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Abstract: During the course of a study it would be desirable to take advantage
of new internal or external information in order to modify design features laid
down in the study protocol. However, for conventional controlled experiments
this does not seem feasible without casting doubt on the statistical validity of
the whole experiment. In contrast, modifications pertaining to treatment arms,
endpoints, hypotheses, statistical methods etc. are possible within adaptive de-
signs, thus enabling the conduct of complex controlled experiments which may
still be tailored after onset to meet ethical and scientific as well as economic
requirements.

This article briefly reviews recent statistical methods for adaptive study
design, particularly those built from p-value combination rules or, equivalently,
conditional error functions. Its main focus, however, is on the application
of adaptive testing methods to clinical experiments with multiple objectives,
e.g., multiple treatment arms or endpoints. The authors demonstrate in this
overview that as a consequence of using an adaptive interim analysis, null
hypotheses may be dropped or added, and test statistics may be exchanged,
whilst the studywise type I error rate remains under (strong) control. More-
over, adaptive designs may be applied to experiments aiming to establish dose-
response relationships, or to demonstrate non-inferiority, superiority or equiv-
alence of multiple treatment arms. An example from the literature, which has
not previously been discussed from an adaptive viewpoint, is provided as a
worked illustration.

1. Introduction

Multiplicity due to multiple hypotheses, endpoints, treatment arms or subgroups
is present in virtually all clinical trials. In order to guard against the opportunity
of selecting the most favorable result from a pool of analyses, adequate control
and pre-specification of statistical procedures is required (CPMP/EWP, 2003). A
conventional approach to limit the type I error α of the statistical procedure (also
called consumer’s risk in case of an efficacy endpoint) whilst granting reasonable
power (1 − β, where β denotes the type II error of the statistical procedure or the
producer’s risk in case of an efficacy endpoint) is to control the studywise rate of
false positive conclusions, i.e., the probability of one or more erroneous conclusions
drawn from the results of the same trial needs to be kept below α. The more
questions a clinical trial is set out to answer, the more complex are the statistical
procedures employed to safeguard adequate type I error control. In the planning
phase of a clinical trial, any lack of information on important design quantities, such
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as the expected treatment effect or sample variance, may lead to a serious deficiency
in sample size, and thus in power (see Westfall et al. (1999) for a description of
relevant power concepts pertaining to multiple testing).

Sequential analysis was pioneered by Wald (1947), but first applied to clini-
cal trials by Armitage (1957; 1975), with the aim of reducing the average sample
size. Some limitations of the classical sequential approach, i.e., the observed data
must be paired and continuously monitored, were overcome by the development
of group-sequential methods (Pocock, 1977; O’Brien and Fleming 1979) with in-
terim analyses scheduled according to a prefixed series of equal-sized groups. The
more general α-spending approach by Lan and DeMets (1983) neither requires the
number, nor the time, of interim analyses to be specified in advance, whilst the
sample size still needs to be predetermined. In contrast, re-calculation of the final
sample size can be performed using an internal pilot study where the variance is
re-estimated in a blinded or unblinded interim analysis (Wittes and Brittain, 1990;
Gould and Shih, 1992; Birkett and Day, 1994; Friede and Kieser 2002). A compre-
hensive survey of group-sequential methods was given by Jennison and Turnbull
(2000). In recent years, adaptive designs as initiated by Bauer (1989) have been
advocated to be superior to classical group-sequential clinical trials since only the
former bear the potential for substantial data-driven re-design such as re-calculation
of sample size or modification of treatment arms, endpoints, hypotheses, statistical
methods etc.

The aim of this article is to demonstrate the merits of applying adaptive testing
methods in multiple testing situations as entailed by multiple endpoints, treatment
arms or subgroups. An overview of methods for adaptive study design is given in
Section 2. Some basics of multiple hypotheses testing, particularly properties of the
closure procedure, are presented in Section 3. The advantages of using adaptive
designs in multiple testing situations, e.g., midtrial abandonment or inclusion of
hypotheses, are described in detail in Section 4. In Section 5, an example from the
literature is analyzed from a new (adaptive) viewpoint. The article concludes with a
critical discussion of the possible malpractice of the extensive flexibility introduced
by adaptive designs to clinical trials.

