
Chapter 2 

Linear Mixed Models 
(LMMs) 

2.1 Introduction 

There are a number of books that cover the details of linear mixed models, including 
McCulloch and Searle (2000); Searle et al. (1992); Verbeke and Molenberghs (2000) 
so I will not attempt to cover the topic in detail here. However, I do want to point 
out several facets of linear mixed models and their estimation that are relevant to 
generalized linear mixed models and establish some basic notation. Again, I begin 
with an example, this one quite simple. 

2.2 Example: Propranolol and hypertension 

Below (Table 2.1) are data from an early, double-blind trial of the effect of a drug, 
Propranolol, on hypertension. Blood pressure was measured after administration 
of the drug and a placebo both in the upright and recumbent positions. There are 
two main questions of interest. First, does Propranolol have the same influence in 
recumbent and upright positions (i.e, is there a lack of interaction) and second, if 
the answer to the first question is yes, is it effective? 

If we let Yijk denote the blood pressure measurement on the kth individual, ith 
position and jth drug condition, then the standard model for such an analysis is 

YijklPk "'indep. N(/1ijk, a 2), 

/1iJk = 11 + ai + (3j + (af3)ij + Pk, 
(2.1) 

where the vertical bar between Yi}k and Pk indicates that the specification is condi
tional on the Pk· To this we add the important assumption that the person effects, 
Pk, follow a distribution: 

(2.2) Pk rv i.i.d. N(O, a;). 

The mere declaration of the Pk as random variables, as contrasted with treating 
them as fixed, unknown parameters, induces a correlation between measurements 
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TABLE 2.1. 
Data for the Propranolol/hypertension example 

Blood Pressure ( mmHg) 
Recumbent Upright 

Patient Placebo Drug Placebo Drug Average 
1 96 71 73 87 81.75 
2 96 85 104 76 90.25 
3 92 89 83 90 88.50 
4 97 110 101 85 98.25 
5 104 85 112 94 98.75 
6 100 73 101 93 91.75 
7 93 81 88 85 86.75 

Ave 96.86 84.86 94.57 87.14 90.86 

taken on the same person. This is easily shown by using an identity similar to 
iterated expectations, namely 

(2.3) Cov(X, Y) = E[Cov(X, Y/Z)] + Cov(E[X/Z], E[Y/Z]). 

In the present context we use (2.3) by conditioning on Pk as follows: 

(2.4) 

Cov(Yijk, Yi'j'k) = E[Cov(Yijk, Yi'J'k/Pk)] + Cov(f-tijk, f-ti'j'k) 

= 0 + Cov(f-tijk, f-ti'j'k) 

= Cov(pk,Pk) 
2 = (jp· 

The second equality in (2.4) is true since the Yijk are assumed to be conditionally 
independent and the third follows since the only random quantities in the condi
tional mean are the Pk· Similar calculations give the variance of Yijk or Yi'j'k as 
O"; + 0"2 so that the correlation is 

(2.5) 
(}"2 

Corr(Yijk, Yi'j'k) = 2 P 2 , 
(jp + (j 

the well-known intraclass correlation result (Snedecor and Cochran, 1989). 

2.3 Fixed versus random factors 

This distinction, between treating a term in the model as a random variable as 
opposed to a fixed, unknown constant is so crucial to the remaining development 
that it is worth some emphasis. We make the following definition 

DEFINITION. If a distribution is assumed for the levels of a factor it is a random 
factor. If the values are fixed, unknown constants it is a fixed factor. 
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Declaring a factor to be random has several ramifications 

• Scope of inference. Inferences can be made on a statistical basis to the pop
ulation from which the levels of the random factor are assumed to have been 
selected. 

• Incorporation of correlation in the model. Observations that share the same 
level of the random effect are being modeled as correlated. 

• Accuracy of estimates. Using random factors involves making extra assump
tions but gives more accurate estimates. 

• Estimation method. Different estimation methods must be used as compared 
to regular regression or analysis of variance. 

In the Propranolol example, we are almost certainly willing to assume that the Pk 
follow a distribution. It is unlikely that we would be satisfied in drawing conclusions 
only about the seven subjects in the experiment. We will almost certainly be willing 
to assume that the patients in our study can be regarded as a random sample from 
some larger population of patients (appropriately defined). We may give more pause 
to the specific assumption of a normal distribution, and we return to this topic in 
later chapters. 

