nc

) , (17)

and

P (A11 ∩ A12) =
number of joint rankings with U11 ≤ a and U12 ≤ a

(nt+2nc)!
nc!nc!nt!

. (18)

To calculate the number of joint rankings in equation (18), one can sum the number
of joint rankings consistent with each element of Λ×Λ. Similar methods are used for
computing the other terms in equation (16). Solorzano and Spurrier (2001a) give
algorithms for computing the number of such joint rankings. They also provide
tables of probability points, some probability inequalities, and asymptotic results
for the broader class of Chernoff-Savage (1958) linear rank statistics.

For two-sided confidence bounds, we must find the largest integer a such that

P
(
min Uij ≤ a or maxUij ≥ ntnc − a | H0

)
≤ α. (19)

The computational techniques are similar to those used in the one-sided case.
One forms simultaneous distribution-free confidence bounds for ξi−ηj by invert-

ing the two-sample Mann–Whitney test. The probability point from inequality (15)
or (19) is used in place of the two-sample probability point. The optimal design
for comparing kt experimental treatments with kc controls is identical to that in
Section 2.

The single-step and step-down simultaneous testing procedures are analogous
to those in Section 2 with Uij replacing T ∗

ij .

4. Incomplete blocks

Solorzano and Spurrier (2001b) investigate the comparison of kt experimental treat-
ments with kc controls with incomplete block designs with b blocks of size p <
kt + kc.
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In this setting, it is natural to seek balance among the experimental treatments
and balance among the controls. Thus, one desires an incomplete block design with

Var
(
ξ̂i − η̂j

)
equal for all i and j,

Cov
(
ξ̂i − η̂j , ξ̂i′ − η̂j

)
equal for all ti �= i′ and j,

(20)
Cov

(
ξ̂i − η̂j , ξ̂i − η̂j′

)
equal for all i and j �= j′,

Cov
(
ξ̂i − η̂j , ξ̂i′ − η̂j′

)
equal for all i �= i′ and j �= j′.

A class of incomplete block designs satisfying condition (20) has been studied
by Majumdar (1986) and by Jaggi, Gupta, and Parsad (1996). This class is known
as balanced bipartite block (BBPB) designs. If kc = 1, the class becomes Bechhofer
and Tamhane’s (1981) class of balanced treatment incomplete block designs. Let
ntih denote the number of times experimental treatment i appears in block h, and
ncjh denote the number of times control j appears in block h. A design is BBPB if
there exists integers λ1, λ2, and λ3 such that

b∑
h=1

ntihnti′h = λ1 for all i �= i′,

b∑
h=1

ncjhncj′h = λ2 for all j �= j′, (21)

b∑
h=1

ntihncjh = λ3 > 0 for all i �= j.

An example of a BBPB design with kt = 3 experimental treatments (treatments 1,
2, and 3) and kc = 2 controls (treatments 4 and 5) using b = 9 blocks of size p = 3
is given in Table 1. This design has λ1 = 3, λ2 = 4, and λ3 = 2. Solorzano (1999)
shows that BBPB designs are the only designs satisfying conditions (20).

Solorzano and Spurrier (2001b) give some A-optimality results for BBPB de-
signs. For example, when comparing two experimental treatments to two controls
using a large number of blocks of size 2, approximately 82.8% of the blocks should
contain one treatment and one control, 8.6% of the blocks should contain both ex-
perimental treatments, and 8.6% of the blocks should contain both controls. When

Table 1: An example BBPB design with 3 experimental treatments (1, 2, and 3)
and 2 controls (4 and 5) in 9 blocks of size 3

Block Treatments

1 1 2 3
2 4 4 5
3 4 5 5
4 1 2 4
5 1 3 4
6 1 2 5
7 1 3 5
8 2 3 4
9 2 3 5
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comparing two experimental treatments to two controls with blocks of size 3, the
A-optimal BBPB design is a balanced incomplete block design if b is divisible by 4.