2. Adaptive designs

Detailed reviews of adaptive design methodology have recently been presented by
Bauer et al. (2001a) and Wassmer et al. (2001); thus only a brief overview will be
given below.

A one-sided null hypothesis H0, say, on the difference θ in mean efficacy of two
treatments, i.e., H0 : θ ≤ −δ vs. Ha : θ > −δ for some δ ≥ 0, is tested at level
α using a two-stage adaptive group-sequential design as follows: In the planning
phase, the investigator needs to fix (i) the design of the first stage, including the
test statistic to calculate the (one-sided) p-value p1 from the sample of the first
stage, (ii) the function C(p1, p2) to be used if a second stage (yielding a p-value p2)
is performed for combination of the p-values from both stages and (iii) the early
decision boundaries α1, α0 with 0 ≤ α1 < α < α0 ≤ 1. These three ingredients
are used as following: After completion of the first stage, H0 is rejected if p1 ≤ α1

and accepted if p1 > α0. In either case, the trial is stopped. If α1 < p1 ≤ α0,
the second stage can be planned using all information collected so far, both from
inside and outside of the trial. After completion of the second stage, H0 is rejected
if C(p1, p2) ≤ c where c is calculated from α, α1, α0 and C(p1, p2) to control the
level α. Otherwise, H0 is accepted.
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The combination function C(p1, p2) is assumed to be increasing in both argu-
ments, strictly increasing in at least one, and left continuous in p2, for all p1 ∈
]α1, α0], p2 ∈ [0, 1]. Moreover, the p-values p1 and p2 are required to be p-clud
(Brannath et al., 2002), meaning that under H0 the distributions of p1 and p2

conditional on p1 are larger or equal to the uniform distribution on [0, 1], in formu-
lae

PH0(p1 ≤ α) ≤ α and PH0(p2 ≤ α| p1) ≤ α for all 0 ≤ α ≤ 1.

This is fulfilled, for example, if independent samples are recruited at the differ-
ent stages of the trial and the applied hypotheses tests are level α tests for any
pre-chosen significance level α. Essentially, any midtrial design adaptation which
preserves this distributional property of the p-values will not compromise the type I
error control.

Throughout this article, null hypotheses are usually assumed to be one-sided
in order to simplify the presentation. This is not an essential restriction, because
any two-sided null hypothesis H0 can be tested at level 2α by combination of both
one-sided tests at level α (exact only for α0 < 0.5; Wassmer, 1999) as follows: Let p1

and p2 denote, as above, the one-sided p-values from the two stages corresponding
to a specific test direction. Then, after completion of the first stage, H0 is rejected
if p1 ≤ α1 or 1 − p1 ≤ α1 and accepted if α0 ≤ p1 ≤ 1 − α0. In either case,
the trial is stopped. If α1 < p1 < α0 or α1 < 1 − p1 < α0, the second stage can
be planned using all information collected so far, both from inside and outside of
the trial. After completion of the second stage, H0 is rejected if C(p1, p2) ≤ c or
C(1 − p1, 1 − p2) ≤ c where c is calculated from α, α1, α0 and C(p1, p2) to control
the level α. Otherwise, H0 is accepted.

Adaptive two-stage designs were described above in terms of a combination func-
tion for p-values and corresponding decision boundaries. Such designs can equiva-
lently be formulated by means of a conditional error function α(p1) : [0, 1] → [0, 1]
which is nondecreasing in p1 and fulfills

∫ 1

0

α(p1) dp1 ≤ α

(Proschan and Hunsberger, 1995; Müller and Schäfer, 2001). This function α(p1)
determines the conditional type I error to be controlled by any design and test
procedure for H0 chosen for a contingent second stage. The one-to-one mapping
between decision procedures based on p-value combination and conditional error
functions was worked out in general by Brannath et al. (2002). Important examples
were given by Posch and Bauer (1999) and Wassmer (1999).

