
Chapter 5 

Random Effects and the 
Linear Mixed Model 

Until now, we have considered primarily the estimation of regression 
parameters from the linear model, i.e., /3 in the model 

(5.1) 

as well as the variance parameters when var(Yi) has an arbitrary struc­
ture. In this chapter we consider the use of random effects in modeling 
longitudinal data or clustered outcomes. Many researchers view it as 
more natural to assume that the mean response depends upon a com­
bination of population parameters /3 and subject-specific effects. In the 
setting of the linear model where Yi is linear in the parameters and the 
error terms, it is natural to also assume Yi is linear in the subject-specific 
effects. As we will show, this still leads to the linear model (5.1), but 
var(Yi) now has a special random effects structure. 

The use of random effects offers several benefits when modeling longi­
tudinal data. First, it provides a way to model correlation in unbalanced 
designs. Secondly, random effects can be used to estimate subject-specific 
effects arising in several applications. Finally, it offers an optimal way to 
combine within- and between-subject data. 

Random effects are useful when strict measurement protocols are 
not followed and we have measurements made at arbitrary, irregularly 
spaced intervals. It is not desirable to design a study in this way, but 
such data sets are not uncommon. It can happen that we start with 
a strict protocol but because of missingness and missed timing, we end 
up with measurement times that do not conform to a set of protocols­
defined occasions. Use of retrospectively collected records for analysis 
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also often leads to unbalanced designs. Random effects models handle 
this in a very natural way. The same is true with clustered data, where 
units are nested within cluster. Another setting is where the metameter 
chosen for analysis differs from age or time, as in using current height 
to predict lung function, i.e., should variance in lung function depend 
on age, occasion of measurement, height or some combination? Finally, 
we may choose to rescale the time variable differently for each subject, 
to reflect time before and after a critical event, such as menarchy or 
sera-conversion. 

This chapter is organized as follows. First we introduce ideas in terms 
of a two-stage random effects model with both population parameters 
and subject effects, then we consider general linear mixed model, esti­
mation of /3 and :E by ML and REML estimation, and finally estimation 
of the random effects. 

5.1 Two-Stage Random Effects Models 

Two-stage random effects models begin by assuming at Stage 1 that each 
unit has its own design on time, denoted by Zi, and its own parameter 
vector f3i· Given Zi and /3i, we assume that: 

Stage 1. 

Yi = zi /3i + ei (5.2) 
ni xl n,xq qxl qxl 

where ei rv NnJO, a2 I), and the ei are independent. The eij's are iid 
N(O, a 2), so can be thought of as measurement error. The /3i are often 
called the "true regression coefficients," since the observed responses for 
the ith subject are assumed to follow the curve with coefficients /3i, but 
with added measurement error ei. This defines Stage 1 of the model. 

Here Zi specifies the growth curve model, such as linear or quadratic 
(or a spline, etc.) or more generally, the pure "within subject covariates." 
For example, we may have 

1 til 
1 ti2 

eil 

Yi = ( f3oi) + (5.3) 
f3li 

1 tin, ein, 

Notice that q, the dimension of f3i, does not vary with i. Apart from the 
intercept, Zi contains only within subject covariates. We accommodate 
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subject-specific covariates in Stage 2. A way to think about the Stage 1 
model is that generally we want to be able to obtain estimates of f3i and 
0"2 using just the data from the ith subject, i.e., 

This may not be possible for each subject (if, e.g., ni ::::; q), but it should 
be feasible in principle. Thus between subject variables, such as sex, 
cannot be included at Stage 1. Essentially, Stage 1 consists of separate 
regression models for each subject, with the same set of predictors, but 
possibly different values for the predictors. 

REMARK. Note that we could allow correlation between eij, ew, but 
this would change the interpretation of the f3i 's. Assuming correlation 
between the error terms implies that eij is no longer simply "measure­
ment error" but includes model misspecification at the individual level. 
Alternately, we can have two "error" components, one modeling serial 
correlation resulting from model misspecification, and one modeling mea­
surement error, as in the Diggle (1988) model discussed in Chapter 1. 

