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Power and sample size comparisons of

stepwise FWE and FDR controlling test

procedures in the normal many-one case
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Abstract: Our paper compares the any-pair power, all-pairs power and per-
pair power of several test procedures that control either the familywise error
rate (FWE) or the false discovery rate (FDR). Our investigations are restricted
to one-sided many-one comparisons of normal distributions. Some of the inves-
tigated procedures make use of this known special structure and some do not.
The numbers k of hypotheses we considered were 5, 10 and 100. The state-
ments with small and large k were quite similar. We found that all methods
except one do not essentially differ in their any-pair powers. The most remark-
able differences between the test procedures can be observed concerning their
all-pairs powers.

We also compared the sample sizes that are necessary for the different
procedures to ensure a specified power and investigated their dependency on
the number k of hypotheses. With specified per-pair or any-pair power, the
FWE controlling methods need similar sample sizes as the FDR controlling
methods. With specified all-pairs power, the sample sizes for four of the six
FDR controlling procedures studied increase with k at noticeably lower rates
than for the FWE controlling procedures.

1. Introduction

Most tests for multiple comparisons are traditionally designed to control the type I
familywise error rate (FWE) at level α, i.e., they guarantee that FWE ≤ α. FWE
is the probability P(V ≥ 1), where V denotes the number of true hypotheses er-
roneously rejected. As an alternative to FWE control, Benjamini and Hochberg
(1995) introduced the false discovery rate (FDR). FDR is the expectation E(V/R),
where R denotes the total number of hypotheses rejected. If R is 0, V/R is defined
to be 0.

As E(V/R) ≤ P(V ≥ 1), FDR control is less stringent than FWE control and
hence promises higher powers.

The simplest FWE controlling method is the Bonferroni method. The step-down
(SD) procedure of Holm (1979) is a stepwise version of the Bonferroni method
which also controls the FWE and which is more powerful. Simes (1986) proposed a
modified Bonferroni procedure for the test of the overall hypothesis which was used
by Hochberg (1988) to derive a step-up (SU) procedure. With these methods, the
p-values of the test statistics for testing the hypotheses are compared with critical
bounds which are fractions of α.
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Several FDR controlling procedures use the p-values in a similar way. The
method of Benjamini and Hochberg (1995) is a SU procedure which is also based
on the method of Simes (1986). Sarkar (2002) proposed to use the critical p-value
bounds of Benjamini and Hochberg (1995) in a SD procedure. Other SD procedures
are those of Benjamini and Liu (1999) and Benjamini and Liu (2001). A modification
of the method of Benjamini and Hochberg (1995) is the SU procedure of Benjamini
and Yekutieli (2001). Another modification is the SU procedure of Kwong, Holland
and Cheung (2002).

Note that the method of Simes (1986) and with it the SU procedure of Hochberg
(1988) originally were derived for independent test statistics. Sarkar (1998) showed
that Simes’ inequality also holds under so-called positive dependency. Hence,
Hochberg’s method which is based on Simes’ method controls the FWE under pos-
itive dependency, which is given, for example, in one-sided many-one comparisons
of normal variables with known variance which is the case we will consider. Also,
the FDR controlling methods of Benjamini and Hochberg (1995), Benjamini and
Liu (1999), and Sarkar (2002) were originally based on independent test statistics
(in contrast to the procedures of Benjamini and Yekutieli (2001) and Benjamini
and Liu (2001)). They also are valid under positive dependency, see Sarkar (2002).
The same applies to the method of Kwong, Holland and Cheung (2002).

The aim of this paper is to compare the powers and required sample sizes for
FWE and FDR controlling methods. We will restrict our considerations to many-
one comparisons in the normal case, so that we can include in our study the FWE
controlling SD procedure of Dunnett and Tamhane (1991), the FWE controlling SU
procedure of Dunnett and Tamhane (1992), and the FDR controlling SD procedure
of Troendle (2000). All of these last mentioned methods assume known fixed positive
dependency among the normally distributed test statistics, a condition we shall
refer to as ‘known positive normality’ for brevity. Naturally, the procedures which
make use of the known positive normality of the many-one problem have better
performance. In Table 1, we list all methods considered in this paper together with
their characteristics and their abbreviations used in the remainder of this paper.