If the stage-wise order of the sample space is assumed (Armitage, 1957;
Tsiatis et al. 1984), a (global) p-value function for the combination test can be
defined as

q(p1, p2) =




p1 if p1 ≤ α1 or p1 > α0

α1 +
∫ α0

α1

∫ 1

0

1[C(x,y)≤C(p1,p2)] dx dy otherwise
.
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To give a simple example, Brannath et al. (2002) derived the p-value function for
Fisher’s product test, i.e.,

q(p1, p2) =




p1 if p1 ≤ α1 or p1 > α0

α1 + p1 · p2 (ln α0 − ln α1) if p1 ∈ (α1, α0] and p1 · p2 ≤ α1

p1 · p2 [1 + lnα0 − ln(p1 · p2)] if p1 ∈ (α1, α0] and p1 · p2 > α1

.

Upon conclusion of an adaptive group-sequential study, median unbiased point
estimates and (monotone) confidence intervals may be constructed using the stop-
ping rule specified at the outset (Brannath et al., 2002). Alternatively, one may
construct a sequence of repeated confidence intervals (conservative, simultaneous
coverage probability) that are independent of any particular stopping rule
(Jennison and Turnbull, 1989; Lehmacher and Wassmer, 1999).

The generalization to designs with an arbitrary, not necessarily pre-planned
number of stages is straightforward. For instance, assume p ′ in the formula for
the global p-value p = q(p1, p

′) stems from another two-stage design specified
just after completion of the first stage such that p ′ = q ′(p2, p3) and, thus, p =
q(p1, q

′(p2, p3)). Thus, a level α recursive combination test can be obtained for any
finite number of stages (Brannath et al., 2002). Alternatively, at any stage of the
trial any design and test procedure that does not exceed the respective conditional
type I error may be chosen for the continuation of the trial (Müller and Schäfer,
2001). Since any classical group-sequential design corresponds to a specific sequence
of combination functions, it is a special case of the presented general class of adap-
tive designs.

3. Multiplicity control

Let H be a family of null hypotheses of interest. For any test of a null hypothesis
H0 ∈ H the local significance level or comparisonwise error rate (CER) is defined as
CER = P (Reject H0 |H0 is true). In contrast, the familywise error rate (FWE) for
a subfamily H′ ⊂ H is defined as FWE = P (Reject at least one H0 ∈ H′ |All H0 ∈
H′ are true). A multiple testing or comparison procedure (MCP) for the family of
null hypotheses H is said to control the FWE in the weak sense if it protects the
FWE for H′ = H but not necessarily for all subfamilies H′ ⊂ H. If maxH′⊂H FWE
is protected, the MCP is said to control the FWE in the strong sense. It is widely
acknowledged that control of the CER without reference to the corresponding fam-
ily H is insufficient. Instead, strong control of the FWE is required.

A general method for devising MCPs that strongly controls the FWE was for-
mally introduced by Peritz (1970) and Marcus et al. (1976) and is known as the
closure test. Let H be a finite family of null hypotheses closed under intersection,
i.e., H ′, H ′′ ∈ H implies H ′ ∩H ′′ ∈ H. For every H ∈ H fix a local level α test φH .
Any null hypothesis H ∈ H is tested by means of φH if and only if all hypotheses
H ′ ⊂ H , H ′ ∈ H have been tested and rejected using φH′ . Thus, strong control of
the FWE is guaranteed.

Specifically, the presence of interim analyses does not affect the error properties
of the closure test as long as each H ∈ H is decided upon by its prefixed φH (e.g.,
a group-sequential or adaptive test) and local levels are kept at α. However, if the
design of the experiment is modified in consequence of the interim results (e.g.,
discontinuation of arms or assessment of endpoints), the subsequent application of
the prefixed local level α tests may be problematic (Hellmich, 2001). For example,
consider a conventional group-sequential trial with 4 arms and 1 interim analysis
(i.e., 2 stages), all pairwise comparisons of means being of interest, see Figure 1.
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Figure 1: Closed system of null hypotheses for all pairwise comparisons of four
groups.