The f3i 's are random variables; to specify population parameters we 
model the mean and variance of the random effects at Stage 2. We 
model variation in the f3i's as a function of subject-specific covariates 
and residual between subject variation: 

Stage 2. 

E (f3i) = Ai f3 , (5.4) 
qxl qxp pxl 

var(f3i) = D . (5.5) 
qxq 

This completes the Stage 2 model. This model allows some of the vari­
ation in the f3i 's to be explained by covariates contained in Ai; the re­
maining variation is measured by D. Note that Ai cannot include within 
subject covariates, such as time, because the outcome of the model is 
"f3i'' which does not vary over time. 

ExAMPLE. Suppose we have two groups, and we model a linear 
decline in each, with mean slope and intercept depending upon group, 
i.e., we use model (5.3) to describe individual responses, Yij· Here tij is 
the time (since beginning of study) that the jth measurement was made 
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for the ith subject. In other settings, tij might be age of subject. Denote 
the group by a dummy variable: 

9i = 1 
9i = 0 

if GR 1, 
if GR 0. 

Consider a model that assumes the mean slope and intercept differs from 
each group: 

E(f3oi) = (31 + f329i, 
E(f3Ii) = (33 + f349i· 

(5.6) 

Here (31 is the the mean intercept for group 0, and (31 + (32 is the mean 
intercept for group 1, so (32 is the difference in the intercepts in the two 
groups; (33 is the mean slope in group 0 and (34 is the difference on the 
slopes. Thus (32 might be considered the main effect of group and (34 the 
group x time interaction effect, where the time trend is assumed to be 
linear. 

In matrix notation, (5.6) implies 

E(~,) ~A,(~) 
where 

A- = [ 1 9i 0 0] 
t 0 0 1 9i . 

Further assume that regardless of treatment group, 

var (f3i) = D = [ doo do1] 
d1o dn 

where 
doo = var(f3oi), 
dn = var(f3Ii), 
d10 = cov(f3oi, f3Ii)-

The variation in f3oi after adjusting for person specific covariates is d00 , 
and similarly for dn. Figure 5.1 illustrates a scenario for group 0, where 
individual curves are plotted using f3oi + f3Iit. The heavy line represents 
the curve obtained from plotting (31 + (33t for group 0. 

In this picture there is substantial variability in the intercepts (d00 ), but 
apart from two subjects, the slopes are nearly constant (d11 ~ 0). 

REMARK. The coding of the Stage 1 regression variables is critical for 
the proper interpretation of the mean and variance effects. Returning to 
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FIGURE 5.1. 

our example, if tij is time since baseline (sot= 0 denotes baseline), then 
f3oi represents the expected response at baseline. If tij is age (say aij ), 
then the f3oi 's will rarely have a useful interpretation because they repre­
sent expected response at age zero. In this setting one could contemplate 
coding tij as (aij- ai-) or (aij- a .. ) or (aij- A), where A is some fixed 
age in the age range of participants. This last choice will sometimes be 
most attractive since it makes the f3oi's interpretable as the individual's 
expected response at the common age A, and doo is the variation around 
the response at age A. Notice that a response at A need not be observed 
for any subject as the model is used to predict the response at A for each 
subject. If tij = (aij - ai-) then f3oi estimates the subject's response at 
their mean age over the period of follow-up. This may vary considerably 
from subject to subject, and create a large value for doo which is not 
meaningful. This is rarely a good choice for centering. 

In some circumstances, it may be useful to use tij = ( aij - at), where 
ai is the age that the ith individual experiences a benchmark event. 
Namova et al. (2001) use random effects models to characterize change 
in body fat in girls before and after menarchy. The study was designed 
to begin annual follow-up prior to menarchy and continue for four years 
after menarchy. For analysis, time is coded as time since menarchy, and 
could be positive or negative. The intercepts, f3oi's, provide an estimate 
of the individuals body fat at menarchy, even though no actual measures 
of body fat were made at this occasion, except by chance. 

