
Chapter 1 

Introduction to 
Longitudinal Data Analysis 

Longitudinal studies are designed to measure intra-individual change over 
time. Repeated observations are made on individual subjects, usually at 
a set of common time points specified by the study protocol. A main 
objective of longitudinal studies is to relate change over time in individ­
uals to their characteristics (exposure, sex, etc.), or to an experimental 
condition (drug treatment arm, time since baseline, etc.). In some stud­
ies, exposures or experimental conditions may change during the course 
of the study (as in crossover designs or repeated measures experiments). 
For example, in the typical crossover design each subject receives every 
treatment in sequence, with suitable washout periods prior to each treat­
ment. The sequence of treatments is determined a priori by randomiza­
tion. In repeated measures studies, each subject is measured under a set 
of pre-specified conditions; differences in the response due to conditions 
are of primary interest. Outcomes may be measurements, counts, or di­
chotomous indicators, and we may have multivariate outcomes measured 
at each of several occasions as well. 

In the ideal setting, we will have all subjects measured at the same 
set of occasions; this greatly facilitates the analysis and interpretation. 
Some studies may be unbalanced by design, as, for example, when mea­
surements are costly and/or invasive, so only a subset of subjects are 
measured at all occasions. In other instances it may be very difficult to 
obtain measurements on all subjects on the same set of occasions. This 
is especially true when studying human subjects over a long period of 
follow-up, and when studying clinic populations where illness is a big fac­
tor in patient availability. Observations may be mistimed and/or missing, 
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2 LONGITUDINAL AND CLUSTER-CORRELATED DATA 

and subjects may drop out or become unavailable for observation. 

When the study has a simple, classical design, meaning all subjects 
are measured on the same set of occasions, and the only covariates which 
vary over time do so by design, then standard multivariate methods for 
the analysis of polynomial growth curves, crossover designs, or repeated 
measures may be used, when outcomes are multivariate normal (see, e.g., 
Morrison, 1990, and Johnson and Wichern, 1992). When there is sub­
stantial missing data, traditional analytic methods can only be applied 
if one restricts the analysis to the units with complete observations and 
their validity relies upon the strong and often unrealistic assumptions 
about the missing data mechanism. Even when these assumptions hold, 
the complete-case analysis is unsatisfactory, as it discards the informa­
tion available in the units with incomplete observations. 

To some extent, standard univariate regression models and methods 
can be used to analyze longitudinal data, provided one uses the proper 
design matrices and takes into account the fact that the observations 
on individuals are correlated. This approach is the basis of the General 
Estimating Equations (GEE) approach (Diggle et al., 1994) which we 
will take up in detail in Chapters 4 and 6. Selection of the design matrix 
is a key element in all of the methods we discuss, and involves subtleties 
of model formulation which are crucial in settings with non-standard 
designs. 

Section 1.1 of this chapter will be concerned with types of design 
matrices for specifying the expected response when the mean is linear 
in design variables. We will introduce a Linear Model for Correlated 
Data (LMCD) which can be used to analyze data from any longitudinal 
study where the mean response can be characterized as linear in design 
variables. In this case we think of subjects as the basic sampling unit, 
and response is measured repeatedly on subjects. The model can also 
be used for the analysis of clustered data; here the sampling unit is the 
cluster and the repeated observations are individuals in the cluster. This 
includes traditional clustered survey data, family studies, and nested 
experimental designs such as those used in animal or teratology studies. 
Before turning to model development, we consider a few of the data 
examples which will be presented in later chapters. 

Six Cities Study of Air Pollution and Health 

The Six Cities Study of Air Pollution and Health (Dockery, 1985) 
was designed to characterize pulmonary function growth between the 
ages of six and eighteen and the factors that affect growth. A cohort of 
13,379 children born in or after 1967 was enrolled in six communities in 
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the US, designed to have a gradient of air pollution from high to low. 
Most children were enrolled in the first or second grade and participants 
were seen annually until high school graduation or loss to follow-up. At 
each examination, spirometry was performed and a respiratory health 
questionnaire was completed by a parent or guardian. 

Pulmonary function measurements obtained from simple spirometry 
are widely used as a measure of respiratory health in clinical and epidemi­
ological research. The basic maneuver in simple spirometry is maximal 
inspiration followed by forced exhalation as rapidly as possible into a 
closed chamber. Many different measures could be computed from the 
spirometric curve of volume exhaled versus time; two widely used mea­
sures are forced vital capacity (FVC), the total volume of air exhaled, 
and FEV 1, the volume of air exhaled in the first second of the maneuver. 

Because the survey was school-based, children moving out of or into 
the community during the period were either lost to follow-up or late 
entrants. Children absent from school during periods of measurement 
had incomplete records as well. This type of imbalance is commonly 
found in school- or community-based surveys. 

A Clinical Trial in Patients Undergoing an Acute Schizophrenic 
Episode 

Schizophrenia is an incurable disorder characterized by periods of 
acute psychosis of variable length and intensity. Antipsychotic medi­
cation is effective in reducing psychotic behavior in many individuals, 
but can pose significant adverse side effects. An example of a longitu­
dinal clinical trial is the equivalency trial of a new antipsychotic drug 
for schizophrenia described in Lapierre et al. (1990). This clinical trial 
was a double-blinded study with randomization between four treatments: 
three doses (low, medium, and high) of an experimental drug and a con­
trol drug with known antipsychotic effects as well as known side effects. 
Initial studies prior to this double-blinded study suggested that the ex­
perimental drug had equivalent antipsychotic activity, with less side ef­
fects. The primary objective of this study was the determination of a 
dose-response relationship for efficacy, tolerability, and safety, and the 
comparison to the control drug. The study was conducted at 13 clinical 
centers, and a total of 245 patients were enrolled. The primary efficacy 
parameter was the Brief Psychiatric Rating Scale (BPRS). This scale 
measures the extent of a total of 18 observed behaviors, reported behav­
iors, moods, and feelings, and rates each one on a seven point scale, with 
a higher number reflecting a worse evaluation. The total BPRS score is 
the sum of the scores on the 18 items. The stated endpoint was change 
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in BPRS from baseline to six weeks. 

Patients were admitted to the hospital for the first four weeks of 
treatment, and discharged as the clinical condition permitted for the final 
two weeks. Patients were evaluated at baseline and after one, two, three, 
four, and six weeks of treatment. One hundred and thirty-four (55%) of 
the patients completed the study, and eleven additional patients had a 
six-week evaluation, even though they were technically considered non­
completers. The primary reason for discontinuation was a perceived lack 
of effectiveness of the treatment by the physician; there were also several 
withdrawals due to side effects. Because patients were hospitalized for 
the main period of follow-up, there are very few missing observations, 
except those due to patient removal from protocol. In the event of patient 
removal, a final measurement was made; then the patient was terminated 
and no further measurements were made. 

AIDS Clinical Trial Data 

The AIDS Clinical Trials Group (ACTG) conducts numerous tri­
als designed to evaluate therapies for people infected with Human Im­
munodeficiency Virus (HIV), which causes AIDS. ACTG Protocol 128 
(ACTG, 1993; Brady et al., 1996), hereafter ACTG128, was a multi­
center, randomized, double-blinded trial that compared high versus low 
dose Zidovudine (ZDV) therapy in children born with HIV. Zidovudine, 
also known as AZT (azidothymidine), inhibits replication of HIV and 
has been shown to decrease mortality and frequency of opportunistic 
infection among adults with symptomatic HIV (see ACTG, 1993 and 
references therein). 

One primary endpoint in ACTG 128 is neuropsychological develop­
ment as measured by IQ ratio: children are measured at baseline and 
every six months for two years (five times total), and some continue to 
be measured even after being removed from assigned treatment. This 
practice differs from many trials, where removal from treatment is syn­
onymous with removal from the trial. Reasons for treatment termination 
prior to two years include undesirable side effects, toxicity, lack of efficacy, 
and parental decision. Children are not put back on ZDV once removed, 
but can switch to another treatment regimen. Neuropsychological decline 
represents advancing disease state, while successful treatment prevents 
decline. 

Muscatine Coronary Risk Factor Study 

The Muscatine Coronary Risk Factor Study was a longitudinal study 
of coronary risk factors in school children (Woolson and Clarke, 1984). 
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The data set used in our examples contains records on 1,014 children 
from Muscatine, Iowa, who were 7-9 years old in 1977. Height and 
weight were measured on each child in three survey years: 1977, 1979, 
and 1981. Although each child was eligible to participate in all three 
surveys, data on many children are incomplete. For each survey year, 
the median weight was calculated for each gender and 1 inch of height. 
Children with relative weight greater than 110% of the median weight in 
their respective stratum were classified as obese. This criterion resulted 
in approximately 20% of the children being described as obese (Woolson 
and Clarke, 1984). 