Assume, after completion of stage 1 the null hypotheses (of equal means) H1234
0 ,

H123
0 , H124

0 , H12∧34
0 , and H12

0 are rejected at local level α and arm 1 is dropped
because of demonstrated inferiority. Suppose no further null hypotheses can be
rejected. Continue the trial until completion of stage 2. Then, for comparison of
arms 3 and 4, the null hypotheses H34

0 , H234
0 , and H134

0 have to be rejected at
local level α whilst H1234

0 and H12∧34
0 need not be retested. Testing H134

0 might
be problematic since the inferior arm 1 has been dropped at stage 1. Unless some
adaptive testing method is used, any change of the prefixed test statistic (e.g., from
F to t) is not covered by the closed testing principle and, therefore, has to be
avoided. (Note, conventional group-sequential methods require a fixed allocation,
either balanced or unbalanced, of subjects to treatment arms. Allocations cannot
be adapted to design changes, particularly to the abandonment of any arms.)

Since closure procedures become cumbersome even for a moderate number
of null hypotheses, shortcuts have been investigated. For example, if the fam-
ily H = {H1, H2, . . . , Hn} satisfies the free combination condition (Holm, 1979;
Westfall and Young, 1993), i.e., for every subfamily HJ ⊂ H, J ⊂ {1, 2, . . . , n} the
simultaneous truth of HJ and falsehood of H{1,2,...,n}\J is a plausible event, then
all intersection hypotheses differ from each other. Hence, the general closure test
can be simplified without loss of power in the following way (Hommel, 1986): For
each index set J ⊂ {1, 2, . . . , n} choose a level α test for HJ =

⋂
{Hj | j ∈ J}, e.g.,

all tests of the same type. Thus, a hypothesis Hj is rejected if and only if all HJ

with j ∈ J can be rejected. If the free combination condition is not satisfied, strong
control of the FWE is guaranteed while power may be lost compared to the gen-
eral closure test because a hypothesis may be tested differently with the simplified
version. Important applications (see Hommel and Kropf, 2001) include (i) Holm’s
procedure where HJ is locally rejected if min{pj | j ∈ J} ≤ α/|J | (Bonferroni tests)
and (ii) fixed sequences of hypotheses (a priori ordered) H1 � H2 � · · · � Hn

where HJ is locally rejected if the front hypothesis Hf with front index f = min J
is rejected (the symbol � denotes ‘ is more important than’).

While being more powerful than single step procedures, closure procedures do
not in general yield corresponding confidence sets (Hsu, 1996, p. 45) and that
may be viewed as an important drawback (CPMP/EWP, 2003). Two additional
problems may arise, (i) for hypotheses H ′, H ′′ ∈ H whose local tests φH′ , φH′′ give
(unadjusted) p-values p ′ ≤ p ′′, it may occur that H ′′ is rejected and H ′ is not,
and (ii) directional errors are not always controlled by closure procedures, i.e., for
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two-sided tests false inferences on the sign of the effect may occur. Hence directional
inference in closure procedures should be considered with care (Westfall et al., 1999,
p. 160).

4. Multiple testing and adaptive designs

An application of the closure test for non-adaptive group-sequential designs was de-
scribed by Tang and Geller (1999). Let {H1, H2, . . . , Hn} denote the set of null hy-
potheses under investigation. For each intersection null hypothesis HJ =

⋂
{Hj | j ∈

J}, J ⊂ {1, 2, . . . , n}, let ZJ (t) be a group-sequential test statistic with one-sided
boundary cJ(t), i.e., PHJ {ZJ(t) > cJ(t) for some t} ≤ α. Tang and Geller pro-
posed the following procedure for the multiple endpoint setting: Conduct interim
analyses of the global null hypothesis

⋂
{H1, H2, . . . , Hn}. As soon as this is re-

jected at some time t∗, apply the closure procedure to the subhypotheses HJ using
ZJ(t∗) and cJ(t∗). Otherwise, no hypothesis is rejected. If any subhypothesis is not
rejected, continue the trial and repeat the closure procedure, not retesting previ-
ously rejected hypotheses, until all hypotheses are rejected or the final stage of the
trial has been reached. In fact, this proposition holds for any intersection-closed
family of null hypotheses. Retesting of previously rejected hypotheses may result
in reduced power and possibly contradictory findings, therefore it is not recom-
mended. For adaptive designs, several applications of the closure test have been de-
scribed by Bauer and Röhmel (1995), Kieser et al. (1999), Bauer and Kieser (1999),
Lehmacher et al. (2000) and Kropf et al. (2000). A general theory was described by
Hommel (2001).