Table 1: Test procedures and their characteristics
Reference Abbreviation SD/SU Control of Restriction

Holm (1979) Holm SD none
Hochberg (1988) Hoch SU FWE positive dependency
Dunnett, Tamhane (1991) DT91 SD known positive

normality
Dunnett, Tamhane (1992) DT92 SU known positive

normality

Benjamini, Hochberg (1995) BH95 SU positive dependency
Sarkar (2002) Sark SD positive dependency
Benjamini, Liu (1999) BL99 SD positive dependency
Benjamini, Liu (2001) BL01 SD FDR none
Benjamini, Yekutieli (2001) BY01 SU none
Kwong, Holland, KH02 SU known positive
Cheung (2002) normality
Troendle (2000) Troe SD known positive

normality
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2. Critical values

Assume X0, X1, . . . , Xk are normally distributed random variables with expecta-
tions µ0, µ1, . . . , µk and common variance σ2. X0 represents a control against which
k treatments are to be compared. We only consider one-sided comparisons. Then the
null and alternative hypotheses are Hi : µi ≤ µ0, HAi : µi > µ0 (i = 1, . . . , k). We
restrict our investigations to the case of equal sample sizes n0 = n1 = · · · = nk = n.
Then the test statistics have the form ti =

√
2/n(x̄i − x̄0)/s , where x̄i and x̄0

are the sample means of the observations of treatment i and of the control group,
respectively, and s2 the estimate of σ2 with ν = (k + 1)(n− 1) degrees of freedom.

The most popular FWE controlling stepwise procedure for testing the hypothe-
ses Hi is the SD procedure DT91 which utilizes the multivariate t-distribution.
The FDR controlling procedure Troe is also SD and utilizes the multivariate t-
distribution of the test statistics. Troe can be considered as the FDR controlling
analogue of DT91. Troendle (2000) provided some critical constants ci (i = 1, . . . , k)
and an explanation how to calculate them. He also proposed a SU procedure, how-
ever we will investigate only his SD procedure.

The Bonferroni method and the Bonferroni like methods mentioned in Section
1 do not utilize the multivariate t-distribution of the test statistics. They compare
the ordered p-values p(1) ≤ · · · ≤ p(k), which are obtained from t-tests for the
hypotheses Hi, with critical bounds γ1, . . . , γk which are fractions of α, see Table 2.
For example, the SD procedure Holm compares p(1) with γ1 = α/k in the first step,
p(2) with γ2 = α/(k−1) in the second step, . . . , p(j) with γj = α/(k− j +1) in the
j-th step. The SU procedure Hoch compares the p-values with the same γ-values in
the reverse order, starting with p(k). Similarly, both the SU procedure BH95 and
the SD procedure Sark compare p(j) with the same bound αj/k.

Note that a step-up procedure has a power which equals or exceeds the power
of a step-down procedure which uses the same critical bounds. Hence, Hochberg’s
method is more powerful than Holm’s method and Benjamini and Hochberg’s
method is more powerful than Sarkar’s method. Furthermore, it can be seen from
Table 2 that the critical bounds γi of BH95 are greater than those of BY01 by the
factor 1 + 1/2 + · · ·+ 1/k. Thus, BH95 has a higher power than BY01. This could
also be expected from the fact that BY01 is a modification of BH95 which does not
require independence or positive dependency.

The SU procedure of KH02 is an improvement of BH95. It uses γ1, . . . , γk−1 of
BH95 and γk = r∗α (r∗ ≥ 1). Tables of r∗ are given in Kwong, Holland and Cheung
(2002).

Table 2: Critical bounds γj for the ordered p-values p(j) (p(1) ≤ · · · ≤ p(k)) of
different FWE and FDR controlling procedures

Method Control of SD/SU γj

Holm FWE SD α/(k − j + 1)
Hoch FWE SU α/(k − j + 1)

BH95 FDR SU αj/k
Sark FDR SD αj/k
BL99 FDR SD 1-[1-min{1, αk/(k − j + 1)}]1/(k−j+1)

BL01 FDR SD min[1, αk/(k − j + 1)2]
BY01 FDR SU αj/[k(1 + 1/2 + · · · + 1/k)]
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Table 3: Critical constants for the different test procedures (one-sided tests, k = 5,
α = 0.05, ν = ∞)