Returning to the two-stage model, we use the identities 
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where Xi contains the covariates in Zi and Ai, to show that 

and (5.7) 

Hence we have the same general linear model for correlated data, except: 

1. We have a special structure for Xi given by Xi= ZiAi, which im­
plies also that all covariates can all be classified as either "within" 
or "between" subject covariates. As discussed in the next section, 
this can be a serious limitation. 

2. We have a special random-effects structure for var(}i) = :Ei as 
ZiDZ'{ + a-2 I. Notice that this allows variances and covariances to 
depend on individual times of measurements. Notice also that the 
number of variance-covariance parameters does not depend upon 
the ni· 

Returning to the example, where Zij = (1, tij), (5.7) implies that 

var (Yij) = (1, tij) D ( t~j) + o-2 

= doo + 2tijdw + ttjdu + o-2 

depends upon tij, it is easily shown that cov (Yij, }ij') depends upon 
tij, tij'. Hence :Ei(O) depends upon the pattern of observation times, as 
well as the variance and covariance parameters. Notice that only four 
parameters (a-2 , doo, d10 , d11 , or in general, 1 + q(q + 1)/2) are needed to 
model var(}i). 

REMARK. The case where ni = n, and Zi = Z, is very special. Here 
each subject has exactly the same design on time. In this setting it is well 
known that in the absence of subject-specific covariates, the population 
mean curve is the same as the average of the individual curves. In ad­
dition, OLS estimates of each subject have identical precision (assuming 
a-2 is the same for each subject). 

If in addition, Ai can be formulated as Ai = af ®I, where ai is a k x 1 
vector of subject-specific covariates and I is a q x q identity matrix, then 
the regression of each component of f3i on the covariates has the same 
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design matrix; i.e., for some partition of {3 we can write the following: 

E(f3oi) = a[ {3° 

E(f31i) = a[ {31 
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where the {3°, {31 , ... , {3q are distinct vectors, each of length k x 1, so that 
{3 is gk x 1. Essentially Ai = a[ Q9 I means that the covariate models 
are the same for each random effect, i.e., if sex affects the intercept, it 
affects the slope, etc., as well. 

In this special setting, one can sometimes reduce the estimation prob­
lem to a series of univariate regressions without any loss of efficiency. 
Fir~t, each f3i is estimated by OLS for each subject, then each element 
of f3i is analyzed using univariate regression methods. This approach is 
fully efficient if the assumption that ~ = Z D zT + CY2 I holds, and it may 
be reasonably efficient under weaker assumptions. Of course, one cannot 
use univariate methods to test for global covariate effects on time, and 
there will be further loss of efficiency with unbalanced designs of missing 
data, or settings where the design matrix departs from a[ Q9 I. But it 
does suggest that this simple two-step strategy is worth considering if 
the design is nearly balanced, and the covariates affect all of the model 
coefficients. 

5.2 A Linear Mixed Model (LMM) 

In this section we reformulate the two-stage random effects model as a 
more general mixed model that allows greater f:l.exibility in handling all 
types of covariates. We rewrite f3i as 

where bi "' Nq(O, D). Hence bi gives the coefficients for an individual's 
residual curve after the covariate effects have been accounted for. For the 
example in 5.1, boi is an individual's deviation from the mean intercept 
for their treatment group, and b1i is their residual from the mean slope. 

We can now combine Stages 1 and 2 of the random effects model to 
write 

Yi = Zi (Ai,6 + bi) + ei 

= (ZiAi) {3 + Zibi + ei. 
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Thus we have partitioned Yi into three components: 

Yi =mean+ 
"between subject "within subject 

residual" + residual" 

The between subject residual is bi with zero mean and variance D, and 
ei is the within subject residual with zero mean and variance cr2 In,. It 
follows that 

and 
var (Yi) = ZiDZ[ + cr2 I. 