The repeated binary response of interest is whether the child is de­
scribed as being obese or not (1 = yes, 0 = no) at each occasion. One of 
the objectives of this study was to determine trends in obesity in children 
and the effects of gender and age on risk of obesity in children. 

A Comparative trial of a contraceptive drug 

Machin et al. (1988) discuss problems in the analysis of contraceptive 
trial data which arise as a result of subject discontinuation or dropout. 
With modern contraceptive methods, discontinuation due to pregnancy is 
rare, but it occurs often due to unacceptable side effects, such as irregular 
bleeding patterns. While time to discontinuation is usually the primary 
endpoint in these trials, it is also of interest to quantify comparative 
trends in irregular bleeding patterns, and those patterns which lead to 
discontinuation of the contraceptive method under study. 

A comparative trial of two dosages of depot-medroxyprogesterone 
acetate (DMPA, 100mg and 50 mg) was conducted by the World Health 
Organization (1986). Women were administered the drug at three month 
intervals. The discontinuation rate at the end of the first year of the 
trial was 40%; more than half of those gave bleeding disturbance as the 
primary reason for discontinuation. 

As part of the trial data collection, women maintained daily diaries 
recording the presence of any irregular bleeding pattern. The analysis 
presented by Machin et al. (1988) uses a binary indicator of the presence 
or absence of a specific bleeding disturbance, amenorrhea, in each of 
the three month periods between injections to study comparative trends 
in amenorrhea in the two dosage groups, and to study the relationship 
between trends in amenorrhea and discontinuation. 

Familial Aggregation of Lung Cancer in Nonsmokers 

Studies of familial aggregation are often designed using the case­
control design. Either clinical- or population-based samples of cases and 
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controls (called pro bands) are selected, then disease and covariate in­
formation is obtained on the relatives of the cases and controls. The 
objective is to study the risk of disease in relatives given the case-control 
(disease) status of the proband. 

A detailed family history study was designed by Schwartz et al. 
(1996) to evaluate family history of lung cancer in a nonsmoker as a 
risk factor for lung cancer in first-degree relatives. Briefly, cases and 
controls were selected from participants in a previous study, which in­
cluded population-based nonsmoking lung cancer cases, ages 40-84 years, 
diagnosed November 1, 1984 through June 30, 1987. These cases were 
originally ascertained through the Metropolitan Detroit Cancer Surveil­
lance system of the Karmanos Cancer Institute, a participant in NCI's 
SEER seer Program. Nonsmokers were identified as individuals reporting 
never smoking more than 100 cigarettes in their lifetime. Non-smoking 
controls were matched to the cases on ± 5 years, race, sex and county of 
residence. 

Risk factor data collected for the cases and controls included envi­
ronmental tobacco smoke exposure, occupational history, history of other 
lung diseases, and family history. The detailed family history collected on 
relatives included the above-mentioned risk factor data, smoking history, 
demographics, and occurrence of cancer and other lung diseases among 
spouses and first-degree relatives of the probands. Questionnaire data 
for 2,252 family members of nonsmoking cases and 2,408 family mem­
bers of 247 nonsmoking controls were obtained. Laird et al. (1998) used 
these data to illustrate the use of multivariate methods in the analysis 
of family risk data. 

1.1 A Linear Model for Correlated Data 

The data 

Consider a sample of N randomly selected units with ni measurements 
of response on each unit, i = 1, ... , N, 

where the Yi are independent vectors and ni may or may not be the same 
for all units i. Associated with the jth measurement on the ith unit is a 
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p x 1 vector of covariates 

( 
Xijl ) 

X·· . 2J = . 
pxl · 

Xijp 

and we write 

In the design matrix Xi, the rows correspond to the covariates as­
sociated with the different times of measurement, and the columns cor­
respond to the different variables. Thus each subject has a vector of 
outcomes, Yi, and a matrix of covariates, Xi. In the setting where j 
indexes occasions of measurements, the covariate Xij may include func­
tions of explanatory variables measured at or prior to time j. There are 
two main classifications for the type of covariates found in the analysis 
of correlated data. 

a. Classification according to whether the values taken by a covariate 
associated with measurements on the same unit remain constant 
or differ. 

a.l. We say that the kth covariate, 1 ::; k ::; p, is between-cluster 
or time-invariant if for all i = 1, ... , N, 

Examples include sex and race in a longitudinal study where 
individuals are the basic sampling unit, and fixed experimen­
tal conditions such as treatment assignment in a longitudi­
nal clinical trial. In the cluster sampling setting, an example 
would be cluster level covariates, e.g., family income, or dis­
ease status of the proband in family studies. 

a.2. We say that the kth covariate, 1 ::; k ::; p, is within-cluster 
or time-varying if for some i = 1, ... , N, Xijk =I= Xij'k for at 
least one pair j,j' and j =I= j'. Examples include time since 
baseline, experimental condition in crossover or repeated mea­
sure designs, current smoking status, smoking history, current 
height in a longitudinal study, or individual characteristics in 
a clustered sample survey. In some cases (pure repeated mea­
sures designs, or longitudinal studies with fixed time points), 
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these covariates vary systematically in the same way for each 
subject so that Xijk = Xi'jk for all i and j, for fixed k. 

b. Classification according to whether the variable is fixed by design 
or stochastic 

b.l. Covariates which vary systematically over the course of the 
study but which are fixed by design include treatment group 
indicators in a crossover design, time since baseline, or indi­
vidual relationships in a family study. 

b.2. Covariates which vary over time and are stochastic include 
height, current smoking status, or pollution exposure in a lon­
gitudinal survey. 

Model Formulation 

We shall make the following assumptions in formulating a model for 
relating the response Yi to the covariates Xi: 

(a). (Y1, X1), ... , (YN, XN) are independently distributed. 

(b). Given Xi, 

E ( Yi ) = xi f3 . 
niXl n,xp pxl 

(c). Given Xi, 

cov (Yi) = I;i ' 
nixn, 

where I:i is some known function of the covariates Xi. 

Without loss of generality we consider Xi random. Thus, when the 
jth covariate is fixed by design, Xij takes a fixed value Xij with probabil­
ity 1. In (b) and (c) and throughout this monograph, in a slight abuse of 
notation, when Xi is stochastic we eliminate the conditioning covariate 
Xi in the notation for the conditional mean and covariance of Yi given 
Xi. Similarly, when Xi is fixed by design, E (Yi) and cov(Yi) refer to the 
mean and covariance of Yi taken with respect to the law fi (y) of Yi. As­
sumption (a) says that the sample consists of N independently selected 
units. Assumption (b) says that the conditional mean of the jth outcome 
of unit i given Xil, ... , Xini is a linear function of Xij only, i.e., 

X'!.j3 
tJ 

/31 X·· + · · · + j3 X·· 2)1 p 2Jp. 
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Assumption (c), cov (Yi) = ~i, allows for dependencies among mea­
surements on the same unit. The covariance may vary with covariates, 
e.g., across groups (sex, race), or entries may be functions of time. It may 
also depend upon i only through ni· In later sections we will be more 
explicit about different forms for ~ii for now, we leave it very general. 

There are important and often overlooked limitations related to the 
interpretability of the regression model assumed in (b) when covariates 
are stochastic and time-varying. Regression models for the marginal 
mean of Yij as assumed in (b) may be used to answer public-policy related 
questions for the dependence of the outcome Yij on Xij. The Xij are 
defined very generally, and may be functions of explanatory variables 
Zil, ... , Zij measured at or prior to time j. When the Zij are stochastic, 
and the objective is to infer a causal relationship between changes in Zij 

and the outcome Yij there are important issues regarding the validity 
and interpretability of the model that we now briefly discuss. 

1. Validity: Assumption (b) implies that the conditional expecta­
tion of Yij given the entire covariate process Xi1 , ... , Xini observed on 
the ith unit is a function only of the covariate Xij. This assumption may 
be violated in settings where, conditional on Xij, the current value of 
the outcome Yij predicts the subsequent value of the covariate Xi(j+l). 

This is so since the conditional dependence of Yij and Xi(j+l) given Xij 

may violate the condition 

(1.1) 

implied by assumption (b). Equation (1.1) might be violated, for exam­
ple, in longitudinal studies designed to evaluate the effect of cumulative 
fat intake at time j on cholesterol level at time j. Letting Zij denote 
fat intake of subject i at time j, define Xij = (Zil, ... , Zij), and let Yij 

denote the cholesterol level of subject i at time j. With these definitions 
equation (1.1) might be violated. For example, suppose subjects with 
high mean cholesterol level at time j who report a high level of fat in­
take at time j, tend to subsequently reduced their fat intake. If at the 
same time, subjects with the same level of fat intake, but lower choles­
terol at time j tend to report continuously high levels of fat intake, then 
assumption (b) does not hold. 