Method c1 c2 c3 c4 c5

DT91 1.6449 1.9163 2.0621 2.1603 2.2338
FWE ≤ 0.05 DT92 1.6449 1.9330 2.0708 2.1651 2.2367

Holm, Hoch 1.6449 1.9600 2.1280 2.2414 2.3263

Troe∗ 0.6745 1.3420 1.6586 1.9252 2.2338
BH95, Sark 1.6449 1.7507 1.8808 2.0537 2.3263

FDR ≤ 0.05 BL99 0.6745 1.5174 1.9020 2.1443 2.3187
BL01 0.6745 1.5341 1.9145 2.1539 2.3263
BY01 2.0160 2.1079 2.2221 2.3756 2.6213
KH02 1.0446 1.7507 1.8808 2.0537 2.3263

∗ 100,000 simulations were used for determining the critical constants of Troe.

When we consider the ordered test statistics t(1), . . . , t(k), then the smallest p-
value p(1) is associated with the largest t-value t(k), p(2) is associated with t(k−1),
. . . , p(i) is associated with t(k−i+1). Hence, comparing p(i) with γi is the same as
comparing t(i) with ci = tν,1−γk−i+1 , i.e., with the (1−γk−i+1)-quantile of the
central univariate t-distribution.

We will restrict our investigations to ν = ∞ which corresponds to the case of
known σ. We expect results for ν < ∞ to be very similar.

The power of a multiple test procedure will be high if its critical constants ci

are small. Table 3 provides for k = 5, α = 0.05, ν = ∞ the critical constants for all
methods that we want to compare in this paper. The smallest ci’s are those of Troe,
so that Troe can be expected to have the highest power. The differences between
BL99 and BL01 are small.

Note that the FDR controlling methods Troe, BL99, BL01 and KH02 have a
strange property. It is possible that these methods reject hypotheses that cannot be
rejected by the t-test. This can be concluded from the critical values ci in Table 3
which in some cases are below the unadjusted critical value 1.6449. This can also be
concluded from the critical bounds γi in Table 2. For example, with α = 0.05 and
k = 5 we obtain for BL01 the bound γ5 = 5(0.05) = 0.25. This means the hypothesis
tested in the fifth step would be rejected if its unadjusted p-value is 0.24, say. If k
is large, we even may have γk = 1 which means that any hypothesis will be rejected
in the last step of this step-down procedure no matter how large its unadjusted
p-value is. Benjamini and Liu (1999) mention that in practical cases where this
property is not wanted one may add the constraint not to reject hypotheses if the
corresponding p-values are larger than a prespecified value. This will not inflate the
FDR, however it will decrease the power.

3. Powers

We consider configurations where some hypotheses are false and assume that µi −
µ0 = ∆ holds for the false hypotheses, and µi−µ0 = 0 holds for the true hypotheses.
The value of ∆/σ is specified. ∆ > 0 denotes the practical relevant difference µi−µ0.

In multiple comparisons, the power can be defined in different ways. The prob-
ability of rejecting at least one of the false hypotheses is called any-pair power,
and the probability of rejecting all false hypotheses is called all-pairs power, see
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Ramsey (1978). If we consider a single false hypothesis, then the probability to re-
ject it is called per-pair power, see Einot and Gabriel (1975). Liu (1997), Troendle
(2000) and Kwong, Holland and Cheung (2002) preferred in their power compar-
isons the average power which is E(Zm/m) = E(Zm)/m, where m denotes the
number of false hypotheses and Zm the random number of rejected false hypothe-
ses. They estimated the average power in simulations by the proportion of false
hypotheses that were rejected. The average power can be calculated in the follow-
ing way. Since P(Zm = t) = P(Zm ≥ t) − P(Zm ≥ t + 1) for t = 1, . . . , m − 1 and
P(Zm ≥ m) = P(Zm = m), we obtain for given m the expectation

E(Zm) =
m∑

t=1

tP(Zm = t)

= P(Zm ≥ 1) − P(Zm ≥ 2) + 2P(Zm ≥ 2) − 2P(Zm ≥ 3)
+ · · · + (m − 1)P(Zm ≥ m − 1) − (m − 1)P(Zm ≥ m) + mP(Zm ≥ m)

=
m∑

t=1

P(Zm ≥ t).