Notice that this two-stage derivation requires that Xi = ZiAi have a 
special structure which is inconvenient, since Ai must have only non­
time-varying covariates and Zi has only time-varying covariates (except 
the intercept). In order to allow for a sufficiently complex structure 
for the mean response (ZiAi),6, it may be necessary to include many 
variables in Zi, requiring an equally complex .E. Note that the same 
Zi appears in both E(Yi) and var(}i). Simply modifying the model to 
allow Xi to include whatever covariates we want without changing Zi 
gives more flexibility. For example, in modeling mean lung function in 
children as linear in age and height, using the two-stage model would 
require D to be at least 3 x 3 since both age and height vary over time 
within a subject. 

Once we get away from the concept of two-stage, not only can we let 
Xi be arbitrary, we can also choose q arbitrarily, i.e., we could assume 
the intercepts vary randomly but the slopes do not, in which case Zi is 
just an ni x 1 vector of ones. This yields compound symmetry: 

var(Yij) = doo + cr2, 

cov(Yij, Yij') = doo-

Thus we define the linear mixed model (LMM) as follows: 

Both bi and ei are independent, zero mean error terms. The only con­
straint on Xi and Zi is that Zi be a subset of the columns of Xi. This 
is because we think of Zi bi as zero mean residuals, so they should "de­
viate" from some corresponding nonzero mean. For example, it would 
be counterintuitive to let the individual slopes deviate in the population 
and assume that the population mean slope is zero. 
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Notice that (5.8) is like the LMCD for correlated data in that 

E (Yn;xl) = Xi/3 

but now 
var (Yn; X 1) = ZiD z'[ + a-2 I 
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has the characteristic random effects structure. We also have random 
effects (bi's) which can be estimated. We can generalize this model even 
further to allow var(ei) = Ri. Notice that Ri cannot be completely 
unstructured because we will have overparameterized. Generally, both 
the dimension and the elements of Ri may depend on unique times of 
measurement. 

Sometimes, as in the Diggle (1988) model, Ri is expanded further to 
include both a serial measurement component, say Si and a measure­
ment, or sampling error component, say Mi, with var(Mi) = a-2 In;xn; 
and var Si = r 20i; Oi may have one of the structures considered in Sec­
tion 1.4. Hence Ri = a-2 I +T20i. As noted above, for arbitrary Zi, D and 
Oi, there are identifiability problems which are not readily quantified for 
the general case, hence the different components of 

var (Yi) = ZiDZ'[ + Ri 

should be kept relatively simple. McCulloch and Searle (2001) discuss 
several models for var(Yi) in this setting. 

5.3 ML Estimation for the LMM 

For the purpose of estimating (3 and (), where () is the vector of parameters 
in D and Ri, the LMM can be viewed as a special case of the LMCD 
where :Ei has a variance component structure. Notice that specification of 
the LMM does not require normally distributed error terms. When :Ei is 
known, the optimal estimator (and also the ML assuming normality) of (3 
is ,@(:Ei1). Method-of-moment, ML and REML estimates for() have been 
proposed (Jennrich and Schluchter, 1986; Laird and Ware, 1984; Vonesh 
and Carter, 1982). We will discuss only ML and REML estimation; 
software is readily available for ML and REML. As in the general case, 
ML and REML esimates are consistent even in the absence of normality. 
In some settings we may also want to estimate the individual random 
effects (bi's). A special theory is needed for these; it will be discussed 
in 5.5. For the remainder of this section we assume that bi "' Nq(O, D), 
ei "' Nn; (0, Ri) and given Xi, Zi the Yi's are independent, i = 1, ... , N 
so that we may derive ML and REML estimates of e. 
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First consider estimating e via ML (assuming f4 = 0"2 I). By defini­
tion (iJML, ~L) are obtained by maximizing £(/3, e) over (j3, e) where 

N 1 T 1 
£(/3 e)= I1--e-1/2(Yi- Xi/3) L:i (Yi- Xi/3) 

, i==1 II:il1/2 

I:i = ZiDZ[ + 0"2 I, 

and 
eT = (0"2 , doo, du, d10, etc.). 