In order to apply the closure principle to an adaptive two-stage design, for
each intersection null hypothesis HJ fix an adaptive test with local tests φJ1, φJ2

and conditional error function αJ . After completion of the first stage, φJ1 yields
the p-value pJ1. If pJ1 ≤ α1, HJ is rejected and need not to be tested again
(after completion of the second stage). If pJ1 > α0, HJ can never be rejected.
If α1 < pJ1 ≤ α0, (possibly) adapt the local test φJ2 yielding the p-value pJ2 after
completion of the second stage. If pJ2 ≤ αJ (pJ1) HJ is rejected. Otherwise, it is
accepted. The merits of using adaptive designs in multiple testing situations will be
evaluated below. For ease of presentation, only two-stage designs are considered and
singletons {j} ⊂ J are written without brackets in subscripts, thus Hji = H{j}i,
i = 1, 2 etc. (The following ideas may be applied without modification to designs
with more than two stages.)

First, let {H1, H2, . . . , Hn} denote the initial set of null hypotheses tested within
an adaptive two-stage design, where the hypotheses with indices in E ⊂ {1, 2, . . . , n}
are excluded after the completion of the first stage because they have been rejected,
retained or became irrelevant. Hence, for the combination test, the local test φJ2 of
HJ , J ⊂ {1, 2, . . . , n} has to be based on the possibly restricted set of hypotheses
with indices in J \E to be investigated at the second stage (e.g., a Bonferroni test
with pJ2 = |J \ E| · min{pj 2 | j ∈ J \ E}), see Figure 2. If J \ E is empty, the
corresponding combination test cannot be carried out.

This strategy was applied by Kieser et al. (1999) for inference on multiple end-
points and by Bauer and Kieser (1999) to the (related) problem of multiple compar-
isons with a common control. Hellmich (2001) focussed on all pairwise comparisons
between multiple treatment arms and showed that the appealing sequentially re-
jective strategy proposed by Follmann et al. (1994) does not in general guarantee
strong control of the FWE. When using an adaptive design in contrast, treatment
arms may be terminated as a consequence of interim analysis, or as a result of safety
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Figure 2: Inclusion or exclusion of a null hypothesis at interim analysis; Bonferroni-
adjusted p-values are shown in brackets.

assessment, without corrupting strong error control. Various authors investigated
the properties of closure procedures for dose-response analysis (incl. Marcus et al.,
1976; Bauer and Budde, 1994; Rom et al., 1994; Tamhane et al., 1996). Usually, a
monotone dose-response relationship is assumed, i.e., the expected responses in k
groups given increasing dose-levels fulfill the order constraint µ0 ≤ µ1 ≤ · · · ≤ µk,
where µ0 corresponds to placebo. In order to establish a global trend and deter-
mine the minimum effective dose, the nested (and therefore intersection-closed)
set of null hypotheses to be considered is given by H0i : µ0 = µ1 = · · · = µi

vs. Hai : µ0 ≤ µ1 ≤ · · · ≤ µi (i = 1, 2, . . . , k) with µj−1 < µj for at least
one j ∈ {1, 2, . . . , i}. The larger family of null hypotheses generated by hypothe-
ses corresponding to pairwise comparisons of adjacent doses H0i : µi−1 = µi vs.
Hai : µi−1 < µi (i = 1, 2, . . . , k), additionally allows to test for efficient dose steps,
e.g., the highest dose level which still provides a clinically relevant step in the
response as compared to the adjacent lower dose, thus providing further details
on the dose-response relationship. The combination of adaptive designs and clo-
sure procedures for dose-response analysis was recommended by Lehmacher et al.
(2000) since for such studies sufficient sample size estimation is usually not feasi-
ble. Bauer and Röhmel (1995) emphasized the importance of the choice of doses
to be included in the study. If the experiment was performed in a late or early
plateau of the dose-response relationship the (indirect) demonstration of efficacy
might fail (CPMP/ICH, 1994). Therefore, they advocated the use of an adaptive
method starting with a few, say two, doses from the conjectured therapeutic dose
range. After completion of the first stage, if an insufficient trend is visible, the doses
to be investigated in the second stage may be changed, for example by lowering the
low dose and/or increasing the high dose. The efficacy decision then relies on the
combination test based on the p-values from the separate stages. Moreover, con-
trolled multiple inference on the null hypotheses tested at the separate stages can
be achieved by a prefixed closure procedure.