We have a program called POWERN which calculates the probabilities P(Zm ≥ t)
for each procedure considered here, so that we obtain E(Zm) by calculating their
sum. The original version of this program was developed for the power calculations
in Dunnett, Horn, Vollandt (2001) and can be downloaded from www.bioinf.uni-
hannover.de/mcp home/. We extended it to include the FDR procedures as well as
FWE procedures.

As µi −µ0 = ∆ holds for all m false hypotheses the per-pair power of each false
hypothesis has the same value, say p. Then E(Zm) = mp and with it E(Zm/m) = p.
This means that in our considerations the average power is identical with the per-
pair power.

Tables 4, 5 and 6 contain the probabilities P(Zm ≥ t) of rejecting at least t of m
false hypotheses of the different procedures in one-sided many-one comparisons in
the normal case for k = 5, n = 6, α = 0.05, ∆/σ = 2, σ known i.e., ν = ∞. These
probabilities are the any pair powers if t = 1, see Table 4, and the all-pairs powers

Table 4: Any-pair power with different numbers m of false hypotheses (k = 5, n = 6,
∆/σ = 2, ν = ∞). The maximum value of each column is underlined

Method m

1 2 3 4 5

DT91 .891 .963 .982 .989 .993
FWE ≤ .05 DT92 .890 .963 .982 .990 .993

Holm .872 .954 .977 .986 .990
Hoch .872 .954 .977 .986 .991

Troe .891 .963 .982 .989 .993
BH95 .873 .959 .981 .990 .993

FDR ≤ .05 Sark, BL01 .872 .954 .977 .986 .990
BL99 .874 .955 .977 .986 .991
BY01 .800 .919 .957 .973 .982
KH02 .873 .959 .981 .990 .995
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Table 5: All-pairs power with different numbers m of false hypotheses (k = 5, n = 6,
∆/σ = 2, ν = ∞). The maximum value of each column is underlined

Method m Minimum

1 2 3 4 5 Value∗

DT91 .891 .838 .818 .826 .868 .8183

FWE ≤ .05 DT92 .890 .837 .817 .825 .879 .8173

Holm .872 .816 .798 .812 .863 .7983

Hoch .872 .816 .799 .817 .879 .7993

Troe .891 .888 .907 .937 .974 .8882

BH95 .873 .865 .868 .873 .879 .8652

FDR ≤ .05 Sark .872 .860 .864 .870 .877 .8602

BL99 .874 .841 .856 .904 .959 .8412

BL01 .872 .838 .853 .902 .957 .8382

BY01 .800 .775 .768 .768 .771 .7684

KH02 .873 .865 .868 .874 .968 .8652

∗ Note: Number shown as superscript is the least favorable m, i.e. the number of
false hypotheses for which the all-pairs power is minimum.

Table 6: Probability to reject at least t of m false hypotheses for different configu-
rations (m; t) with t ≤ m (k = 5, n = 6, ∆/σ = 2, ν = ∞). The maximum value of
each column is underlined

Method m; t

3;2 4;2 4;3 5;2 5;3 5;4

DT91 .937 .967 .924 .980 .959 .927
FWE ≤ .05 DT92 .938 .968 .927 .982 .965 .938

Holm .924 .959 .912 .974 .951 .918
Hoch .926 .961 .918 .978 .961 .936

Troe .961 .980 .968 .988 .984 .978
BH95 .954 .978 .954 .988 .978 .955

FDR ≤ .05 Sark .947 .972 .948 .983 .972 .950
BL99 .938 .967 .943 .980 .979 .962
BL01 .936 .966 .942 .979 .969 .961
BY01 .903 .947 .897 .967 .942 .895
KH02 .954 .978 .954 .992 .987 .980
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Table 7: Per-pair power with different numbers m of false hypotheses (k = 5, n = 6,
∆/σ = 2, ν = ∞). The maximum value of each column is underlined

Method m

1 2 3 4 5

DT91 .891 .901 .912 .927 .945
FWE ≤ .05 DT92 .890 .900 .912 .927 .951

Holm .872 .885 .899 .917 .939
Hoch .872 .897 .901 .921 .949

Troe .891 .926 .950 .969 .983
BH95 .873 .912 .934 .949 .959

FDR ≤ .05 Sark .872 .907 .929 .944 .955
BL99 .874 .898 .924 .950 .972
BL01 .872 .896 .922 .949 .971
BY01 .800 .847 .876 .896 .911
KH02 .873 .912 .934 .949 .984

if t = m, see Table 5. Table 7 contains the per-pair powers which are calculated as
described above from the values in Tables 4, 5 and 6.