2. Interpretability: Even if assumption (b) holds, the {3 parameters 
may not quantify the parameters of interest in applications. For example, 
model (b) may correctly specify the dependence of the conditional mean 
of the cholesterol level measured at the last occasion on the covariates, 
since at the last occasion, Xini is a function of the entire fat intake 
history. Yet, the parameter {3 may fail to quantify the covariate effect 
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of practical interest when the covariates are stochastic. To simplify our 
exposition, suppose that all subjects are measured at two time points so 
that ni = 2, that Zij is a dichotomous indicator of a high level of fat 
intake at time j, j = 1, 2 and that at baseline, the study population is 
homogeneous with respect to simultaneous predictors of subsequent fat 
intake and cholesterol level. One model satisfying assumption (b) might 
be 

(1.2) 

where Xi2 = (1, Zi2, Zi1) and j = 1, 2. According to model (1.2) the 
effect on cholesterol at time two of a continuously high fat diet versus a 
continuously low fat diet is given by 

The interpretation of (32 + (33, however, depends upon implicit model 
assumptions. If subjects are randomized to high and low fat diets (and 
adhere to their specified diets), this determines Zi1 and Zi2. Hence Zi2 
is independent of Yi1l Zi1, or in general Zij is independent of 

(Yi1, ... , Yiu-1) 1zi1, ... , zi(j-1)). 

In this setting one can assign the desired causal interpretation to (32 + (33. 
In the setting where the predictors are stochastic, one still needs to make 
independence assumptions to interpret the results causally. 

Specifically, /32 + (33 measures the causal effect of Zil and Zi2 on Yi2 
only when either the observed cholesterol level at time 1, Yi1, is not a 
predictor of the observed cholesterol level at time 2, conditional on fat 
intake history (Zi1, Zi2), i.e., 

(1.3) 

or when the observed cholesterol level at time 1 is not a predictor of 
subsequent fat intake conditional on fat intake at time 1, i.e., 

(1.4) 

Here X ll YJW is used to indicate that X andY are conditionally inde­
pendent given W. When (1.4) holds, or in general when 

is true, the time dependent covariate process Zij is called an external 
covariate process (Kalbfleisch and Prentice, 1980). Since (1.3) is not in 
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general a reasonable assumption in a longitudinal setting, assumption 
(1.5) is the most important in the context of a longitudinal study. An 
example of such a stochastic predictor might be air pollution levels in a 
study of lung function growth. 

When both (1.3) and (1.4) are false, the parameter (3 in model (1.2) 
does not have a causal interpretation even if model (1.2) correctly spec­
ifies the dependency of the actually observed cholesterol level at time 2 
on past fat intake history. This is so because cholesterol level at time 
1 (Yii) is simultaneously a predictor of fat intake at time 2 (Zi2) and 
an independent risk factor for cholesterol level at time 2 (Y:;2). When 
risk factors for current cholesterol level, such as past cholesterol level, re­
duce subsequent high fat intake, fat intake specific means of cholesterol 
level tend to underestimate the true effect of fat intake. For example, 
the observed cholesterol mean of subjects with an observed continuously 
high fat intake will be an underestimate of the overall cholesterol mean 
when all subjects follow a continuously high fat diet, if subjects with high 
cholesterol level at time 1 tend to reduce their fat intake level more than 
those with normal cholesterol levels, and if within levels of fat intake, 
cholesterol levels at time 1 and 2 are correlated. 

Study designs 

In the context of longitudinal studies we distinguish between balanced 
and unbalanced study designs. A design is balanced when all N individ­
uals are to be measured at the same n occasions and it is unbalanced 
otherwise. Thus in balanced designs, ni = n so that each Yi is a n x 1 
vector and .Ei defined in Section 1.2, (c), is an x n matrix. We say that 
a study with a balanced design is complete when all n measurements are 
actually observed on each study participant, and the study is incomplete 
otherwise. Notice that in an incomplete study with a balanced design 
the actual number of measurements observed on each subject may be less 
than or equal n. However, at least conceptually, we could have observed n 
measurements, Yi1, ... , Yin, on each subject. In the model formulated in 
Section 1.2, Yi is the vector comprised of these, potentially unobserved, 
outcomes and the matrix .Ei refers to the covariance of Y:;. If this co­
variance does not depend on covariates, then it is the same for all the 
subjects. In this case we eliminate the index i and simply denote it with 
.E. We say that the model for the covariance matrix .E is unstructured 
when its elements are restricted by the condition that .E be positive defi­
nite and symmetric but are otherwise unconstrained. It is often the case 
that in studies that are initially designed as balanced, measurements are 



12 LONGITUDINAL AND CLUSTER-CORRELATED DATA 

not made at the same exact n occasions, for example due to misstimed 
events. In this case, even if the study is complete, i.e., if n measurements 
are actually observed on each subject, a single unstructured covariance 
matrix is often inappropriate. For example, if measurements can be as­
sumed to have constant variance, a single unstructured covariance would 
indicate that the correlation between the tth and (t + l)th measurement 
is the same regardless of the time elapsed between the measurements. 

In familial aggregation studies or in cluster sampling designs, where 
the number of subjects in the cluster varies for each cluster, :E depends 
on i because its dimension ni x ni is a function of i. Furthermore, it 
is often the case that :E also depends on i because the covariance of 
the measurements made on each cluster varies with covariates. Often, 
parsimonious covariance models are postulated making the elements of 
:Ei depend on a small number of cluster-specific covariates and subject 
specific covariates, e.g., parent or sibling. In such cases we say that :Ei is 
structured. We will later consider analysis strategies for both structured 
and unstructured covariance matrices. 

Finally, note that the linear model can be written as 

or 

and 

cov (Y) = 
MxM 

Mxl Mxp 

E (Y) = X f3 
Mxl Mxp pxl 

:El 0 0 

0 

:EN 

pxl 

(Block diagonal matrix) 

where M = :Eni. In Chapters 3 through 5 we will additionally assume 
that, given Xi, Yi has a multivariate normal distribution. We now con­
sider the formulation of Xi for some specific cases. 
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1.2 Examples and Special Cases of the Linear 
Model for Correlated Data 

In this section we will show that many "classical" multivariate models 
are special cases of the LMCD for appropriate choices of Xi, (3 and ~i­
We also discuss application in some nonstandard settings. 

1. One sample repeated measures. 

N subjects are measured repeatedly under n different experimental 
conditions. The goal is to quantify differences in experimental conditions. 
The model assumes 

E(Yi)=J.L= 
nxl nxl ( ~ ~ ~1)(J.L~:n1 )· 

Here Xi = I (where I denotes the identity matrix) and (3 = f.L· In this 
case, contrasts among the J.-lj 's are the differences in the outcome means 
for the different experimental conditions, and as such are of primary 
interest. Often ~ is left unstructured. 

A popular alternative to leaving ~ unstructured is to assume com­
pound symmetry. Under the additional assumption of normal errors, or 
randomization to the experimental conditions the data can then be an­
alyzed using simple univariate ANOVA methods. We say that ~ has a 
compound symmetry structure if it can be written as 

~ = cr2 I + cr2 1 1 T 
€ 'Y 

(1.6) 

where 1 denotes ann x 1 vector of one's. Compound symmetry arises by 
considering the model 

j = 1, ... ,n 
i= 1, ... ,N 

where the 'Yi's and the Ei/s are independent of each other, with var 
('Yi) = cr~ and var ( Eij) = cr;. This implies that with Ei = ( Eil, ... , Ein f 

Yi = J.-l + "fi 1 + Ei 
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and hence cov(Yi) satisfies (1.6). 