As before, ,8(L:i1) can be obtained in closed form for given e. While ex­
pressions for the likelihood equations for e can be found by directly differ­
entiating the likelihood and substituting in ;3(I:i1) for /3, it is instructive, 
and easier, to use the EM approach to derive them, even though most 
computing packages do not routinely use the EM for the computations. 

Here it is most convenient to let the complete data be (Yi, bi, ei), i = 
1, ... , N, since this gives an easy maximization fore at theM-step. The 
observed data are just the li's. It is then convenient to first obtain the 
joint distribution of (li, bi, ei), as 

( 
~ ) _ [ ( Xi/3) ( ZiD Z[ t 0"

2 I ZiD 0"2 I) l b2 - N 0 , D Zi D 0 . 
ei 0 0"2 I 0 0"2 I 

Notice that cov(Yi, bi, eif is singular, (cov(li, Zibi + ei) =I) and given 
(bi, ei), li contributes nothing to the estimation of e. However, the 
marginals, (li, bi) and (Yi, ei) are not singular and these are needed in 
our calculations. 

As in ML estimation with the LMCD, given I:, the ML estimate of 
j3 is WLS(I:). Hence we derive likelihood equations for thee parameters 
only. Thus the relevant piece of the complete data likelihood is 

so that 2:!1 bib[ and 2:!1 e[ ei are the complete data "sufficient statis­
tics." It follows that the M-step for 8 is 

N 

fj = Lbib[ /N 
i==1 
N 

&2 = 'LeT eijL:ni. 
i==1 
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At the E-step, given e and fj = ,6(~(e)- 1 ) calculate 

N 
""' T ~~ s1 = L...J E(bibi IYi, e, ,6) 
i=l 

and 

i=l 

89 

Given the joint moments of (Yi, bi, ei), it is straightforward to show that 
the conditional moments of ei and bi given 1i are: 

(f) E(eieTIYi) = a-4~i1 (Yi- Xi,6)(Yi- Xi,6f~i1 

+ a-2{!- (72~;;1} 

It follows that the likelihood equations for eML and fjML are the 
solution to the following: 

N 

jj = ~ [i3z[E;;1 ( Yi- xJ3) ( 1i- xi/3) T f:;;1 zijj 
(5.9) 

(5.10) 
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and 

(5.11) 

where 
~ ~ T ~2 

:Ei = ZiDZi + CT I. 

An iterative algorithm for ()(P) ---* ()(P+I) can be obtained by evaluating 
the right-hand side of equations (5.9)-(5.10) at (f3(P), ()(P)), and setting 
0'2 and Din the left-hand side to ()(P+I) and using (5.11) to define f3(P+I) 
given ()(P+l). Using this EM algorithm to compute ML's is available as 
an option in some software packages but convergence can be very slow, 
especially when the between subject variance (D) is large relative to the 
within subject variance (CT2). (This corresponds to a large fraction of 
missing information.) Alternatively, we can simply use "EM" approach 
to get expressions for first and second derivatives and then use Newton­
Raphson for the computations. However, obtaining second derivatives for 
() is more complex but needed for standard errors of e. See, for example, 
McCulloch and Searle (2001). 

5.4 REML Estimation in the LMM 

Recall that the "Bayesian" definition of REML is to maximize the marginal 
posterior likelihood giving f3 a fiat prior: 

£((); YI, ... ,YN) = jRPJ(YI,···,YNJf3,()) df3. 