Note that with each procedure the any-pair power and the per-pair power are
both monotonically increasing in m, and their minimum values at m = 1 coincide.
The all-pairs power is not monotone. Its minimum is with different methods at
different values of m , see Table 5, last column.

Table 4 shows that no procedure dominates the other methods concerning the
any-pair power over all 5 configurations. However, the any-pair power differences
between most methods are very small. Only BY01 shows distinctly smaller values.

The power values from Table 4 are plotted in Figure 1 for some selected methods.
Figure 2 is the corresponding plot for k = 10. Note, that there are no differences
between DT91 and Troe, and also between Holm, Sark and BL01.

Table 5 shows that Troe has the highest all-pairs power at all configurations.
This could be expected from the critical values in Table 3. However, among the
remaining procedures no one dominates the others over all configurations. BY01 is
clearly worse than all other methods, even than Holm and Hoch.

The power values from Table 5 are plotted in Figure 3 for all methods except
BY01. Figure 4 is the corresponding plot for k = 10. In Figure 5 are the all-pairs
powers of five methods for k = 100. Figures 3, 4 and 5 show that the test procedures
are very different in their power behavior. For example, the minimum and maximum
values of the all-pairs power of DT91 differ strongly, whereas the all-pairs power of
BH95 does not essentially change with m. The values of BH95 and KH02 coincide
except at m = k where the all-pairs power of KH02 is essentially higher. BL99
and BL01, BH95 and Sark, DT91 and DT92 or Holm and Hoch differ only slightly.
(This is the reason why we omitted every second method in Figure 5.)

Table 7 shows that Troe dominates concerning the per-pair powers, except at
m = k = 5 where KH02 dominates. Again, BL99 and BL01 differ only slightly, and
BY01 is clearly the worst procedure. Figures 6, 7 and 8 demonstrate for k = 5, 10
and 100, respectively, how the per-pair powers of the different procedures change
with increasing m.
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Figure 1: Any-pair powers for k = 5, m = 1(1)5, n = 6, ∆/σ = 2, ν = ∞, α = 0.05

Figure 2: Any-pair powers for k = 10, m = 1(1)10, n = 7, ∆/σ = 2, ν = ∞,
α = 0.05
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Figure 3: All-pairs powers for k = 5, m = 1(1)5, n = 6, ∆/σ = 2, ν = ∞, α = 0.05

Figure 4: All-pairs powers for k = 10, m = 1(1)10, n = 7, ∆/σ = 2, ν = ∞,
α = 0.05
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Figure 5: All-pairs powers of five methods for k = 100, m = 1(1)100, n = 6,
∆/σ = 2, ν = ∞, α = 0.05

Figure 6: Per-pair powers for k = 5, m = 1(1)5, n = 6, ∆/σ = 2, ν = ∞, α = 0.05
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Figure 7: Per-pair powers for k = 10, m = 1(1)10, n = 7, ∆/σ = 2, ν = ∞, α = 0.05

Figure 8: Per-pair powers of five methods for k = 100, m = 1(1)100, n = 6,
∆/σ = 2, ν = ∞, α = 0.05
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4. Sample sizes

The determination of sample sizes that guarantee a specified power 1−β in multiple
comparisons is complicated, especially with SD and SU procedures. Without prior
knowledge of the number of false hypotheses, one must look for the least favorable
configuration (LFC) where the power attains its minimum. As already mentioned,
for any procedure we studied the minimum any-pair power and the minimum per-
pair power coincide and both occur at m = 1. In contrast, the procedures differ in
the values of m at which their all-pairs powers attain the minimum, see Figures 3,
4 and 5. The sample size must be sufficiently large that this minimum is at least
1 − β. The program POWERN was developed in order to determine the minimum
sample size that guarantees a specified power value 1−β. It finds out the LFC of SD
and SU procedures, i.e., the configuration (m; t) at which the power is minimum.
In Dunnett, Horn, Vollandt (2001), tables of λ =

√
n∆/σ at the LFC were given

for the FWE controlling procedures DT91 and DT92 for ν = ∞ and various k, α
and all-pairs power values 1 − β. We now calculated for 5 ≤ k ≤ 14, α = 0.05,
ν = ∞ values of λ2 = n∆2/σ2 for specified minimum per-pair or any-pair power
1−β = 0.8, see Table 8, and for specified minimum all-pairs power 1−β = 0.8, see
Table 9.