2. One way multivariate ANOVA (MANOVA) 

We assume G treatment groups, and n measurements are obtained 
for each of Ng subjects in treatment group 9, 9 = 1, ... , G. Our goal is 
to test if the mean vector is the same for all G groups. Letting 

E (Ygi ) = J.lg 
nxl nxl 

9= 1, ... ,G 
i = 1, ... , Ng ' 

we can write 

J.ll 
9th block 

l 
E (Ygi) = [ o , ... , o, I, o, ... , o] 

nxn 

nx(nG) 

Notice that this model can also be written as 

J.lG 
~ 

(nG)xl 

E (Yg,) = (0, ... , 1, 0, ... , 0) 0 I [ :: l 
= aT. Q9 I [ ~1 l gz • 

J.lG 

where agi is the indicator vector for the 9th group and Q9 is the Kro­
necker or direct matrix product (Harville, 1999). Here the number of 
free parameters under the null hypothesis 

Ho : J.L1 = · · · = J.LG 

is equal to n. Under the alternative hypothesis H1 that at least two 
groups have unequal mean vectors, i.e., 

H1 : there exist 91 and 92 such that J.Lg 1 =f. J.Lg2 

the number of free parameters p satisfies n < p :S nG. The usual 
MANOVA assumes ~i = ~ is unstructured and normality of the error 
terms. 
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3. One group polynomial growth curve model. 

N subjects from the same cohort are observed at the same times de-
noted by t1, ... , tn; for example, a group of children is observed yearly at 
ages 6, 7, 8, ... , 12. The linear model for the mean response is expressed 
as a polynomial in tj. We might assume a quadratic polynomial 

and 

E (Yi) = ( i :: :! ) ( ~~ ) = X{3. 
nxl · · · . . 2 f32 

1 in tn 

Hence Xi = X and is in general an n x q matrix of the form 

X= ( 

1 tl ti .. . 
1 t2 t§ .. . 
. . . . . . . . . 
1 in t; 

One model for L;i arises from assuming that each subject has his or her 
own growth curve with parameters f3i: 

E (Yilf3i) =X f3i and var(Yilf3i) = cr2 I. 

Thus each subject has their own vector of growth curve parameters 
f3i = ({3iO,f3il,f3i2), where the f3i are themselves considered random with 
E (f3i) = {3 and var (f3i) =D. Averaging over the f3i's, we have 

E (Yi) = X {3 

as before, but now L; has the variance component type structure 

var (Yi) = var [E (Yilf3i)] + E [var (Yilf3i)] =X D xT + cr2 I. 

4. Growth curve with covariates. 

As in Example 3, suppose that N subjects are observed at the same n 
occasions. The model is motivated as follows. Suppose that each subject 
follows his/her own growth curve indexed by a q x 1 parameter vector 
f3i· Specifically, for subject i we assume that 

E(Yi) = Zf3i 
nxl 
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where then x q matrix Z gives the polynomial design on time, e.g., Z is 
X in the previous example, and the expectation is taken with respect to 
the law of Yi, fi (y). Furthermore, we assume that the covariance of Yi 
is the same for all subjects but it has an arbitrary structure, i.e., 

cov (1-i) = G 
nxn 

where G is unstructured. 

Suppose initially that f3i is a deterministic function of a q x p time 
invariant covariate matrix Ai· Specifically, suppose that f3i varies with 
A according to the relationship 

where (3 is a p x 1 unknown parameter vector, so that 

E(Yi) = ZAi/3 = Xi/3· 
nx1 

The jth row of Ai gives the design for the regression of the jth component 
of f3i on the covariates. For example, suppose that in a study of growth 
in children we assume that height (the outcome) is a linear function of 
age (g = 2) and further that the intercept is gender specific but the slope 
is the same for both genders. In this case there is a single time invariant 
covariate, sex, the row dimension of Ai is equal to 2, and p = 3 (two 
intercepts, but only one slope), so that 

where si = 1 for boys and si = 0 for girls, and (3 = ((31, !32' !33). under 
this formulation, /31 represents the girl's intercept, /31 + (32 represents the 
boys intercept and (33 is the common slope. Letting Xi = ZAi, we can 
write 

and cov(Yi) = G is unstructured and unknown. 

The growth curve model has a special form in the case where each 
element of /3i has a regression on the same k x 1 vector of covariates 
ai. That is, f3i1 = af (3(1), f3i2 = af (3(2), ... , /3iq = af (3(q), where the 
(3(Z) are the regression parameters for the lth coefficient. Thus (3 = 
(f3(1)T, f3(2)T, ... , (3(q)T)T and p = kq. In this case we may write Ai = 
af ®I where I is q x q so that f3i = Ai/3, and E(Yi) = Z(af ® 1)(3. This 
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is a very special form because Xi = Z Ai = Z (aT@ J) = aT@ Z. We may 
also write 

E (Yi) = Xi/3 = Z~ai, 

where ~(q x k) is a matrix of parameters satisfying (3 =vec(~T) and 
vec(~T) is a matrix operator which makes a column vector from a matrix 
by stacking the columns. The result that Xi/3 is equal to Z ~ai follows 
from the identity vec(ABC) = (CT ®A)vec(B) for conformable matrices 
A, B, and C. The analysis of this highly structured growth model has 
been discussed by Grizzle and Allen (1969). 

The formulation of the growth curve model with covariates is com­
pleted by replacing the assumption that f3i is a deterministic function of 
Ai with the assumption that f3i is random, it fluctuates around Ai/3 and 
it has covariance that does not depend on Ai. Specifically, we assume 
that /3i, i = 1, ... , N, are independent and satisfy 

and 
var (/3i) = D. 

qxq 

where, if Ai is stochastic, the expectation and covariance are taken with 
respect to the conditional law of f3i given Ai, and if Ai is fixed by design, 
they are taken with respect to the law ff3i(b) of f3i· Thus, with Xi and (3 
defined as above we have that 

but now 

var (Yi) = E { var (Yi l/3i)} + var { E (Yi l/3i)} 

= G+ZDZT 

Often the model is formulated by additionally imposing that G = 0"2 I, 
because leaving Gnxn unstructured, does not permit also estimating an 
additional q x q matrix of covariance parameter D. 

Suppose now that the study design is unbalanced, and in addition 
that outcomes are not completely observed on all units in the sample. 
We can still assume the same growth curve, but with subject-specific 
design matrices which allow each Yij to be measured at a unique tij: 

E ( Yi ) = zi f3i . 
nixl niXqqxl 
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Here the design Zi depends on occasions of measurement for the ith sub­
ject, but the f3i vector remains the same as in the balanced and complete 
setting. 

As before, we let 

var (li I /3i) = a-2 I , and var f3i = D, then 
niXni 

and 
var (li) = Zi D Z[ + a-2 I. 

Here L:i depends on occasions of measurement through Zi. 

5. Epidemiological survey of lung function development in chil­
dren. 

Studies have shown that growth in lung function can be expressed as a 
linear function of current age and height (Hopper et al., 1991; Laird et al., 
1992). Letting response be repeated measures of log forced expiratory 
volume in one second (log FEVl), covariates include current age and 
current height. The mean of log FEV 1 is approximately linear in age 
and height, implying that we may write 

E (Yi) = 
niX I 

where ( aij, hij) are age and height for subject i at occasion j. The issue 
here is that not all subjects enter the study at the same time; hence we 
have both "longitudinal" and "cross-sectional" information about lung 
function dependence on age and height. This will be discussed in Section 
1.4. The model for L:i is complicated if var(lij) depends on both age and 
height. 

6. Family studies: Hypertension in families. 

Many family studies are designed to quantify correlation among rel­
atives of a measured factor, such as blood pressure. When the goal is to 
quantify the inherited genetic component of the correlation, residual cor­
relations are computed which have been adjusted for known or suspected 
correlates. For example, suppose we haveN nuclear families, where each 
family member is measured on blood pressure and a variety of covariates 
including age, sex, weight/height, physical activity, diet (various mea­
sures), smoking, alcohol, etc. Here i indexes family and j indexes family 
member. We include all known risk factors in the mean model and then 
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study residual correlation. The specification of ~i is complex for specific 
genetic models and depends on the gene sharing among relatives. As 
a simple example consider an "association" study restricted to families 
with both parents and three children. If we assume that: (a) the covari­
ance is independent of the covariates, (b) blood pressure variability is 
similar in males and females but differs between children and adults, (c) 
the blood pressure correlation between children and adults is the same 
for all family members, and (d) the correlation between siblings in the 
same family is the same, then we have the following simple structure for 
the covariance matrix 

M F c1 c2 c3 

M 0"2 
A 

F i7MF 0"2 
A 

c1 i7CP i7CP 0"2 c 
c2 i7CP O"CP a-ce 0"2 c 
c3 a-cp i7CP a-ce a-ce 0"2 c 

where a-~ and a-b are adult and child blood pressure variance; a-cp is 
covariance between parent and child, etc. The components of ~i are of 
primary interest, especially the correlations between two siblings and a 
parent-child combination. In the absence of environmental causes for 
correlation, O"MF should be approximately zero. 