REML likelihood ML likelihood 

This is just like an "incomplete data likelihood" where the complete 
data is Z = (YI, ... , YN, f3) and the incomplete data is Y = (Y1, ... , YN ). 
From section 3.2, we have that 

8ln£(Y;<P) =E{8ln£(Z;<P)I <I>} 
8<P 8<P Y, 

where £(Y; <P) and C(Z; <P) are the incomplete and complete data like­
lihoods. Thus for this case, we can write 

8ln£(();YI,···,YN) -E{8ln£(();YI, ... ,YN,f3)J } 
8() - 8() YI' ... ' y N' () ' 

where expectation is over the posterior distribution of f3 given the Y;'s 
and(). 
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But 8ln£(6l;Y1, ... , YN,,8)J80 gives the ordinary ML likelihood equa­
tions. Setting these likelihood equations to zero yields equations E5.9)­
(5.10), for e derived in the previous section, except that 73 in (5.9-5.10) 
is just ,8, since the derivation is with respect to e given ,8. 

So to get REML equations, we take expectations of (5.9) and (5.10) 
(with all estimates replaced by their estimands) with respect to the pos­
terior of ,8, given Y1, ... , YN, which is distributed as 

Because of joint normality, the conditional means of bi and ei are linear 
in ,8 and the conditional variance does not depend upon ,8. Hence it is 
straightforward to see that taking expectations and setting 6l = OREML 
on both sides of (5.9), we obtain 

N 
/-. ~[~ T/-. 1 /-. /-.T/-. 1 ~ 
DREML = ~ D Zi ~i (li - Xi ,B) (li - Xi ,B) ~i ZiD 

i=1 
- - r- 1 -+D- DZi ~i ZiD 

~ T/-.-1 T/-.-1 ] I +DZi ~i XiVXi ~i ZiD N, 

(5.12) 

where V = var(,BIX1, ... , YN) and I;i and f5 on the RHS are evaluated 
at fjREML and O'~EML. Since the first three terms are identical to the 
expression for DML, and the last term is always positive, it is clear that 
the REML estimate is generally larger than the ML. 

REMARK. We note a connection between the LMM and the LMCD. 
Suppose we are in the "true" missing data setting in the LMCD, where 

li = Xi,B + ei, var(ei) = ~i, 

and ~ is an unstructured n x n covariance matrix for person with complete 
data. How do these models relate? We can view the unstructured~ as a 
special case of the LMM with o-2 = 0 by taking Zi = Ii to be the matrix 

niXn 
of zeros and ones indicating missingness and Dnxn = ~nxn· Then 

li = Xi,B + Iibi. 

Here bi is ann x 1 vector of residuals for a person which might be viewed 
as "complete data residuals," i.e., ei if all n observations are observed 
and 

var(Yi) ZiDZf 

= Ii~I'[ = ~i· 
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Using this trick, we can use programs designed to fit variance component 
models to fit general (unstructured) 1:;, but this is unnecessary as several 
programs are now available which fit unstructured 1:;, 

5.5 Estimating the Random Effects 

Why estimate the random effects? 

1. We might want individual growth curves. Examples include eval­
uating surrogate markers, and determining maximal growth rates 
for individuals (Donnelly et al., 1995; Tsiatis et al., 1996). 

2. Random effects estimates can be used to establish value or cost. 
Examples include setting insurance premiums for small regions or 
small subgroups, establish breeding values for individual animals, 
establish optimal drilling locations in a region (Robinson, 1991; 
Cressie 1991). 

3. Random effects estimates can be used to evaluate individual quality 
or performance. Examples include estimating both performance 
and outcomes for individual hospitals, event rates for local areas, 
etc. 

In estimating individual effects it is sometimes advocated to treat 
the bi's as fixed and use OLS to estimate an enlarged vector of fixed 
effects /3* = (/3, b1 , ... , bN ). This approach can be especially useful in 
the clustered data setting where bi is a scalar and each ni is substantial. 
However, this approach is of limited utility in a general setting for reasons 
discussed in Chapter 1, and because often many subjects will have small 
ni and little information to estimate bi. As we will discuss, the idea 
underlying random effects estimates is to "borrow" information from the 
whole in order to estimate individual effects. 