The values of λ2 permit a fast determination of the sample size n needed for the
control group and each treatment group, see our example. Note that this sample
size is a lower bound for the sample size needed with unknown σ2. In most cases
there is only a small difference to the sample size with unknown σ2 (sometimes
there is no difference, due to the rounding of λ2σ2/∆2).

Example 1. Assume an experimenter wants to compare k = 12 treatments with a
control, either with the FWE controlling procedure DT91 or with the FDR control-
ling procedure Troe. He wants to detect with probability 1− β = 0.8 all differences
µi − µ0 ≥ σ. The sizes of the control sample and the k treatment samples are
required to have the same size n. In Table 9, we find λ2 = 31.185 for DT91 and
λ2 = 24.099 for Troe. Hence, after rounding to the next largest integer, we obtain
the sample sizes n = 32 for DT91 and n = 25 for Troe.

Tables 8 and 9 permit to compare the different procedures. Table 8 and the corre-
sponding Figure 9 show that, with specified per-pair or any-pair power, the smallest
sample sizes are needed, simultaneously, for DT91 and Troe. These two method have
identical λ2-values. The second best method is DT92. Identical λ2-values appear
also for Holm, Hoch, BH95, KH02, Sark, and BL01. Hence, these methods need the
same sample sizes. The worst method is BY01. These findings demonstrate that
the FDR controlling methods are not superior to the FWE controlling methods
concerning the sample sizes needed with specified per-pair or any-pair power.

In contrast to the results for the any-pair and per-pair power, we state that
with specified all-pairs power, the FDR controlling methods except BY01 require
smaller sample sizes than the FWE controlling procedures. Table 9 shows that Troe
is the best method, followed by BH95 and KH02. This is what we expected because
Troe utilizes the known multivariate t-distribution of the test statistics, similarly as
DT91. For values of k studied in this paper, BY01 requires larger sample sizes than
DT91 and DT92, and with k ≤ 9 even larger sample sizes than Holm and Hoch.

The values of Table 9 are plotted in Figure 10. It can be seen that the λ2-
values of Troe, BH95, KH02 and Sark increase with noticeable lower rates than
the λ2-values of the remaining procedures. (This applies also to the worst method
BY01.) This means that with increasing k the sample size required for specified all-
pairs power less rapidly increases for these FDR controlling methods than for the
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Table 8: Values of λ2 = n∆2/σ2 to guarantee a specified per-pair or any-pair power 1 − β (n0/n = 1, ν = ∞, 1 − β = 0.8)

Method k

2 3 4 5 6 7 8 9 10 11 12 14

DT91 15.213 16.868 18.023 18.917 19.642 20.251 20.776 21.237 21.648 22.019 22.356 22.950
DT92 15.397 16.965 18.081 18.952 19.665 20.267 20.788 21.247 21.656 22.025 22.361 22.953
Holm 15.698 17.638 19.010 20.072 20.938 21.670 22.302 22.860 23.358 23.808 24.219 24.946
Hoch 15.698 17.638 19.010 20.072 20.938 21.670 22.302 22.860 23.358 23.808 24.219 24.946

Troe 15.219 16.868 18.023 18.917 19.642 20.251 20.776 21.237 21.648 22.019 22.356 22.950
BH95 15.698 17.638 19.010 20.072 20.938 21.670 22.302 22.860 23.358 23.808 24.219 24.946
KH02 15.698 17.638 19.010 20.072 20.938 21.670 22.302 22.860 23.358 23.808 24.219 24.946
Sark 15.698 17.638 19.010 20.072 20.938 21.670 22.302 22.860 23.358 23.808 24.219 24.946
BL99 15.637 17.557 18.919 19.975 20.837 21.566 22.196 22.752 23.249 23.699 24.109 24.834
BL01 15.698 17.638 19.010 20.072 20.938 21.670 22.302 22.860 23.358 23.808 24.219 24.946
BY01 17.638 20.525 22.495 23.984 25.176 26.169 27.018 27.759 28.416 29.006 29.541 30.481
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Table 9: Values of λ2 = n∆2/σ2 to guarantee a specified all-pairs power 1 − β (n0/n = 1, ν = ∞, α = 0.05, 1 − β = 0.8)

