
Chapter 8 

Random Effects Models for 
Repeated Binary Data 

The models and methods for repeated binary data which were considered 
in Chapter 7 are most appropriate when the data are balanced, that is, 
there are n common occasions of measurement and imbalance ( ni =I n 

for some i) arises because of missing observations. When the unequal 
ni arise because of inherently unbalanced data or because of clustered 
designs, the most natural approach is to consider extending the LMM 
using random effects to the GLM setting. 

By analogy to the linear case, we assume each subject has a vector of 
subject-specific effects, bi, and we add Zibi to the linear predictor Xi{3. 
Letting Yi denote the ni x 1 vector of binary outcomes, we have 

(8.1) 

where 
(8.2) 

£ is the link function, and g the inverse link function. As before, we 
assume that E(bi) = 0 and var(bi) =D. Generally, we also assume that 
given bi, the Yij's are independent. 

We use the J.Li, (3* notation to emphasize that J.Li and /3* are con
ditional and not marginal parameters. Recall that for J.li, f3 defined in 
Chapters 6 and 7, we assume that 

E(Yi I Xi) = J.li = g(Xif3). 

But here we have 
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so that 
E(Yi I Xi) = E (p,'i) =I= g(Xi/3*) 

for nonlinear link functions. Thus the fixed effects in this mixed effects 
model are not directly comparable to those in the GLM, the 'mixed' 
model parameterization or the GEE. 

In some cases, these conditional parameters are comparable to marginal 
parameters. For example, with the log-link where 

and bi is scalar, we have 

E(Yij I Xij) = eXJ;f3* E( eb;) 

XT.(3* + ln E(ebi) = e '1 

so that ln E( eb;) merely acts like a constant offset for each observation. 
Thus apart from the intercept, (3* = (3. 

For the logistic link function 

where expection is over the distribution of bi. Various authors (e.g., 
Newhaus et al., 1991, Diggle et al., 1994) have shown that for the logis
tic link function the components of (3* are typically attenuated relative to 
the components of (3. Because the expression for 11; is an integral, in the 
binary setting, 11; usually cannot be computed except by approximation. 
This makes estimation complex. We will consider two general approaches 
to estimating the parameters in random effects models: moment estima
tion and likelihood approaches. We now drop the superscript * on (3 and 
f.-li for notational simplicity, it being understood that they refer to the 
parameters in (8.1)-(8.2). We shall also use the following notation: 

g' ( X'f;f3 + Z'f;bi) = g' (Rij) = 8 gj 8Rij, 

ag ( X'f;f3 + zJ;bi) j abi = g' ( X'f;f3 + zJ;bi) zJ;, 

where XJ; and zJ; are column vectors denoting the jth rows of Xi and 
Zi, respectively. Further, 

Note that for the logistic transform, g'(Rij) = Pij(1- Pij) where Pij = 
g(Rij)· Hence 
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where 

8.1 GEE approach to estimating f3 

The basic idea here is to find the marginal means and variances of Yi in 
terms of the conditional (3 vector and D, and use a GEE-type approach 
to estimation. This is attractive, because as we show in Section 8.2, full 
likelihood approaches are numerically difficult. We here further assume 
that the Yij 's given bi are independent, so that 

where 
Pij = P(Yij = 1 I Xij, bi) = g(Xij(J + Zijbi)-

Provided we specify the distribution of bi, we may in principle compute 

and 
var (Yi I Xi)= E[diag {Pij(1- Pij)}] + var Pi· 

Notice that because of the nonlinear link function, specifying simply the 
moments of bi is not generally sufficient. 

For certain link functions, and distributional assumptions on bi, e.g., 
probit or log and bi "' N(O, D), it is possible to find closed form ex
pressions for the marginal means and variances. In other cases various 
approximations have been used. For a probit link and bi "' N(O, D), 
Zeger et al. (1988) show that 

where ap(D) =I DZijZlj +I 1-q/2 . For the logit link there is no corre
sponding closed form solution, but Johnson and Kotz (1970) show that 

where 

and 
c2 = 16V3/(15 1r). 
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Zeger et al. (1988) use this approximation plus Taylor series approxima
tions for var (Yij I Xi) to get GEE type estimating equations for /3 and 
D. 