Secondly, the aforementioned method for dose-response analysis suggests that
within adaptive designs even new hypotheses may be included at interim analyses.
Let {H1, H2, . . . , Hn} denote the final set of null hypotheses tested within an adap-
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tive two-stage design where the hypotheses with indices in A ⊂ {1, 2, . . . , n} may
be included after completion of the first stage because they have become relevant.
For interim analysis, the (prefixed) local test φJ1 of HJ , J ⊂ {1, 2, . . . , n} is based
on the possibly restricted set of hypotheses with indices in J \ A investigated at
the first stage (e.g., a Bonferroni test with pJ1 = |J \A| ·min{pj 1 | j ∈ J \A}), see
Figure 2. If J \ A is empty, the corresponding combination test is degenerate and
only uses the p-value pJ2 from the second stage (fixed sample situation). Thus, seen
from a methodological viewpoint, the inclusion and exclusion of null hypotheses at
interim analyses are just reverse strategies.

Thirdly, as a consequence of an adaptive interim analysis the order of a fixed
sequence of hypotheses may be altered, reflecting a corresponding shift in interest
or importance. Suppose that the fixed sequence of null hypotheses H1 � H2 � · · · �
Hn is to be tested in a two-stage adaptive design. Hence, at the interim analysis,
HJ , J ⊂ {1, 2, . . . , n} is locally tested by φJ1 = φf1 with f = min J (front index),
yielding the p-value pJ1 = pf1. For the second stage, a new sequence (permutation)
π of the null hypotheses may be fixed, say Hπ(1) � Hπ(2) � · · · � Hπ(n). Thus,
after completion of the second stage, HJ , J ⊂ {1, 2, . . . , n} is locally tested by
φJ2 = φg2 with front index g = π(min{j |π(j) ∈ J}), yielding the p-value pJ2 = pg2,
see Figure 3. In fact, the rearrangement of a fixed sequence of null hypotheses is a
special case of an adaptive choice of test statistics for specific hypotheses in order
to gain power. Another example of this strategy is the adaptive choice of weights
for multiple endpoints (Westfall et al., 1998) or hypotheses (Hommel, 2001).

The three strategies presented above may be applied simultaneously within the
same experiment, meaning that at an adaptive interim analysis, null hypotheses
may be dropped, new null hypotheses may be included and the sequencing of null
hypotheses may be altered. In the extreme, consider the case in which all null
hypotheses tested in the interim analysis are dropped from the study, and only
newly introduced null hypotheses are tested in the final analysis. While, from a
clinical point of view, this seems to be a procedure of questionable value, there is
nothing wrong with the method.

Figure 3: Change of the order of a fixed sequence of null hypotheses; p-values are
shown in brackets.
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5. An example from the literature