If we are willing to make the random sampling assumption then the effects in 
the model associated with the patients (the Pk) can also be regarded as a random 
sample. Further, a main reason for conducting an experiment such as this one by 
measuring the same subject under all four conditions is to gain the advantage of 
making within-subject comparisons. This is a more precise comparison because it 
exploits the within-subject correlation of the measurements. 

Thus the key step is to answer the question: "Am I willing to assume the effects 
come from a distribution?" If the answer is yes, the factor is considered a random 
factor. 

2.4 Estimation and prediction 

Traditional analysis of the Propranolol example would be by analysis of variance 
with F-tests for the effects of position, drug and their interaction. This is a perfectly 
good analysis for a simple, balanced situation. However, as soon as the structure of 
the random effects becomes complicated and/ or the data are unbalanced, then the 
traditional methods become approximate and inefficient. From a theoretical point 
of view, the statistics captured in the usual ANOVA table, on which all further 
calculations are based (such as the F-test), are no longer sufficient statistics. This 
makes methods such as maximum likelihood more attractive. 

Indeed, this is exactly what more modern statistical procedures, such as SAS 
Proc MIXED, do. They calculate the likelihood or variants (such as restricted 
maximum likelihood) and base estimation and tests on those calculations. This has 
the significant advantage of being able to handle quite complicated correlated data 
structures as well as unbalanced data. Of course, it leads to much more difficult 
statistical computing. 
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a. A more general formulation 

Before describing selected results concerning linear mixed models I consider a more 
general form of the linear mixed model. The model (2.1) has terms describing both 
fixed (p,, o:i, /3j, ( o:(3)ij) and random (Pk) factors, which enter the model in the same 
fashion. If we let X represent the model matrix for the fixed effects, f3 the fixed 
effects parameters, Z the model matrix for the random effects, and u the random 
effects, then we can write a more generic version of the mixed model as 

(2.6) 
YJu "'N(X/3 + Zu, R), 

u rvN(O,D), 

where, rather obviously, R represents the variance-covariance matrix of Y condi
tional on u and D is the variance-covariance matrix of u. For the Propranolol 
example, X and Z would be indicator matrices of zeros and ones, while R = Io-2 

and D = Io-~. 

b. Means and variances 

From (2.6) and the iterated expectation identities, it is straightforward to calculate 
the mean and variance-covariance matrix of Y. The mean is given by 

(2.7) 

E[Y] = E [E[YJu]] 

= E [X/3 + Zu]] 

=X/3+ZE[u] 

= X/3. 

The variance-covariance matrix is given by 

(2.8) 

Cov(Y) = E [Cov(YJu)] + Cov (E[YJu]) 

= R + cov(X/3 + Zu) 

= R+ Cov(Zu) 

= R+ZDZ'. 

Therefore V = Cov(Y) = ZDZ' + R. 
In practical applications of linear mixed models, decisions have to be made as to 

what form to specify for D and R. The random effects u, through their variance
covariance matrix D, are typically used to describe correlation attributable to spe
cific entities, such as subjects, or sites, while the matrix R is used to describe corre
lation structure that remains (if any), often due to temporal or spatial correlation. 
So, in a model with repeated measurements over time on subjects, we might have a 
model with both subject random effects (to describe stable-over-time characteristics 
that lead to long term correlation of measurements on a subject as captured in D) 
as well as an autoregressive (or other time series type error structure) to describe 
the additional correlation of measurements taken over time. 

A common simplification for (2.6) occurs when the random effects vector de
scribes several, independent random effects. For example, we might study the 
performance of students, taught in classes, within schools. So we could envision 
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an analysis with random effects for students, classes and schools. We might be 
willing to assume that within each of the vectors of effects associated with stu
dents, classes and schools the effects are independent and identically distributed 
and that each vector of effects is independent of one another. If we order the vector 
u by students and then classes and then schools, D would take the block diagonal 
form D = diag{IO';tudent' IO"~lass' lO';chooJ}· In these cases, and using r to denote the 
number of distinct random effects and Zi and ui to represent the separate model 
matrices and random effects, it is often convenient to rewrite (2.6) to display that 
fact, as follows: 

(2.9) 
Ylu "'N ( X/3 + ~ Ziui, R) , 

ui "' indep. N(o, IO"f), 

c. Estimation and prediction 

Some of the relevant estimation and prediction techniques are somewhat easier 
to describe under (2.9) and assuming R = !0'2 • If we take derivatives of the log 
likelihood for (2.9) and set them equal to zero (see Searle et al., 1992, for details) 
then the resulting equations are 