1.3 Models for the Variance/Covariance Matrix 

In many cases, the primary focus of a study is change in mean response, 
which is modeled by Xi (3; the parameters indexing ~i are nuisance, or 
possibly of secondary interest. In this setting, if all subjects are measured 
at the same n occasions and the covariance is assumed not to depend on 
covariates, ~i = ~ may be taken as an arbitrary n x n positive definite 
matrix, and, provided n is small relative to N, the entries of ~ can 
be estimated with reasonable precision. If n is large relative to N, or 
if the design is inherently unbalanced, i.e., clustered or with subjects 
measured at arbitrary time points, then it may be desirable to impose 
some parametric model on ~i. 

Structure is usually built into covariance matrices in one of two gen­
eral ways: using serial correlation models, and using random effects mod­
els. The models considered in Examples 3 and 4 of Section 1.2 were par­
ticular random effects models. In Chapter 5 we consider random effects 
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models in some detail. Here we consider structures for .E based on serial 
correlation. 

1. Banded. Here 

I 1 Pl P2 ··· Pn-1 I 
1 Pt · · · Pn-2 

1 

This formulation is often appropriate when measurements are equally 
spaced, so that 

for all j and k. 

Notice that the formulation also implies constant variance. A special 
case of a banded covariance is the autoregressive covariance. 

2. Autoregressive. Here 

I 1 p p2 . . . pn-1 I 
1 n-2 p ... p 

. . 

1 

This formulation also assumes equal spacing. The autoregressive model 
can be generalized to accommodate unequal spacing and number of ob­
servations as follows: let (tit, ... , tinJ denote the observation times for 
the ith subject and let .Ei be the ni x ni covariance matrix. Let var (lij) 
be constant, and assume that 

where h ( x) is a decreasing function of x that takes values between -1 
and 1. Since repeated measurements in longitudinal studies are assumed 
to be positively correlated, a convenient form for h ( ·) is 

(1. 7) 

where dijk = itij -tiki, b = 1 or 2, and a > 0. This presumes that 
the correlation is one if measurements are made repeatedly at the same 
time, and goes to zero rapidly if a is large. Neither of these features is 
especially realistic for the most common attributes of interest that are 
measured repeatedly in human subjects longitudinal studies. 



N. M. LAIRD 21 

Diggle (1988) proposed a model which combines the autoregressive 
with compound symmetry: 

where J is an ni x ni matrix of ones, and ni is a correlation matrix with 
the jkth element given by h(dijk) as in (1.7), so that 

var (Yij) = (}"2 + 62 + T 2 

and 

Notice that this implies that 

and 
c)2 

Pijk --+ (}"2 + 62 + 72 as dijk --+ oo. 

Here (}"2 can be thought of as sampling variability or measurement error; 
the variance has three components: sampling, subject to subject, and 
serial. Repeated measurements made at the same occasions are not per­
fectly correlated unless (}"2 = 0 (no sampling error), and provided 62 > 0 
(subject variability), observations on same subject never go to zero, even 
if widely separated in time. 

1.4 Cross-sectional versus Longitudinal Effects 

The simple growth curve model of Example 1.2.4 assumes that individ­
uals are measured at the same occasions in time and have the same 
age at baseline. This is rarely the case in observational studies. Often, 
subjects enter the study at different ages and have their measurements 
taken at different points in time. These unbalanced designs provide the 
opportunity to obtain information on differences due to aging as well as 
differences in the response variable across cohorts. However, care must 
be taken in specifying models and interpreting the results of the analysis 
because the parameters of the model may not reflect the aging effect as 
intended. 

As a simple example of this situation consider a study in which mea­
surements of an outcome of interest are taken at prespecified, equally 
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spaced, time points t1, t2 = t1 + t, ... , tn = t1 + (n- 1) t, on each 
of N independent subjects. Suppose first that a single age-cohort is 
followed-up so that age of entry to the study is the same, say a, for all 
subjects. The data then consists of independent vectors (Yii, ... , Yin) , 
i = 1, ... , N, where Yij, j = 1, ... , n, is the outcome of the ith subject at 
age Xj =a+ (j -1)t. Suppose that it is assumed that the mean increases 
linearly with age, or equivalently with Xj, so that we may write 

E (Yij) = 11 + l:lxj, j = 1, ... ,n. 

Then we have the LMCD model 

Yil 1 XI 

Yi2 1 X2 

(~) E (1.8) 

Yin 1 Xn 

Clearly, this model implies 

E (Yii - Yi(j-1)) =D., for j = 2, ... , n. (1.9) 

Thus, D. is the mean outcome change between contiguous time points. It 
is therefore a measure of the effect of aging; the so called "longitudinal 
or intra-subject effect." 

Suppose now that n age-cohorts are followed according to the follow­
ing design. As before, measurements are taken only at the prespecified 
time points t1, ... , tn, and age of entry to the study is the same for all 
subjects. However, in contra..st to the previous design, there is now stag­
gered entry, so that age-cohort 1 enters the study at time t1, age-cohort 2 
enters at time t2, etc. Even though subjects are the same age at entry to 
the study, they have different ages at times t1, ... , tn and differing num­
bers of measurements. Let Yij and Xj be defined as before. On subject 
i we then observe only measurements of Yi1, Yi2, ... , li(n-Ci+l) where Ci 
denotes the age-cohort number to which subject i belongs. That is, if 
Ci = 1 we observe Yi1, ... , Yin while if Ci = n we observe only Yi1· Note 
that the index j on Yij now indicates age of measurement on the ith 
subject and not occasion of measurement. With only one cohort, age of 
measurement and occasion of measurement are equivalent, but not with 
staggered cohorts. 

Suppose that for analyzing this unbalanced design we fit model (1.8) 
where now we omit row j if j > n- Ci + 1, i.e., if the observation Yij is 
not available for subject i. We now show that the model actually fitted 
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may not appropriately reflect the actual data generating process and, as 
such, the parameter ~ may no longer have the intended interpretation 
as quantifying the within-subject effect of aging. 

Because Yij is observed only if j ~ n- Ci + 1, then when we fit model 
(1.8) to the observed data, the actual fitted model is 

(1.10) 

The conditional expectation is the mean response at age a+ Xjt for all 
subjects in cohorts 1, 2, ... , n- j + 1. Note that the conditioning means 
the model is true for all subjects in cohorts Ci = 1, ... , n- j + 1. Equation 
(1.10) implies the following interpretation for ~: 

~ = E (lij I ci s n - j + 1) 

- E (Yi(j-1)1Ci S n- j + 2) for all j, 

which can be re-expressed as 

~ =E (Yij- Yiu-1)ICi s n- j + 1) 
+ {E (YiU-1)ICi s n- j + 1) 

-E (YiU-1)ICi = n- j + 2)} 

(1.11) 

(1.12) 

This last equation illustrates the likely misspecification of model 
(1.10). The first term in the right hand side, E(lij - Yi(J-1) ICi S 
n- j + 1), does measure the mean intra-subject change between ages 
Xj-1 and Xj in cohorts 1, 2, ... , n- j + 1. However, the second term, 

is a contrast in the mean response at the single age Xj-1 between cohorts 
1, 2, ... , n- j + 1 and cohort n- j + 2. This latter measures "secular" 
or cross-sectional change because it compares individuals in different co­
horts. Because~ does not change with j, model (1.10) implies that this 
linear combination remains the same for all j. This will only be reason­
able when there are no cohort effects. Thus, unless the mean response 
at entry age a is the same in all cohorts, the parameter ~ cannot be 
interpreted as a measure of pure longitudinal change. 

The point of our example is to illustrate that using naive extensions 
of models for estimating pure longitudinal change with balanced designs, 
such as in our problem, a model obtained by simply omitting the rows of 
the design matrix corresponding to unobserved outcomes, may result in: 
a) misspecified models or, b) correctly specified models whose parameters 
no longer retain their interpretation under balanced designs. 
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Researchers have approached the problem of isolating longitudinal 
effects in various ways. In the example described above one strategy 
would be to restrict inferences to subjects measured on all occasions 
that is, to base inference on data from a single cohort. This strategy will 
not induce loss of information about longitudinal change when n = 2, 
but will clearly be inefficient otherwise as subjects with incomplete (but 
more than one) measurements carry information about intra-individual 
effects. In addition, there is the obvious problem that by restricting 
attention to a single cohort no inference about cross-sectional effects can 
be made. 

A second general strategy applicable also to continuous outcomes 
and more complex designs than the one considered in our example is to 
incorporate subject specific effects into the model. Specifically, assume 
that the outcomes }ij, j = 1, ... , ni, i = 1, ... , N are independently 
normally distributed with common (unknown) variance 0"2 and mean 

(1.13) 

where the bi's are fixed unknown constants and Xij is the age of subject 
i when }ij is measured. Here we allow for the following possibilities: 

1. age and calendar time at which the initial outcome measurement 
Yi1 is obtained vary across subjects, so that subjects belong to 
different age-cohorts; 

2. the number of measurements taken on each individual varies, i.e., 
ni changes with i; 

3. the outcome measurements are taken at unequally spaced time 
points. 