This same general approach has been used by Gilmour et al. (1985), 
who used the probit link and a normal assumption for bi to get closed 
form solutions for the binomial case. They develop estimating equations 
for /3 and D similar to those given by Zeger et al. (1988). 

A related approach (Goldstein, 1991) is to write a linear model as 

Yij = Pij + eij 

where for the binary case, the eij 's are independent with 

var (eij I bi) = Pij(1- Pij)· 

Using a first order approximation for g (Xi/3 + Zibi) around bi = 0, we 
can write 

Yi = g (Xi/3) + (&gj&bi) I bi + ei. 
b,=O 

Letting Rw denote var(Yilbi) with bi evaluated at zero, when the logit 
link function is used we can approximate the variance of Yi with 

Var (YiiXi) = Rw + RwZiD Z[ Rw. 

A more general expression for the case where g'(.Ci)-!- g(.Ci) (1- g(.Ci)) is 
given by 

var (YiiXi) =Rio+ !::.wZiDZ[ !::.w 

where !::.w is diagonal with (g'(.Ci)) on the diagonal, and bi is evaluated 
at zero. 

Since now it is assumed that 

E(Yi) :::: g(Xlj/3), 

it is straightforward to implement GEE to estimate {3 given D. Breslow 
and Clayton (1993) show that using Fisher scoring to solve GEE can be 
expressed, as in the LMCD case, as iteratively weighted least squares 
regression of Yi on xi with weight matrix wi being proportional to the 
inverse of var(YiiXi): 

Wi = (t::.i(/ Rw!::.i(} + ZiDZi)- 1 , 

and "fi is the "working" variable "fi = X[/3 + !::.i(i1 (Yi- g(X[/3)). Since 
the model for Yi has been linearized, estimates for bi can be taken as 

~ T - T~ 

bi = Dzi wi (Yi- xi /3). 

Estimates of D may be obtained using methods discussed in Section 8.4. 



N. M. LAIRD 125 

8.2 Likelihood Approaches 

In principle, one can generalize the ML normal theory approach, esti
mating (3 and D by marginal ML, that is, integrating out the bi and 
maximizing the resulting likelihood: 

and using empirical Bayes for bi: 

where (3, D are evaluated at the MLE's. For the binary case, assuming 
independence given bi, we have 

for 
Pij = E(Yij 1 xij, bi) = g (xl;/3 + Z'f;bi). 

What makes this approach difficult is that the integral in (8.3) does not 
have a closed form solution in the general case, nor do the derivatives of 
L(/3, D). If bi is a scalar normal random variable, so that Z[ = (1, ... , 1), 
then Gaussian quadrature can be used to give a very good approximation 
to L(/3, D) using 

K 

L(/3, D)= II~1 L hz(Yi, Xi/3, D, Sz)Wz 
l=l 

where Sz and Wz are the known mass points and weights for the N(O, 1) 
integral and depend only on the number of grid points. Here 

h ("'7 X (3 D S) lin, Y;j (1 )1-Yii z .1. i, i , , l = j=l Pijl - Pijl 

and 
PijZ = g (xi? f3 + -ID Sz) . 

Anderson and Aitken (1985) point out that using this approach, L(/3, D) 
can be maximized using ordinary logistic regression, with K n+ responses 
and linear predictors X'f; (3 + .JD Sz, .e = 1, ... , K. This approach is easily 
implemented, but can be unmanageable if n+ is large. A similar approach 
was used for the compound Poisson by Hinde (1982). The approach taken 
by most authors in this setting is to seek other approximations to L([3, D) 
and its derivatives. 
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8.3 An Approximate Likelihood Approach: PQL 

Penalized Quasi-Likelihood (PQL) (Green, 1987) is a method for ap
proximate quasi-likelihood estimation with random effects. Similar ap
proaches were proposed by Laird (1978), Stiratelli et al. (1984), Schall 
(1991) and McGilchrist and Aishett (1991). These approaches are re
viewed in the paper by Breslow and Clayton (1993). 