Bauer et al. (1998) presented an analysis of a fixed sample clinical trial with five
treatment arms to investigate the dose-response relationship of a new calcium
channel blocker (CCB) in three doses (50, 100 and 150 mg) versus placebo (zero
dose) and an active control (10 mg amlodipine) in patients with chronic stable
angina pectoris. Summary results for the primary endpoint ‘post/pre-treatment
difference of exercise test duration in seconds’ are shown in Table 1. Based on
these results, imagine an adaptive two-stage clinical trial to test the following
fixed sequence of null hypotheses, H1 : µac ≤ µ0, i.e., active control is not su-
perior to placebo, H2 : µ150 ≤ µ0, i.e., CCB 150 is not superior to placebo and
H3 : µ150 ≤ µac − 15 seconds, i.e., CCB 150 is relevantly inferior to active control
(margin δ = 15 seconds), thus H1 � H2 � H3. For each intersection null hypothesis
an one-sided adaptive test according to Bauer and Köhne (1994) is prefixed with
α = 0.025, α1 = 0.0102, α0 = 0.5 and c = 0.0038. The maximum sample size
allocated in the fictive trial protocol is 300 with the interim analysis to take place
after 15 patients have been randomized to each group. The null hypotheses H1 and
H3 are decided upon by t-tests and H2 by the linear contrast test with coefficients
(−3,−1, 1, 3). All tests use the pooled standard deviation for all five treatment arms
(82.9 seconds). Of course, tests for relevant inferiority or superiority of the other
CCB dose groups (50 and 100 mg) could be incorporated in the fixed sequence but
this would make the presentation of this example unduly complicated.

Assume the means and standard deviations of Table 1 are those observed at the
interim analysis. Since all p-values are greater than α1 = 0.0102, none of the null
hypotheses can yet be rejected (see Table 2). Unexpectedly, the active control does
not show a clear effect. Consequently, one of the following four strategies could be
pursued. Strategy 1: The trial is completed as planned, i.e., no adaptation takes
place at the interim analysis. Strategy 2: The trial is stopped and a completely new
trial is planned and conducted with a (hopefully) better active control. Strategy 3:
The old active control treatment is dropped and a better active control is chosen
for the second stage. Thus, in contrast to conducting a completely new trial, most
of the data from the first stage are still available for the final analysis using the
combination test. Strategy 4: The new CCB is reckoned a promising treatment
possibly superior to the present standard and safe even at high dose. Pursuing the
last strategy a bit further, a new null hypothesis is included, H4 : µ150 ≤ µac, i.e.,
CCB 150 is not superior to active control, and a new sequence of null hypotheses is
fixed for the second stage, say H2 � H4 � H1 � H3 (see Table 2). Moreover, the
contrast statistic for H2 is tailored to the leveling response in the highest dose group,

Table 1: Summary results of post/pre-treatment differences of exercise test duration
(in seconds) in patients with chronic stable angina pectoris on one of three doses of
a new calcium channel blocker (CCB), placebo or active control (see Bauer et al.,
1998).

Dose of new CCB Active control

0 50 100 150

Mean 57.5 76.8 109.5 105.3 67.3
SD 75.0 75.5 87.1 85.7 90.1
N 62 60 60 62 59
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Table 2: Interim results of a fictive adaptive two-stage clinical trial based on the
summary data given in Table 1 with a fixed sequence of null hypotheses. According
to Strategy 4 (see text) a new null hypothesis is included and a new sequence is
fixed for Stage 2.

STAGE 1 STAGE 2
H1 � H2 � H3 H2 � H4 � H1 � H3

Index set J Front index pJ1 αJ (pJ1) Index set J Front index

{1, 2, 3} 1 0.373 0.010 {1, 2, 3, 4} 2
.. {1, 2, 3} 2

{1, 2} 1 0.373 0.010 {1, 2, 4} 2
.. {1, 2} 2

{1, 3} 1 0.373 0.010 {1, 3, 4} 4
.. {1, 3} 1

{2, 3} 2 0.033 0.114 {2, 3, 4} 2
.. {2, 3} 2

{1} 1 0.373 0.010 {1, 4} 4
.. {1} 1

{2} 2 0.033 0.114 {2, 4} 2
.. {2} 2

{3} 3 0.040 0.094 {3, 4} 4
.. {3} 3

— — — 0.025 {4} 4

i.e., the coefficients (−3,−1, 2, 2) are chosen, and the initially planned sample size of
45 per group for the second stage is reduced to 40 because of high conditional power.
Applying the closure procedure, an intersection null hypothesis HJ , J ⊂ {1, 2, 3, 4}
could then be rejected after completion of the second stage, if both (i) pJ\{4}1 ≤ α1

or [pJ\{4}1 ≤ α0 and pJ2 ≤ αJ (pJ\{4}1) = c/pJ\{4}1] and (ii) any subset intersection
null hypothesis HJ′ , J ′ ⊂ J were rejected, beforehand. A similar example was
presented by Kropf et al. (2000) and Hommel and Kropf (2001).