We use capital letters for Xij to stress its stochastic nature under 
these unbalanced designs. We can extend model (1.13) to allow for non­
linear age trends by considering 

(1.14) 

where h is a known function of time from baseline Xij - Xi1 and an 
unknown parameter b. satisfying the constraint of being equal to 0 when 
Xij = Xil· In models (1.13) and (1.14) the values of the b/s vary with 
subjects. If the aging process is the same across cohorts then the bi's ab­
sorb the cohorts effects and the parameter b. reflects pure longitudinal 
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trend. A difficulty with model (1.14) is that the number of nuisance pa­
rameters increases with N, hence maximum likelihood gives inconsistent 
results for inferences (Neyman and Scott, 1951). 

Inference about a parameter of interest (in our case ~) when the 
number of nuisance parameters (in our case the bis) grows at the same 
rate as the sample size can sometimes be resolved by a factorization of 
the likelihood. If two factors can be found such that one carries most or 
all of the information about the parameter of interest and is exactly or 
approximately free of the nuisance parameters. In such case, inference is 
based on the informative component of the likelihood. In the special case 
in which /-Lij is linear in Xij, and f (~j) depends upon bi, Xij and ~ only 
via /-Lij, reparameterization via orthogonalization of the covariate space 
yields a satisfactory factorization for inference about ~- Specifically, 
letting Ti = bi+ (Xi -Xil)~ and Zij = Xij -Xi, where xi= L:j Xij/ni, 
the mean model is re-expressed as /-Lij = Ti + Zij~· It can be easily 
checked that the distribution ofn = L;j ~j/ni = Yi does not depend on 
~ and is a sufficient statistic for Ti when ~ and (}"2 take arbitrary fixed 
values. Further, the conditional distribution of Y = {~j; i = 1, .. , N,j = 

.--- -2· ' 1, ... , ni} giVen Y = (Y 1, ... , Y N ), f(Y[Y; ~' (Y ) say, IS free of of theTis 
and carries all the available information about ~ and (}"2 . This approach 
is indeed identical to conducting inference based on the differences from 
the individual means Wij = ~j - Yi, j = 1, ... , ni - 1. 

In the more general non-linear setting (1.14) an analogous strategy 
would be to base inference about ~ on the conditional distribution of 
Y given a sufficient statistic for bi, say Si, i = 1, ... , N. Besides yielding 
valid asymptotic inference about ~' this approach has the advantage of 
not requiring estimation of the bi's. However, it can be quite inefficient 
if Si is informative about ~- As a final remark, notice that the method 
does not use the data of subjects with a single observation, since for 
them, the conditional distribution of~ given si is constant. 

There are two alternative approaches to conduct inference in the pres­
ence of a large number of nuisance parameters that we now mention 
briefly. 

One possibility is to regard the bi 's as realizations from a random vari­
able following a parametric distribution. The large number of nuisance 
parameters is then replaced by the finite number of unknown parameters 
indexing the distribution of the bi's. This formulation falls into the class 
of random effects models. Inference under these models is discussed in 
detail in Chapter 5. 

A second possibility is to assume that the bi 's follow a deterministic 
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function of cohort. For example, if Ai denotes the age of subject i at a 
fixed time point t0 , then we may assume that bi = /3o + /3cAi. Under the 
design with staggered entry previously described this assumption implies 
that 

(1.15) 

where we write the conditioning on the random variable Ai to emphasize 
that the model describes the dependence on time since baseline of the 
outcome mean of subjects belonging to the same cohort. Further, we can 
use equation (1.15) to model designs in which the baseline measurement 
is taken at the same calendar time for all subjects but age of entry to 
the study varies with subjects (and possibly the subsequent times of 
measurements also differ across subjects). In this case, Xil is equal to 
Ai and the model becomes 

(1.16) 

Equation (1.16) defines an LMCD model with covariates Xil and Xij­

Xi1 associated with the Yij· Notice that the model implies that 

and 

Thus, /3c reflects the cross-sectional effect of age since it relates how the 
mean of the baseline measurement changes with age at baseline, and L1 
reflects longitudinal effects, since it relates individual changes in age with 
changes in the outcome. 

As an illustration of this method we consider the study by Ware et 
al. (1990) comparing longitudinal and cross-sectional estimates of decline 
in pulmonary function. Non smoking adults, ages 25-74 on entry, were 
examined three times at three year intervals between 1974 and 1983. 
There were 2,454 white subjects with valid measurements at baseline; 
1,973 remained in the study at the first follow-up and 1,713 at the final 
follow-up. Figure 1.1 represents the qualitative results found. 

The cross-sectional curve was obtained by applying ordinary univari­
ate regression methods to the first measurement only, }'i1. The longitu­
dinal curve was obtained by fitting a correlated regression model with 
outcomes equal to the differences Yi3 - Yi2 and Yi2 - Yi1- The cross­
sectional curve shows a slower rate of decline. The possible reasons for 
these results include the following: 
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FIGURE 1.1. 

• Cohort effects: 

27 

Age 

Younger cohorts are more prone to respiratory disease because, for 
example, of higher levels of pollution exposure. 

• Attrition: 

There might be selection bias, in that at older ages we may only 
get to see healthier subjects (more subjects with respiratory disease 
may be dead by age 70 than by age 50). 

1.5 Missing Data Issues 

The analysis of studies with longitudinal or clustered designs that suffer 
from non-response poses important methodological challenges. First, we 
need methods that do not discard units with incomplete measurements 
but that, instead, efficiently incorporate the observed data on these units. 
Second, with missing data any analysis method requires important as­
sumptions about the missing data mechanism (MDM) and the usefulness 
of different methods depends critically on the validity of these assump­
tions on each specific application. Rubin (1976) and Little and Rubin 
(1987) provide a classification of the missing data mechanism that is 
useful for understanding the validity of analysis methods with missing 
data. To motivate this classification we now provide some examples in 
the context of the analysis of incomplete correlated outcomes. 

An observational longitudinal study with drop-out. The Six 
Cities Study discussed in Section 1.1 was a longitudinal study of the ef­
fects of air pollution on respiratory health. As part of this study, children 
were followed from age 6 to 18. Lung function was measured with forced 
expiratory volume (FEV) measurements obtained annually in children in 
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examinations conducted at the schools. Moving in or out of the school 
district was a predominant reason for late entry or attrition. 

An observational longitudinal study with intermittent non­
response. As part of the Muscatine Risk Factor Study (Lauer, 1975) 
weight and height measurements of five age groups of school children in 
1977 (ages 5-7, 7-9, 9-11, 11-13, 13-15) were obtained at three exami­
nations conducted every two years. One of the goals of the study was to 
determine the prevalence, incidence and risk factors for obesity in this 
cohort. Parental consent prior to each study wave was a requisite for 
child participation. The study suffered from substantial non-response. 
For example, of the 471 children age 11-13 in 1977, only 182 participated 
in the three study waves (Baker, 1995). Other age groups had similarly 
high non-response rates (Woolson and Clarke, 1984). Some children had 
intermittent non-response, i.e., they missed an examination but attended 
a later one. The two main reasons for non-response were: (1) no parental 
consent was received by the teachers and, (2) the children were absent 
from school the day of the examination. 

A randomized repeated measures study with intermittent 
non-response. The International Breast Cancer Study Group (IBCSG) 
trial VI assessed adjuvant chemotherapy in 1461 patients with node­
positive breast cancer. Patients were asked to complete a quality of life 
(QL) questionnaire. Single-item self-assessment scales measured phys­
ical well-being, mood, appetite and perceive adjustment/coping. QL 
was assessed at the beginning of treatment, 2 months after the start of 
treatment, every three months, and at 1 and 6 months after recurrence. 
Hurny et al. (1996) reported results of the analysis of QL data for the 
first 18 months. Patients were excluded from the analysis if they could 
not be classified in any of the nine culture/language categories. In the 
first 18 months, 1158 (95%) ofthe 1221 evaluable patients completed at 
least one questionnaire, 716 (59%) completed at least six, and 415 (34%) 
completed all seven. 