Solorzano and Spurrier (2001b) also give algorithms for simultaneous confidence
bounds for all ξi − ηj under i.i.d. normal errors. The probability points for these
bounds differ from those in the one-way layout.

5. Fractional improvement

Hilden (2000) suggested a variation of the comparison with control problem in
which one wishes to compare an experimental treatment having mean ξ with kc = 2
other treatments, a control having mean η1 and a highly effective “ideal” treatment
having mean η2. It is assumed that the “ideal” treatment is not practical due to
high costs or other constraints. For this problem, one could reverse the roles of the
experimental treatment and the controls and get simultaneous confidence intervals
for ξ − η1 and ξ − η2 using Dunnett’s (1955, 1964) results. Hilden (2000) was
interested in the fraction of the improvement of the “ideal” treatment to the control
that is achieved by the experimental treatment. Denote this fractional improvement
by

γ =
ξ − η1

η2 − η1
(22)

It is assumed that η2 �= η1.
Zerbe (1978) presented a confidence region for the ratio of two linear combina-

tions of general linear model parameters. His results make use of Fieller’s (1944)
theorem. The fractional improvement parameter is an important special case of
Zerbe’s ratio.

The 100(1 − α)% confidence region for γ is found by inverting the size α hy-
pothesis test of

H0: γ = γ0 ↔ (ξ − η1) − γ0(η2 − η1) = 0 versus
(23)

Ha: γ �= γ0 ↔ (ξ − η1) − γ0(η2 − η1) �= 0,

where γ0 is an arbitrary constant. These hypotheses can be tested using the t-test
for testing that a linear combination of general linear model parameters equals zero.
Alternatively, one might be interested in testing that γ equals a specific constant.

6. A normal theory example with two-sided inference

Blake and Boockfor (1997) studied the effects of kt = 4 compounds injected into
rats via a corn oil vehicle. They used kc = 2 controls, an active control in which rats
received an injection of only corn oil and a passive control in which rats received
no injection. They used a one-way layout with nt = nc = 6 rats. Part of their data
involves the weights of the rats’ pituitary glands one month after treatment. This
data are summarized in Table 2.

For illustration purposes, we will assume i.i.d. normal errors and make two-sided
inferences with α = 0.05. We have ν = 4(6− 1)+ 2(6− 1) = 30 degrees of freedom.
From Hoover’s (1991) Table 2, we have a2 = 2.848. The two-sided simultaneous
95% confidence intervals are

ξi − ηj ∈ (X i − Y j) ± 2.848
[
1.0626(1/6 + 1/6)

]1/2 (24)

which simplifies to (Xi − Y j)± 1.69. The 95% simultaneous confidence bounds are
given in Table 3. The ± terms for the Bonferroni and Tukey (1953) methods are
±1.75 and ±1.81, respectively.
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Table 2: Descriptive statistics for Blake and Boockfor’s (1997) weights (mg) of
pituitary glands for 4 experimental treatments and two controls

Treatment Mean weight Mean square error

Compound 1 (i = 1) 6.96 1.0626
Compound 2 (i = 2) 7.83
Compound 3 (i = 3) 9.02
Compound 4 (i = 4) 14.12
Passive control (j = 1) 7.19
Active control (j = 2) 6.70

Table 3: 95% simultaneous two-sided confidence intervals for difference in Blake
and Boockfor’s (1997) mean weight (mg) of pituitary glands, compound – control

Contrast Confidence interval

Compound 1 – Passive Control (−1.92, 1.46)
Compound 2 – Passive Control (−1.05, 2.33)
Compound 3 – Passive Control (0.14, 3.52)
Compound 4 – Passive Control (5.24, 8.62)

Compound 1 – Active Control (−1.43, 1.95)
Compound 2 – Active Control (−0.56, 2.82)
Compound 3 – Active Control (0.63, 4.01)
Compound 4 – Active Control (5.73, 9.11)

The single-step and step-down simultaneous tests are based on the T ∗
ij and |T ∗

q |
statistics, respectively. The value of these statistics are given in Table 4. The single-
step test declares ξi �= ηj if |T ∗

ij | ≥ a2 = 2.848. From Table 4, we see that the means
for compounds 3 and 4 are significantly different from the means for both controls.
This can also be seen from Table 3, where the corresponding confidence intervals
do not contain zero.