(2.10) 
for i = 1, 2, ... , r, 

where P = v- 1 - v-1X(X'V-1X)-1X'V-1 . The first equation can be solved 
explicitly for (3, if V is known, but the second set of equations cannot be solved 
explicitly for the elements of V and it usually dealt with iteratively. 

d. Best prediction of the random effects 

As noted in Chapter 1, the best predicted value (in the sense of minimum mean 
squared error of prediction) of a random effect u given the data Y is E[uiY]. A 
variation on the idea of a best predictor (BP) is that of a best linear unbiased 
predictor (BLUP). More formally: 

DEFINITION. A BLUP, Ublup, minimizes the MSE of prediction among linear 
unbiased predictors: 

minimize E[(iiblup- u) 2] 

among iiblup which are linear in Y and for which E[ iiblup - u] = 0. 
For linear mixed models the best predictor is of the form (Searle et al., 1992) 

(2.11) 

while the best linear unbiased predictor is 

(2.12) 



14 GENERALIZED LINEAR MIXED MODELS 

We can thus see what adding on the requirements of linearity and unbiasedness gain 
us: the theory tell us to replace the value of (3 with its ML estimator. This resolves 
part of the problem of the BP depending on unknown parameters, but there is still 
the issue that it depends on an unknown V. 

i. Prediction with a balanced data set 

For a balanced data situation like that of the Propranolol data, the form of the best 
predictor and best linear unbiased predictor are relatively simple and informative. 
Consider prediction of Pk from (2.1). The best predictor is given by 

(2.13) 

where Y..k is the mean of the data for the kth person. Now Pk and Y..k are jointly 
normally distributed with a covariance given by [utilizing (2.3) again] 

(2.14) 

Cov(pk, Y..k) = Cov(pk, f.L + ai + /3j + (af3)ij + Pk) 

= Cov(pk,Pk) 
2 = (YP" 

Since Pk and Y..k are jointly normal, we can use the usual formula for the conditional 
mean for a bivariate normal distribution to calculate the BP: 

(2.15) 

BP(pk) = E[pk] + Cov(pk, Y.k)Var- 1(Y..k)(Y..k- E[Y..k]) 
2 

(}'p (- -) = 0 + 2 2 / Y.k - J.L O'P +a- nk 
2 

(}'p - -
= 2 2 I (Y.k- J.L) a-P + 0' nk 

where nk is the number of observations contributing to Y.k, (equal to 4 in the 
Propanolol example) and where fl = J.L +a. + /3. + ( a/3) .. and with the bars over the 
symbols representing averages over the subscript(s) that have been replaced with 
dots. 

The best linear unbiased predictor is more practical, since it replaces the unknown 
fl withY .. : 

(2.16) 

In either case, the form of the predictor is interesting. It takes the naive estimator 
for an individual person effect, Y..k-Y. .. and shrinks it by the factor a-;/(a-;+a-2 /nk)· 
How does this shrinkage factor behave? If there is large person to person variation 
(in relation to a-2 /nk), suggesting that people are quite different, then the multiplier 
is about 1 and little shrinkage takes place. Likewise, if nk is large, little shrinkage 
takes place. On the other hand, if a-; is relatively small and/or nk is small then 
the shrinkage can be sizable. This is the so-called "borrowing of strength" in which 
information is "borrowed" either if people are similar or if the sample size is small 
and benefit can be had by learning from the rest of the sample. 
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Another viewpoint is in predicting the mean value for person k: 

(2.17) 

where a= u~j(u~ + u 2 /nk)· This shows that the predicted mean value for person 
k is a weighted average of the overall mean and the individual specific mean. 

In practice it is common (Harville, 1991) to use a "plug-in" estimator and insert 
the estimated values of the variance and covariance parameters into the equation 
for the BP or BLUP. We call this the EBLUP (for §stimated or §mpirical BLUP): 

(2.18) 

Here is a numerical illustration using the Propranolol example. 
Numerical illustration. 

'2 
(Jp - -

EBLUP(pk) = , 2 , 2 / (Y.k- Y .. ) 
uP+u nk 

(2.19) 
15.7976 

15.7976 + 85.7976/4 (81.75 - 90"86) 

= 0.424( -9.11) 

= -3.863, 

showing shrinkage of the raw estimate from -9.11 to -3.863. 
Similarly, 

(2.20) 

'2 
- - ~ - -

EBLUP(!L+Pk)=Y .. + , 2 , 2 / (Y.k-Y .. ) 
up+u nk 

= 90.86 - 3.863 

= 86.99, 

which is much closer to the overall mean of 90.86 than is the raw mean for the first 
patient, which is 81.75. 

