LECTURE 9

Curve Estimation and Long-Range Dependence

It is of some interest to see what one can say about probability density estimates in some domain of long-range dependence. Let us consider a stationary process Y_{k}, with a density function, given by

$$
Y_{k}=G\left(X_{k}\right)
$$

with X_{k} Gaussian and stationary. One can show [see Ibragimov and Rozanov (1978)] that if the correlation [of ($\left.X_{k}\right)$]

$$
\begin{equation*}
r(s) \simeq q|s|^{-\alpha}, \quad \alpha>1 \tag{9.1}
\end{equation*}
$$

then X_{k} is a process with asymptotic correlation zero and with corresponding mixing coefficient $\rho(s)=o\left(|s|^{\beta \beta}\right)$ for $\beta<\alpha-1$. This is also true of the process Y_{k} since it is obtained by an instantaneous function applied to the process X_{k}. Suppose we wish to consider a kernel estimate of the density function of Y_{k},

$$
f_{n}(y)=\frac{1}{n b(n)} \sum_{k=1}^{n} \omega\left(\frac{y-Y_{k}}{b(n)}\right)
$$

A theorem of Bradley (1983) as applied here would give us the usual result on asymptotic distribution of the estimates if ω is nonnegative, bounded and band limited with integral one.

Let us now consider the case in which α in (9.1) is such that $0<\alpha<1$. The process X_{k} is then long-range dependent by the remarks in the previous section. If we expand in terms of Hermite polynomials as in the last section,

$$
\omega\left(\frac{y-G(x)}{b(n)}\right)=\sum c_{j, n} H_{j}(x)
$$

with

$$
c_{j, n}=\frac{1}{j!} \int \omega\left(\frac{y-G(x)}{b(n)}\right) H_{j}(x) \frac{\exp \left(-x^{2} / 2\right)}{\sqrt{2 \pi}} d x
$$

The second moment of a single term is

$$
\int \omega\left(\frac{y-G(x)}{b(n)}\right)^{2} \frac{\exp \left(-x^{2} / 2\right)}{\sqrt{2 \pi}} d x=\sum_{k=0}^{\infty} c_{k, n}^{2} k!
$$

and the variance is $\sum_{k=1}^{\infty} c_{k, n}^{2} k!$. The covariance of two terms in terms of jointly Gaussian variables X, X^{\prime} with covariance r is

$$
\operatorname{cov}\left(\omega\left(\frac{y-G(X)}{b(n)}\right), \omega\left(\frac{y-G\left(X^{\prime}\right)}{b(n)}\right)\right)=\sum_{k=1}^{\infty} c_{k, n}^{2} k!r^{k} .
$$

Let us assume that ω is bounded, of finite support and such that

$$
\int \omega(u) d u=1
$$

Further let G be continuously differentiable with $\left.G^{\prime}\left(G^{-1}\right)(y)\right) \neq 0$. We can then get a first order asymptotic intermediate estimate for $c_{j, n}$. Formally setting $u=(y-G(x) / b(n)$, we have

$$
\begin{aligned}
c_{j, n}=\frac{1}{j!} \int \omega(u) & H_{j}\left(G^{-1}(y-b(n) u)\right) \exp \left\{-\frac{\left(G^{-1}(y-b(n) u)\right)^{2}}{2}\right\} \\
& \times b(n) \frac{1}{\sqrt{2 \pi}} \frac{d u}{G^{\prime}\left(G^{-1}(y-b(n) u)\right)} .
\end{aligned}
$$

As $b(n) \downarrow 0$, we obtain to the first order for fixed j

$$
\begin{equation*}
c_{j, n} \simeq \frac{1}{j!} H_{j}\left(G^{-1}(y)\right) \exp \left\{-\frac{\left(G^{-1}(y)\right)^{2}}{2}\right\} \frac{1}{\sqrt{2 \pi}}\left|G^{\prime}\left(G^{-1}(y)\right)\right|^{-1} b(n) \tag{9.2}
\end{equation*}
$$

From Szegö's orthogonal polynomials [(1975), page 199 ff .], we obtain the following asymptotic expression for $H_{j}(x)$, namely that

$$
e^{j / 2} 2^{-1 / 2} j^{-j / 2} H_{j}(x)=\exp \left(\frac{x^{2}}{4}\right) \cos \left((2 j+1)^{1 / 2} \frac{x}{\sqrt{2}}-\frac{n \pi}{2}\right)+O\left(j^{-1 / 2}\right)
$$

holds uniformly over any finite x interval as $j \rightarrow \infty$. This implies that the asymptotic expression (9.2) is still valid as long as $j^{1 / 2}=o\left(b(n)^{-1}\right)$ and $H_{j}\left(G^{-1}(y)\right) \neq 0$. If we make the same change of variable $u=(y-G(x)) / b(n)$ and use the same estimation procedure as that employed on (9.2), we find

$$
\begin{aligned}
& \operatorname{var}\left(\omega\left(\frac{y-G(X)}{b(n)}\right)\right) \\
& \simeq b(n) \frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{\left(G^{-1}(y)\right)^{2}}{2}\right\}\left|G^{\prime}\left(G^{-1}(y)\right)\right|^{-1} \int \omega(u)^{2} d u .
\end{aligned}
$$