A randomized repeated measures study with drop out and 
intermittent non-response. The AIDS Clinical Trial Group Protocol 
002 (Fischl et al. (1990) compared high vs low dose AZT treatment on 
the health status of AIDS patients. Measurements of CD4 were to be 
obtained on 520 subjects at baseline and at clinic visits on weeks t = 8, 
16, 24 and 32. One objective was to compare the evolution in time of 
mean CD4 counts in the two treatment arms. The study suffered from 
drop outs and intermittent non-response. Of the 261 patients in the high 
dose AZT arm, 135 were drop-outs and 22 had intermittent clinic visits. 
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For the 259 subjects in the low dose AZT arm, these figures were 107 
and 25 respectively. 

Missing Data Mechanisms. We will now introduce some notation 
useful for describing the classification of different missing data mecha­
nisms in the context of studies with correlated outcomes. We will assume 
that for each of N independent units i, i = 1, ... , N, outcomes Yij, and 
a vector of covariates Xij, j = 1, ... , n, are to be measured. We will 
let Yi = (Yil, ... , Yinf be the complete-data outcome vector, which may 
not be fully observed and we will let Xi be the n x p matrix with rows 
Xlj. Throughout we will assume that Xi is always observed and that 
there is no additional information relevant to predicting the outcome Yi 
or non-response. Finally, we will let Ri, = (Ri,l, ... , Ri,n) where Rij = 1 if 
Yij is observed and Rij = 0 otherwise. We will let Y(r)i denote the sub­
vector of Yi that is observed when Ri, = r. Thus, Y(.&;)i is the outcome 
vector actually observed on the ith unit. We will write f (YiiXi, (3, B) 
for the density of then x 1 vector Yi given Xi, where (3 is the parameter 
of interest and e is a nuisance parameter (finite or infinite dimensional) 
indexing other components of the joint distribution of Yi given Xi. We 
will let P (~IYi, xi, 'lj;) denote the conditional probability function of~ 
given (Yi, Xi) which is indexed by the parameter vector 'lj;. We are now 
ready to describe the classification of missing data mechanisms (MDM) 
as originally introduced by Rubin (1976). 

Missing completely at random The outcomes are said to be miss­
ing completely at random (MCAR) if 

(1.17) 

i.e., the probability of response is conditionally independent of the full 
outcome vector (observed and unobserved) given the covariates. As an 
example, in the Six Cities Study the missing lung function measurements 
would be MCAR if the reasons for missing a lung function test are un­
related to the respiratory health of the child, as would be the case if the 
child moved out of the school district because of job relocation of the 
parents. In contrast, the lung function data would not be MCAR if a 
family decides to relocate into an area with better air quality because of 
respiratory problems of the child. 

Condition (1.17) is equivalent to the conditional independence of the 
outcome vector Yi and the response indicator vector Ri, given the covari­
ate vector xi, i.e., 

(1.18) 
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Thus, under MCAR the distribution of Yi is the same in each sub­
population defined by a specific non-response pattern and in the entire 
target population consisting of the aggregate of units with complete and 
incomplete responses. Two important practical implications of this fact 
are the following. 

1. If in (1.18) we take r equal to the vector of ones we obtain that 
the conditional distribution of the outcome vector is the same in 
the population of units with complete responses as in the target 
population. Thus, any analysis method that yields valid inference 
about {3 in the absence of missing data will also yield valid inference 
about f3 if the outcomes are MCAR and the analysis is conducted 
based on units with complete responses. The latter is usually refer 
to as a complete case analysis. 

2. Equation (1.18) implies that 

(1.19) 

Thus, the conditional distribution of the observed components of 
Yi among units with any non-response pattern coincides with the 
distribution of the same components of Yi in the target popula­
tion. In particular, the first and second moments of Y(R;)i given 
the covariates are preserved under the MCAR mechanism. That 
is, if 

E (Yi [Xi) = Xi f3 and cov (Yi [Xi) = Ei , 
nxppx1 nxn 

then we may write Y(r)i = Iili, where Ii denotes an ni x n matrix 
obtained by removing from then x n identity matrix the jth row 
if rij = 0, j = 1, ... , n. Hence 

E (Y(r)i[Xi, Ri) = E (IiYi[Xi) = Ii E(Yi[Xi) = Ii Xi f3 = X(r)i/3 
n;XnnXppX1 

and 

where X(r)i and E(r)i denote respectively IiXi and IiEJ[. Thus, 
with MCAR outcome data, the appropriate design matrix for the 
ith subject is simply X(r)i obtained by removing rows of the full 
data design matrix corresponding to the missing observations. In 
practice, this has the important implication that standard weighted 
least squares analyses conducted based on all the available observa­
tions of the sampled units yields valid inference about the regression 
parameter {3. 



N. M. LAIRD 31 

Missing at random The outcomes are said to be missing at random 
(MAR) if the probability of response is conditionally independent of the 
unobserved responses given the covariates and the observed responses. 
That is, 

(1.20) 

The MAR assumption is attractive because it is less stringent, i.e., it 
imposes less restrictions on the model for the conditional probability 
of response given outcomes and covariates, than the MCAR condition. 
However, an important consequence of the relaxation of assumptions on 
the model for the missing data mechanism is that the identity (1.19) is 
no longer guaranteed to be true. This is so because by the Bayes rule, 

(1.21) 

and the MAR condition does not imply that P(~ = rfY(r)i' Xi;~) = 

P(Ri = r[Xi; ~).This has the important practical implication that com­
plete case analyses as well as least squares analyses based on all available 
observations no longer yield valid inference about (3. However, equation 
(1.21) implies that the likelihood contribution of unit i can be factored 
as 

(1.22) 
r 

r 

where the product ranges over all values taken by r. Thus, if~ and 
(/3, 8) are variation independent (i.e., the ( ~' (3, 8) -parameter space is 
the Cartesian product of a ~-parameter space and a (/3, B) -parameter 
space) and the outcomes are MAR, the likelihood for f3 is proportional to 
the likelihood obtained by ignoring the missing data mechanism. When 
~ and (/3, 8) are variation independent and the outcomes are MAR, the 
MDM is called ignorable (Rubin, 1976). We conclude that under an 
ignorable MDM, likelihood-based inference does not require the specifi­
cation of a model for the response probabilities. 

The MAR assumption has an easy interpretation when the patterns 
of non-response are monotone. We say that the non-response patterns 
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are monotone when 

Rij = 0 implies Ri(j+l) = 0 for any j = 1, ... , n - 1. (1.23) 

Monotone patterns arise, for example, in the context of longitudinal stud­
ies as a result of data missing solely due to a drop-out process. Under 
(1.23) it can be easily shown that the MAR condition (1.20) is equivalent 
to 

P (Rij = 1IRi(j-1) = 1, Yi1, ... , Yin, Xi) 

= P (~j = 1IRi(j-1) = 1, Yi1, ... , Yi(j-1), Xi) (1.24) 

for j = 1, ... , n. 

Thus, in the context of longitudinal studies with monotone patterns of 
non-response, MAR means that the probability of dropping out of the 
study at each time j is conditionally independent of current and future 
outcomes given the covariates and the observed history of the outcomes 
up to but not including time j. For example, in the Six Cities Study 
described previously the outcomes would be missing at random if the 
decision to move out of the school district was based only on: (a) the air 
quality (Xi) of the area ofresidence, (b) the respiratory health history of 
the child as measured solely by the past recorded FEV test results and (c) 
other factors unrelated, i.e., (conditionally) statistically independent of, 
current and future FEV measurements, such as, for example, parental job 
relocation. In randomized follow-up clinical studies, such as the ACTG 
trial described previously, the MAR assumption would hold for example 
if doctors decide to remove patients from the study based on the recorded 
history of the health outcome variable of interest. Notice, however, that 
the MAR assumption would not hold if doctors make their decisions 
based on other health variables predictive of the outcome of interest that 
are not available for data analysis. 

When the longitudinal study also suffers from intermittent nonre­
sponse, i.e., when the monotonicity condition (1.23) does not hold, an 
MAR process similar in spirit to (1.24) is given by an assumption that 
non-response depends only on previously observed outcomes, covariates 
and non-response pattern, i.e., 

P (~j = 1IRi1, ... , Ri(j-1), Xi, Yi) 
= P (Rij = 1IRi1, ... , Ri(j-1), Xi, Ri1 Yi1, ... , Ri(j-1) Yiu-1)) 

(1.25) 

When the covariates Xi are successfully obtained from sources other 
than the study participants, for example from air pollution measurement 
stations in the communities where the study participants reside as in the 
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Six Cities Study, Equation (1.25) says that the decision to return to 
or miss the next study cycle is based solely on the (a) covariates, (b) 
the actual cycles previously missed and, (c) the outcomes measured at 
the non-missed prior study cycles. For example, in the context of a 
randomized clinical follow-up study, assumption (1.25) would hold if Xi 
recorded treatment arm assignment and baseline patient characteristics 
and the decision of doctors to temporarily remove patients from the 
study or to ask patients to return to the study was based solely on 
measurements of the health outcome of interest that were recorded while 
the patient was on the study. 