A primary message here is that we can declare a factor to be random but still 
be interested in and have the ability to obtain predictions for the specific levels of 
that factor. 

What about standard errors for the EBPs or EBLUPs? This is somewhat dif
ficult since, for most designs, the sampling distribution of the estimated variance 
components is unknown and therefore difficult to factor in to the calculations of 
variances and SEs (see, e.g., Kackar and Harville, 1984; Harville and Jeske, 1992). 
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2.5 The mixed model equations 

Charles Henderson from Cornell University (an animal breeder!) made a most re
markable discovery in the 1950s (Henderson, 1953) in which he developed what have 
become known as the mixed model equations. This is a compact set of equations for 
simultaneously estimating the BLUPs and the MLE of (3. We return to the model 
(2.6) but with the simplification that R = Iu2 , namely, 

Y/u "'N(X/3 + Zu, Iu2), 

u rvN(O,D). 
(2.21) 

The "mixed model equations" are given by 

(2.22) [ X'X X'Z ] [ /3 ] [X'Y] 
Z'X Z'Z + n-1u 2 iibtup = Z'Y . 

These can be solved for (3 and Ublup if the values of D and u2 are known. Of 
course, assuming D and u2 to be known is unrealistic and so, in practice, the mixed 
model equations are supplemented with an estimation equation for D and u 2 and 
the equations are solved iteratively. 

Here is more detail for the simple case where there is a single random effect with 
D = Iu;. For that case, it is straightforward to show that the best linear unbiased 
predicted value is given by (Searle et al., 1992) 

(2.23) - 2 Z'P Ublup = O"u y, 

where p = v-1 - v-1x(x'v-1x)-1xv-1 . 

The equation to solve for the MLE of CJ~ is (again see Searle et al., 1992) 

(2.24) tr(V- 1ZZ') = y'PZZ'Py 

or equivalently 

(2.25) 
u~tr(v- 1 ZZ') = u~y'PZZ'Py 

_, -
= Ublupublup· 

So a subsidiary equation using the BL UPs to form a new estimate of the variance 
component, u~, that can be used is 

_, -
(J2(m+1) = ublupublup 

u u~(m)tr(V- 1 ZZ')' 
(2.26) 

where ( m) indicates the round of iteration in the algorithm. 
Slightly more formally then, an algorithm is: 

1. Obtain starting values for the variance components. 

2. Solve the MMEs (2.22) for (3 and Ublup· 

3. Solve (2.26) for u~ and a similar equation for u 2 • 

4. Iterate until convergence. 
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TABLE 2.2. 
ANOVA table for a one-way random model 

Source 
Between 

Error 

d.f. 
k-1 

k(n- I) 

ANOVA 
Mean Square 

MS(Betw) 
MS(Error) 

2.6 Testing fixed effects 

E[Mean Square] 

17 

Testing of fixed effects in linear mixed models has been well covered in McCulloch 
and Searle (2000) (Section 6.4) and so I will not elaborate further here. The results 
for linear mixed models do not bear centrally on the discussion for generalized linear 
mixed models. 

2. 7 Testing random effects 

When using a maximum likelihood analysis the typical tests are based on the im
provement in the maximized value of the log likelihood. The difference in twice the 
log likelihood is compared to a chi-square distribution to test for statistical signif
icance. For testing whether a single variance component is equal to zero the usual 
method must be slightly modified. Ordinarily we would take the difference in log 
likelihoods of the models with and without the random effect and compare that 
directly to a xi critical value. The modification is to either calculate a p-value and 
then cut it in half, or to compare to a cutoff point with twice the nominal a level. 

Why? The intuition is that testing 

(2.27) Ho : O"~ = 0 versus H1 : O"~ > 0 

is a one-sided test. The usual likelihood ratio test is inherently two-sided and must 
be adjusted to reflect this fact. 

Specifically, consider the ANOVA and ML estimators of O"~ in a balanced, one
way random model, both which are based on an ANOVA, such as that exemplified 
in Table 2.2: 

(2.28) 

(2.29) 

ANOVA estimator: 

&~ = (MS(Betw)- MS(Error))/n 

ML estimator: 

&~ = [ ( 1- ~) MS(Betw) - MS(Error)] + jn, 

where [·]+ denotes positive part. 
If O"~ = 0, then the ML estimator is often zero. In that case, the likelihood ratio 
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test (LRT) statistic is given by 

(2.30) 

LRT = -2[logL(O"; = 0) -logL(O"; =a;)] 
= -2[logL(O"; = 0) -logL(O"; = 0)] 

=0. 