From (9.2), it is clear that if $j^{1 / 2}=o\left(b(n)^{-1}\right)$, we would expect

$$
\begin{aligned}
c_{j, n} \simeq & e^{j / 2} e^{-j / 2-1} 2^{-1 / 2} \pi^{-1 / 2} \\
& \times \cos \left((2 j+1)^{1 / 2} \frac{G^{-1}(y)}{\sqrt{2}}-\frac{n \pi}{2}\right)\left|G^{\prime}\left(G^{-1}(y)\right)\right|^{-1 / 2} b(n)
\end{aligned}
$$

and for $j^{1 / 2} \asymp b(n)^{-1}$, one would still expect

$$
c_{j, n}=O\left(e^{j / 2} j^{-j / 2-1 / 2}\right) b(n)
$$

Here $A \asymp B$ means that the ratios $A / B, B / A$ are bounded. However if $b(n)^{-1}=o\left(j^{1 / 2}\right)$ with ω piecewise smooth,

$$
c_{j, n}=O\left(e^{j / 2} j^{-j / 2-1 / 2}\left\{j^{1 / 2} b(n)\right\}^{-1}\right) b(n)
$$

Thus if $j^{1 / 2}=o\left(b(n)^{-1}\right)$,

$$
c_{j, n}^{2} j!\simeq j^{-1 / 2}(2 \pi)^{-1} \cos ^{2}\left((j+1)^{1 / 2} G^{-1}(y) / \sqrt{2}-(n \pi) / 2\right) b(n)^{2}
$$

and

$$
\sum_{j=1}^{A b(n)^{-2}} c_{j, n}^{2} j!=O(b(n))
$$

But

$$
\sum_{j-A b(n)^{-2}}^{\infty} c_{j, n}^{2} j!=O\left(\sum_{j-A b(n)^{2}}^{\infty} j^{-1 / 2} j^{-1} b(n)^{-2}\right) b(n)^{2}=O\left(A^{-1 / 2} b(n)\right) .
$$

Now

$$
\sum_{j=1}^{n} \omega\left(\frac{y-G\left(X_{j}\right)}{b(n)}\right)=\sum_{k-1}^{\infty} c_{k, n} \sum_{j=1}^{n} H_{k}\left(X_{j}\right) .
$$

If $k \alpha<1$, the variance of $\sum_{j=1}^{n} H_{k}\left(X_{j}\right)$ is

$$
\sum_{s=-n}^{n}(n-|s|) r(s)^{k} \asymp \sum_{s=-n}^{n}(n-|s|)(1+|s|)^{-k \alpha} \asymp n^{2-k \alpha},
$$

while if $k \alpha>1$, the variance grows at a rate proportional to n. Let m be the largest positive integer such that $m \alpha<1$. The variance contribution of the first term ($k=1$) is

$$
\sigma^{2}\left(c_{1, n} \sum_{j=1}^{n} H_{1}\left(X_{j}\right)\right) \asymp n^{2-\alpha} b(n)^{2} .
$$

The variance contributions of the second $(k=2)$ up to the m th terms $(k=m)$ will be $\asymp n^{2-2 \alpha} b(n)^{2}, \ldots, n^{2-m \alpha} b(n)^{2}$, respectively. The sum of the remaining terms will be $\asymp n b(n)$. The question as to whether the first term dominates is one of whether $n b(n)=o\left(n^{2-\alpha} b(n)^{2}\right)$ or $n^{1-\alpha} b(n) \rightarrow \infty$. Let us assume $n^{1-\alpha} b(n) \rightarrow \infty$ and that $G^{-1}(y) \neq 0$ [is not a zero of $H_{1}(\cdot)$]. Let us also consider
another value y^{\prime} such that $G^{-1}\left(y^{\prime}\right) \neq 0$. Then

$$
n^{\alpha / 2}\left[f_{n}(y)-E f_{n}(y)\right], \quad n^{\alpha / 2}\left[f_{n}\left(y^{\prime}\right)-E f_{n}\left(y^{\prime}\right)\right]
$$

are jointly asymptotically normal with mean zero, variances $\alpha(y)^{2}$ and $\alpha\left(y^{\prime}\right)^{2}$, respectively, and covariance $\alpha(y) \alpha\left(y^{\prime}\right)$, where

$$
\alpha(y)=G^{-1}(y) \exp \left(-\frac{G^{-1}(y)^{2}}{2}\right) \frac{1}{\sqrt{2 \pi}}\left|G^{\prime}\left(G^{1}(y)\right)\right|^{-1}
$$

The process $n^{\alpha / 2}\left[f_{n}(y)-E f_{n}(y)\right]$ if $G^{-1}(y) \neq 0$ just appears to be asymptotically degenerate in distribution and of the form

$$
\alpha(y) Z
$$

with $Z N(0,1)$.