The PQL approach is more general than marginal ML, since f(~ I 
(3, bi) in (8.3) is replaced by its quasi-likelihood equivalent 

qli = exp {- f di(~j, g(Xljf3 + Zijbi))/2¢} 
J=l 

where di ( ·) is an appropriate deviance function. We restrict attention to 

the binary case where <P = 1 and the deviance is ln (PJj (1- Pij)l-Y,j), 
up to an additive constant. The PQL approach is to use Laplace's 
method for integral approximations. After various approximations and 
much simplification, the log penalized quasi-likelihood can effectively be 
written as 

1 N 
ql(f3,D) = 2 L ln I I+ z[(.6.i1Vi.6.i1)-1ZiD 1 

i=l 
N ni N 

- LLln (P~j(1- Pij)l-Y,J)- ~ Lbf D-1bi, 
i=l j=l i=l 

where 

Assuming that the dependence of Vi on (3 can be ignored and D is 
known, approximate likelihood equations for (3 and estimating equations 
for the bi can be obtained by jointly maximizing the last two terms, i.e., 
maximizing 

t {~ In (P~'(l- P•;)1-v.,)- ~~b;n-1b} (8.4) 

as a function of (3 and BT = (bf, ... , b'Jr), while D is held constant. For 
the binary case with logit link function, this leads to 

N 

2::: xr (~ -Pi) = a 
i=l 
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and 

where 

Precisely this same set of estimating equations for ((3, b) was derived 
by Stiratelli et al. (1984) (see also Knuiman and Laird, 1988), using an 
empirical Bayes approach. Drawing on the normal analogy, the unified 
empirical Bayes approach to estimating (3, B and D is to assign (3 a flat 
prior, estimate ((3, B) by their joint posterior means, and var (fj, B) by 
their posterior variance matrix, holding D fixed. Then D is estimated 
by maximizing the marginal likelihood, obtained by integrating (3 out of 
(8.3) as well. Notice that with multivariate normality, the joint posterior 
moments are equal to marginal posterior moments for ((3, D), the poste
rior means equal the posterior modes and the posterior variances will be 
the inverse second derivative matrices. 

Because of the intractability of the posteriors, posterior modes rather 
than means are used. But, with a flat prior for (3, the posterior mode 
for ((3, B) given D is obtained by maximizing (8.4), i.e. the empirical 
Bayes and PQL estimates for (3, B coincide. Notice that the likelihood 
equations for (3 look exactly like ordinary logistic regression, except that 
the l~near predictor is X[ (3 + Zibi, not X[ (3. When D ~ 0, bi ~ 0 
and (3 is approximately the ordinary logistic regression estimator, since 
D ~ 0 =? bi ~ 0. Alternately, when D is very large so that D-1"bi ~ 0, 
the estimate for bi requires that 

which would be the same as treating the bi 's as fixed constants and 
maximizing 

N ni 

L L ln {P~J (1- Pij)I-Yij)} 
i=l j=l 

as a function of ((3, B). Breslow and Clayton (1993) suggest estimating 
var({J) by v, where v = (~xrwixi)- 1 . 

Now consider estimation of D. In the normal case, the variance 
components may be found using the profile likelihood approach. Here 
estimating D is more complicated because of the dependence of Wi on 
(B(B), B(B)) where e denotes the parameters in D. If we ignore that 
dependence, and replace f(Yij I Pij) by a standard kernel for (fij -
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XJ;(J), one can again obtain a similar set of scoring equations for D by 
maximizing 

N N 1"' 1"'- "'T - " 2 ~ ln I wi I - 2 ~ (Yi - Xi/3) wi (Yi - Xi/3) 
i=l i=l 

for maximum likelihood, or 

for REML. 

The alternative approximation of Stiratelli et al. (1984) is to maxi
mize the marginal likelihood to estimate D, integrating out both f3 and 
B. They avoid direct approximation of this integrated likelihood by ap
proximating the derivatives instead. If the bi's were observed, l:,bib[ 
would be the sufficient statistic for D. Hence, as in the normal theory 
case, EM estimating equations yield 

D ~ [t E ( (b; I r;, D) (E(bf I Y;, D)) 

+ E ( var(b; I Y;, {J, D)) + var E(b; I Yi, {J, D)] IN. 

These expectations can be readily evaluated by assuming that the joint 
posterior of (/3, B) is approximately normal, with mean given by (jj(D), 
B(D)) and variance given by the inverse second derivative matrix. These 
approximations should work well provided q is small relative to each ni 
and N is large, but may be poor otherwise. 

The PQL approach for estimating e and f3 gives biased results, and in 
some cases the bias can be substantial. Breslow and Lin (1995) and Lin 
and Breslow (1996) study the bias and give simple correction formulas 
for using the PQL approach when q = 1. 
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