Since H3 ⊂ H4, or (relevant) inferiority implies non-superiority, the stronger
null hypothesis H3 may be dropped after the interim analysis for purely logical
reasons. Switching the alternative from non-inferiority to superiority is not a pos-
sibility unique to adaptive designs, but may as well be performed after conclusion
of any trial provided that (i) it has been properly designed and carried out ac-
cording to the strict requirements of a non-inferiority trial and (ii) the intention-to-
treat analysis receives the greatest emphasis (CPMP/EWP, 2000). However, within
an adaptive design, the alternative can be strengthened after an (early) interim
analysis and then combined with an adequate re-calculation of the sample size to
ensure high power. General closure procedures (step-down/up) for establishment
of superiority/non-inferiority of a new treatment compared with several standard
treatments were investigated by Dunnett and Tamhane (1997) and may well be
applied within adaptive designs following the strategies presented in Section 4.

A tested substance and an active control are deemed equivalent regarding
their efficacy if the 95% confidence interval of their difference (or ratio, see
Hauschke and Kieser, 2001) θ in mean efficacy is completely covered by a pre-
specified equivalence margin (−δ, +δ), δ > 0 (CPMP/EWP, 2000). Alternatively,
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Figure 4: Hierarchical test procedure with equal α-splitting for multi-dose equiva-
lence studies assuming a monotone increasing dose-response relationship (Channon,
2000; Bauer et al., 2001b).

equivalence is demonstrated if both one-sided hypotheses of relevant inferiority
(H inf

0 : θ ≤ −δ vs. H inf
a : θ > −δ) and relevant superiority (Hsup

0 : θ ≥ δ
vs. Hsup

a : θ < δ) can be rejected at level α/2 = 2.5%. Channon (2000) fo-
cussed on multi-dose equivalence studies (with multiple doses of the test substance
and one dose of the reference) and proposed a hierarchical (closed) test proce-
dure for monotone (increasing) dose-response relationships which was extended by
Bauer et al. (2001b). The two subfamilies of inferiority and superiority hypotheses
are subjected to separate MCPs that strongly control the FWE at 2.5% (equal
α-splitting). Hence, any test dose for which both one-sided hypotheses can be re-
jected is assumed to be equivalent to the reference dose, see Figure 4. Again, the
application of these closure procedures within adaptive designs is straightforward.

6. Discussion

Adaptive designs which permit extensive re-design in consequence of interim analy-
ses whilst not compromising (strong) type I error control can successfully allevi-
ate/circumvent the difficulties entailed by multiplicity as present in virtually all
clinical trials. Software supporting adaptive study planning is becoming available,
including SA2D (2000), ADDPLAN 2.1 (2003) and East 3.0 (2003).

Within closure procedures any statistical level α test can be used for intersec-
tion null hypotheses. Specifically, local Bonferroni tests can be improved upon by
accounting for the correlations between the test statistics which are either known
or can be estimated using resampling methods (Westfall and Young, 1993). More-
over, logical interrelations between null hypotheses can be exploited in order to gain
in power (Hommel and Bernhard, 1999). Since confidence sets are regrettably not
generally available for closure procedures, either unadjusted confidence intervals
(controlling only the CER) or more conservative simultaneous confidence intervals
from corresponding single-step procedures (e.g., according to Dunnett or Tukey)
may be presented.

The new flexibility introduced by adaptive designs to clinical trials entails a
possibly high danger of malpractice. To prevent any fraudulent use, specific regula-
tory guidance is required on the prerequisites of any contingent modification of the
original study plan. Key requirements certainly include that (i) only prospective
modifications fully detailed in and communicated by study protocols or amend-
ments are acceptable and (ii) the trial investigator has to establish that following
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an adaptation the same trial is still being conducted. If the latter cannot sufficiently
be demonstrated, both subtrials (ante/post adaption) must not be interpreted as
delivering evidence against the same null hypothesis (but the intersection of two
different ones), resulting in a probably dramatic loss in power.
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