Robins and Gill (1997) showed that in contrast to the monotone data 
case, (1.25) implies MAR but MAR does not imply (1.25). These authors 
further show that the condition (1.25) imposes restrictions on the law 
of the observables and it is therefore subject to empirical verification. 
Unfortunately, as we illustrate below, MAR processes that do not satisfy 
(1.25) have the unattractive feature that they do not marginalize, that 
is, unless (1.25) holds, 

P (~ = riYi) = P (~ = rll(r)i) 

does not imply 

where R, r and Y denote the n - 1 dimensional subvectors of R, r and 
Y obtained by removal of an arbitrary component. The important prac­
tical message of the lack of marginalization is the limitation of the MAR 
assumption with intermittent non-response when (1.25) does not hold. 
This is so because any reasonable assumption about the missing data 
mechanism should not depend on the design, i.e., on the number of ob­
servations that are to be potentially taken on each unit. This discussion 
indicates that when the study suffers from intermittent non-response, 
practitioners prepared to assume that the data are MAR should rou­
tinely test the null hypothesis that condition (1.25) holds and if rejected, 
they should discount the possibility that the data are MAR. 

We now provide a simple example to show that the assumption of 
MAR does not marginalize when (1.25) is not true. Suppose that Yi = 

(Y1i, Y2i) is a bivariate vector of binary outcomes and for simplicity sup­
pose that covariates Xi are not relevant. Suppose that P(Rti = r 1, R2i = 
r2IY1i = Yt, Y2i = Y2) is given by the corresponding entries of the follow-
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ing table: 

(r1,r2)- (0,0) (r1, r2)- (0, 1) (ri,r2)- (1,0) (r1, rz) - (1, 1) 
(YI> Y2) (0,0) 0.2 0.1 0.3 

(0, 1) 0.2 0.2 0.3 
(1, 0) 0.2 0.1 0.5 
(1, 1) 0.2 0.2 0.5 

Then it can be easily checked that 

p (~1 = 1, Ri2 = OIY1i, y2i) = p (~1 = 1, ~2 = OIY1i) ' 

P (Ril = 0, ~2 = 1IY1i, Y2i) = P (Ri1 = 0, ~2 = 1IY2i), 

and 

0.4 
0.3 
0.2 
0.1 

(1.26) 

(1.27) 

(1.28) 

Thus, the data are MAR. However, it follows from the table that 

p (~1 = OIYli = 0) = 0.3P (Y2i = OIYli = 0) + 0.4P (Y2i = 1IY1i = 0) 

and 

p (Ri1 = OIY1i = 1) = 0.3P (Y2i = OIY1i = 1) + 0.4P (Y2i = 11Yli = 1)' 

so that P(Ri1 = 0) depends upon li1 unless li2 and li1 are independent. 
Hence, (1.26), (1.27) and (1.28) in general do not imply that MAR holds 
marginally, i.e., in general, 

even though P(~1 = 0, ~2lli1, li2) depends only on li2. 

Non-ignorable. The MDM is non-ignorable when the conditional 
probability of response depends both on observed and unobserved out­
comes i.e., when (1.20) is not true. For example, in the Muscatine 
Risk Factor Study described previously, the MDM may be non-ignorable 

I 

because of the possibility of non-response being associated with (un-
ovserved) obesity. In younger children, parents of obese children may 
be more likely than parents of non-obese children to give consent for 
participation because of their concern with the health risks associated 
with obesity. On the other hand, obese preadolescents may be more em­
barrassed than the non-obese over the examination and more likely to 
be absent from school on the examination day. In the IBCSG quality 
of life study, non-ignorable non-response is suspected because patients 
with worse quality of life may be less likely to want or to be able to fill 
in a questionnaire. In the ACTG trial 002 non-ignorable non-response 
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is suspected if the possibility exists that doctors' decision to remove pa­
tients from study is based not only on the recorded health outcomes 
from past clinic visits but also on other patient characteristics predictive 
of prognosis and not available in the data base. Non-response would also 
be non-ignorable if subjects whose health had markedly deteriorated be­
tween visits j and j + 1 are more likely than others to either miss the 
clinic visit at week j + 1 or to never return for a visit after week j. 

Important technical and philosophical considerations arise when the 
MAR assumption is in doubt. Technically, if we are no longer prepared 
to assume that the outcomes are MAR, we can no longer factorize the in­
dividual likelihood contributions as in (1.22). This has the important im­
plication that likelihood-based inference (and indeed any valid inferential 
procedure) about (3 under non-ignorable non-response requires the spec­
ification of a model for the conditional probability ofresponse. However, 
as we shall argue in Chapter 9, identification problems arise when fitting 
richly parameterized models for the non-response probabilities. Philo­
sophically, the values of the parameters indexing the non-response prob­
abilities determine the process of self selection of the non-respondents. 
Without external information, the data on the respondents only cannot 
provide any evidence about the self selection process. The identifiability 
difficulties encountered when fitting non-ignorable non-response models 
are the mathematical reflection of this paradigm. We will return to these 
issues in Chapter 9. 

In our discussion so far we have assumed that the study design calls 
for the collection only of data on Yi and Xi. However, it is often the case 
that additional time dependent variables l/ij, j = 1, ... , n, not included 
in the regression model of scientific interest are also recorded and avail­
able for data analysis. For example, in the ACTG trial 002 described 
previously measurements were obtained at each clinic visit not only on 
CD4 counts (the outcome of interest) but also on other health variables 
such as white blood cell counts and the occurrence of pneumonia episodes 
between study cycles. Notice that the regression model of interest does 
not include as covariates the variables Vi because these variables are in 
the causal pathway between Xi (treatment) and the outcomes CD4ij 
and hence their inclusion would lead to over-adjustment. On occasions, 
we may be prepared to assume that conditional on the covariates and 
on past measurements of Yij and Vii, the probability of response at each 
time j is independent of current and future values of the outcomes. That 
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is, 

P (Rij = IIRi1, ... , ~u-1), xi, Yi·, Vi) 
= P (Rij = IIRi1, ... , Ri(j-1), xi, Ri1Yi1, Ri1 Vi1, ... , (1.29) 

~(j-1) Yi(j-1), Ri(j-1) Viu-1)) · 

For example, this would be the case in the ACTG trial 002 if a patient 
misses a study cycle only by indication of the doctor and the doctor's 
indication is determined solely by the recorded history of Yij and Vij on 
the patient. 

When, as in the ACTG trial 002, the scientific goal remains the es­
timation of the parameter (3 indexing the conditional mean of Yi on Xi, 
the analysis presents important methodological challenges if one is not 
prepared to assume that the more stringent condition (1.25) holds in 
addition to (1.29). Specifically, as argued in Chapter 9, likelihood based 
inference about (3 (and in particular tests comparing the CD4 count 
means in the two treatment arms) requires the specification of a para­
metric model for the conditional distribution of the additional variables 
Vi given the outcomes Yi and the covariates Xi and can be non-robust to 
misspecification of this model. In Chapter 9 we discuss likelihood based 
inference in this setting in more detail. 

The methodological difficulties arising when (1.29) holds but (1.25) 
is not true can be overcome to some extend if the scientific model of 
interest can be modified to include as covariates the Vi's, because then 
the outcomes are MAR and likelihood based inference depends only on 
the correct specification of the model for the conditional law f (Yi I Xi, Vi). 
Modification of the scientific model of interest to include the Vis would 
perhaps be reasonable in certain studies in which the purpose of the 
analysis is entirely descriptive. For example, consider a survey of lung 
function in adolescents. We are interested in relating lung function to 
age and sex to construct norms. But suppose smokers are less likely to 
participate in the survey. Because smoking is known to be predictive of 
lung function in adolescents even after stratification on age and sex, an 
analysis that does not adjust for the differential response rates between 
smokers and non-smokers would yield biased estimates of the age-sex­
specific distribution of lung function in the targeted study population. 
However, if non-response is independent of lung function after stratifying 
on age, sex and past smoking status, then (as argued in our discussion 
of the MAR mechanism) the age-sex-smoking history-specific lung func­
tion distribution among respondents is the same as the corresponding 
strata specific distribution in the targeted population. Thus, in particu­
lar, standard regression analyses based on all available observations will 
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result in valid inference about the age-sex-smoking history-specific, but 
not about the age-sex-specific, lung function means. 
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