Method k

2 3 4 5 6 7 8 9 10 11 12 14

DT91 16.072 19.103 21.311 23.186 24.764 26.132 27.360 28.439 29.444 30.335 31.185 32.679
DT92 15.828 19.238 21.408 23.249 24.814 26.161 27.383 28.452 29.453 30.340 31.188 32.680
Holm 16.163 19.671 21.928 24.112 25.727 27.332 28.591 29.863 30.904 31.950 32.843 34.508
Hoch 15.829 19.574 21.762 24.036 25.634 27.276 28.545 29.821 30.874 31.917 32.818 34.488

Troe 15.213 16.853 18.253 19.491 20.502 21.305 21.977 22.571 23.094 23.614 24.099 24.953
BH95 15.829 18.028 19.574 20.765 21.762 22.630 23.378 24.036 24.623 25.152 25.634 26.518
KH02 15.829 18.028 19.574 20.765 21.762 22.630 23.378 24.036 24.623 25.152 25.634 26.518
Sark 16.163 18.335 19.865 21.045 22.005 22.858 23.599 24.252 24.834 25.359 25.837 26.682
BL99 15.637 17.724 20.280 22.059 23.418 24.972 26.213 27.239 28.335 29.290 30.117 31.738
BL01 15.698 17.825 20.398 22.185 23.575 25.129 26.368 27.393 28.511 29.463 30.287 31.922
BY01 18.028 21.272 23.607 25.358 26.792 27.994 29.018 29.926 30.736 31.461 32.117 33.288
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Figure 9: Values of λ2 = n(∆/σ)2 to guarantee a per-pair or any-pair power 1−β =
0.8 for k = 2(1)14, n0/n = 1, ν = ∞

Figure 10: Values of λ2 = n(∆/σ)2 to guarantee an all-pairs power 1 − β = 0.8 for
k = 2(1)14, n0/n = 1, ν = ∞
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FWE controlling procedures we studied. The fact that the advantage of these FDR
methods over the FWE methods becomes greater with increasing k is an important
and desirable property. The remaining two FDR controlling procedures BL99 and
BL01 do not have this property.

Benjamini, Krieger and Yekutieli (2001) have proposed a promising improve-
ment of the method of Benjamini and Hochberg (1995). However, our program for
calculating λ cannot be used for their method which is a two staged SU procedure.

5. Discussion

With FWE controlling methods, the sample sizes needed to achieve a desired level
of power increase, if the number k of hypotheses becomes large. FDR controlling
methods were developed with the hope that they do not have this negative property
to the same extend. We compared powers and sample sizes of different FWE and
FDR controlling methods in multiple comparisons of k treatments with a control
when the observations are normally distributed. Our calculations were for k = 5, 10
and 100. The statements with small and large k do not differ. There are no essen-
tial differences between the any-pair powers of the different methods, except for the
FDR controlling SU procedure of Benjamini and Yekutieli (2001). However, con-
cerning the all-pairs power and per-pair power the FDR controlling SD procedure
of Troendle (2000) dominates. The FDR controlling SD procedures of Benjamini
and Liu (1999) and Benjamini and Liu (2001) which do not much differ in their
powers are worse than the best FWE controlling procedures if most hypotheses are
true, and they are better than the FDR controlling SU procedure of Benjamini and
Hochberg (1995) if most hypotheses are false. If all hypotheses are false the SU
procedure of Kwong, Holland and Cheung (2002) shows rather high power values.

Concerning the sample size which is necessary to guarantee a specified all-pairs
power, the advantage of the FDR controlling procedures of Troendle (2000), Ben-
jamini and Hochberg (1995), Sarkar (2002) and Kwong, Holland, Cheung (2002)
over all FWE controlling methods considered becomes greater with increasing k.
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