Estimates of random effects are usually called predictors rather than 
estimates; they can be motivated in a Bayesian way (Empirical Bayes) or 
by extending the Gauss Markov theorem to include random effects. We 
take up the latter approach first. Recall that for the usual linear model 

Y=X f3+e 
Nxl Nxp pxl Nxl 

where var (e) = CY2 I, the Best Linear Unbiased Estimator (BLUE) of 
any estimable contrast cr j3 satisfies 

E(cr7J) = cr 13 
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and 
var(CT73) ~ var(CT j3*) 

for any other unbiased estimator /3*, where both 73, !3* are linear in Y, 
i.e., both estimates take the form AY for some A. To extend this to 
random effects, let B denote the vector of all random effects, 

A BL UP is defined as a Best Linear Unbiased Predictor of 

A= C[/3 + C'{B. 

In this case both B and Y = (Yt, ... , Y'Jf are treated as random 
variables. The BLUP has the same general properties, i.e., it is a linear 
function of the data Y, and it is unbiased and minimum variance in the 
class of unbiased linear predictors. It is not hard to show that for our 
case, 

bi = E(biJYi, 73, e)= ZiDI;i1(Yi- Xi73) 

where 73 = 73(I;(e)-1) is the BLUP estimator for fixed e. Thus the BLUP 
estimator depends upon the unknown e, which is typically estimated by 
ML or REML (Harville, 1977). 

The empirical Bayes strategy is to regard each bi as a random param­
eter with prior N(O, D). Given data Yi, we can compute the posterior of 
bi as 

where 

and 
I;b, = var (biiYi, /3, e) = D- DZ[I;i1 ZiD. 

So (if we knew /3, e) an optimal "Bayes" estimate of bi would be f-tbi (both 
the posterior mean and the mode). Unlike most Bayes settings, we have 
replication (in the form of Yi), which enables us to estimate both e and 
j3 from the data, so the "empirical" Bayes estimate of bi takes the form 

- .-.... r--1 -bi = /-Lbi 1;3,8 = D Zi I;i (Yi - Xi/3). 

This is identical to the BLUP estimator when e is estimated in the same 
way. 

Obtaining a valid estimate for var (bi) is a difficult problem. We do 
not want to use 
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because it underestimates the variability arising due to uncertainty about 
jj. Uncertainty about f) usually has a second order effect (at least for 
large samples), so it is uncertainty about 7J that is more problematic. 
The frequentist approach is to use 

since both ~ and bi are random variables. The Bayesian approach is to 
use the marginal posterior of bi, integrating out {3. These two again yield 
identical variance expressions for the linear model: 

var ('bi - bi lli, /3, fJ) = var (bi IY, fJ) 
= D- DZ[Y:;;1 ZiD 

+DZ[~i1Xi (~X'f~i 1Xi)-1 X'f~i1 ZiD· 

This expression often used to get standard error~ for E B estimates 
even though it does ignore error of estimation in fJ. Note that only 
estimates for 0"2 and D are needed to evaluate the variance expression, 
since /3 has been integrated out. 

Finally, notice that the EB estimates are sometimes called shrinkage 
(or James-Stein) estimators. To see why, return to the two-stage model 
where 

and 

/3i = Ai/3 + bi, 

and assume Zi is of full rank. After much algebra, we can show that 

DEB ~ ~ "'"'OLS ~ 
/3i = Ai/3 + bi = Wi/3i +(I- Wi)Ai/3, 

where 

and Wi is the variance ratio 

If 0"2 = 0, meaning that we have perfect information about /3i from Yi, 
we see that J3FB = 7Jf18 . Alternatively, if D = 0, there is no variability 
in the individual random effects, and J3FB = Aijj· 
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This approach can also be used to get "smoothed" or predicted values 
as 

Yi = xi-g + zJ;i, 
for the observed Yi's as well as for values of Yij that are missing. For 
example, if we fit straight lines (bi is intercept and slope), then (-g, bi) can 
be used to get each individual's curve and predicted values. If the mean 
response is estimated only at the points specified by the protocol, the 
empirical Bayes approach can be used to obtain estimates of any missing 
Yij's. 
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