To do the more powerful step-down test with this data, we begin by comparing
|T ∗

1 | = 12.468 to a21 = a2 = 2.848. As 12.468 ≥ 2.848, we conclude that the mean
for compound 4 (i = 4) differs from the mean for the active control (j = 2) and
move to step 2.

For step 2, the set

A2 =
{
(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2), (4, 1)

}
. (25)

As |T ∗
2 | = 11.645 ≥ a21 which is larger than a22, we can conclude that the mean

for compound 4 (i = 4) is different from the mean for the passive control (j = 1)
and move to step 3 without computing a22.

If necessary, we could find the value of a22 by solving the equation

1 − α =
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
I
[
max(z1, z2) − 21/2a22u < min(z1, z2) + 21/2a22u

]

×
{
Φ

[
min(z1, z2) + 21/2a22u

]
− Φ

[
max(z1, z2) − 21/2a22u

]}3

×
{
Φ

[
z1 + 21/2a22u

]
− Φ

[
z1 − 21/2a22u

]}
φ(z1)φ(z2)g(u) dz1 dz2 du,

(26)
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Table 4: Values of T ∗
ij and |T ∗

q | statistics for Blake and Boockfor’s (1997) pituitary
gland data

Contrast i j T ∗
ij q |T ∗

q |
Compound 1 – Passive Control 1 1 −0.386 8 0.386
Compound 2 – Passive Control 2 1 1.075 6 1.075
Compound 3 – Passive Control 3 1 3.075 4 3.075
Compound 4 – Passive Control 4 1 11.645 2 11.645

Compound 1 – Active Control 1 2 0.437 7 0.437
Compound 2 – Active Control 2 2 1.899 5 1.899
Compound 3 – Active Control 3 2 3.899 3 3.899
Compound 4 – Active Control 4 2 12.468 1 12.468

where I is the indicator function, g(u) is the density of S/σ, and φ and Φ are the
density and c.d.f. of the standard normal distribution. Using numerical integration
and the secant method, we find a22 = 2.800.

For step 3, the set

A3 =
{
(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2)

}
. (27)

This is the complete set of (i, j) pairs for comparing 3 experimental treatments and
2 controls. With ν = 30, we find a23 = 2.745 from Hoover’s (1991) Table 2. As
|T ∗

3 | = 3.899 ≥ 2.745, we declare the mean for compound 3 (i = 3) to be different
from the mean for the active control (j = 2) and move to step 4.

For step 4, the set

A4 =
{
(1, 1), (1, 2), (2, 1), (2, 2), (3, 1)

}
. (28)

As |T ∗
4 | = 3.075 > a23 which is greater than a24, we declare the mean for com-

pound 3 (i = 3) to be different from the mean for the passive control (j = 1) and
move to step 5. If necessary, we could have found the value of a24, by solving

1 − α =
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
I
[
max(z1, z2) − 21/2a24u < min(z1, z2) + 21/2a24u

]

×
{
Φ

[
min(z1, z2) + 21/2a24u

]
− Φ

[
max(z1, z2) − 21/2a24u

]}2

×
{
Φ

[
z1 + 21/2a24u

]
− Φ

[
z1 − 21/2a24u

]}
φ(z1)φ(z2)g(u) dz1 dz2 du,

(29)

The solution is a24 = 2.679.
For step 5, the set

A5 =
{
(1, 1), (1, 2), (2, 1), (2, 2)

}
. (30)

This is the complete set of (i, j) pairs for comparing 2 experimental treatments and
2 controls. With ν = 30, we find a25 = 2.594 from Hoover’s (1991) Table 2. As
|T ∗

5 | = 1.899 < 2.594, we stop the test and declare no more differences.
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