About half the time the estimate would be zero and the LRT statistic would be 
zero. With a point mass of approximately 0.5 at 0, the usual asymptotic distribution 
theory (suggesting a xi distribution) clearly breaks down because the estimate gets 
"stuck" on the boundary. 

So, the actual large-sample distribution under H0 is a 50:50 mixture of a XI and 
0. Operationally, we would calculate the p-value under the assumption of XI and 
cut the p-value in half! More detail can be found in Self and Liang (1987) and 
Stram and Lee (1994). As elaborated briefly in Chapter 9, the situation for more 
than a single variance component is more complicated. 

a. Numerical illustration for the Propranolol data 

If the model is fit with patient as a random effect it gives a value for -2 times 
the restricted log likelihood of 186.0517. Fit with no random effect, the value is 
186.7966, with a difference of 186.7966- 186.0517 = .7944. This gives a p-value 
of p = Pr{xi > 0.7944} = 0.388. Cut in half gives 0.194. Equivalently, we can 
compare to a chi-square cutoff of xi,0.90 = 2.71 instead of XI,o.95 = 3.84. 

2.8 Generalized estimating equations 

We now consider a different method of estimation, called Generalized ~stimating 
~quations (GEEs). Again we cover only relevant results. More detail can be found 
in the excellent book by Diggle et al. (1994), from which this example is taken. 

a. Example: milk, cows and diets 

Milk was collected from 79 cows on one of three diets: barley, lupins and a mixture 
of both. Protein content of the milk was recorded weekly for 19 weeks after the 
earliest calving. Let YiJt denote the protein content of the milk from the ith cow on 
the j diet at timet. We consider the following model for Yij, defined as the vector 
of measurements on cow i in diet j: 

(2.31) 

Yij ic"' indep. N(J.Lij' R;_J) 

/-lijt = /-l + Cij + f(t) + Ctj, 

R = [rijt,ijtt] = [0"2 exp( ¢it- t'i)] 

c "'N(o, IO"~), 

where f(t) is a complicated function of time, which is not of interest in our dis
cussion. This model has fixed effects of diet (a J) and time (! ( t)) and random cow 
effects ( Cij). Further correlation (above that introduced by the cow random effects) 
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is introduced by having a temporal correlation captured in Rij, which falls off ex
ponentially as the time points become farther and farther apart. What would be 
an alternative to maximum likelihood as a way to form estimates for this model? 

b. Weighted estimation 

I return to our more general mixed model temporarily for this discussion. Suppose 
we believe that (2.6) holds. What consequence would it have to use ordinary least 
squares estimation for estimating (3? That is, how would (3ols = (X'X)- 1 X'Y 
perform? 

It is a standard linear models exercise to show that f3ols is unbiased: 

(2.32) 

E[i:Jozsl = E[(X'X)- 1X'Y] 

= (X'X)- 1X'E[Y] 

= (X'X)-1X'X(3 

= (3. 

It is also straightforward to calculate its variance as 

(2.33) 

Var((30 z8 ) = Var[(X'X)- 1X'Y] 

= (X'X)-1X'Var(Y)X(X'X)- 1 

= (X'X)-1X'VX(X'X)-1. 

Furthermore, f3ozs is usually fairly efficient as compared to the weighted least squares 
estimator, f3wzs = (X'V-1X)-1 X'V-1Y, which has variance (X'V-1X)-1 . In fact, 
for balanced designs, f3ozs = f3wzs (Searle et al., 1992) so the variances are identical 
and f3ols is fully efficient. For some detailed calculations see Chapter 8. 

So why not just use f3ols and standard software? The answer is that even though 
Var((3018 ) = (X'x)- 1 X'VX(X'X)-1 is close to optimal, the problem is that, using 
standard software, Var((301s) is estimated as (X'x)-1&2 , which will often be very 
wrong. That is, the OLS estimate isn't so bad, but the usual variance estimate is 
way off. 

Consider the longitudinal data setting with Yi distributed independently across 
subjects (generically interpreting "subjects"). The basic idea is to use the replica
tion across subjects to get an empirical estimate of the variance. For this setting, 
where we have 

(2.34) 

(2.35) 

Y; "'indep. N(J.Li, Vi), 

J.Li = Xif3, 
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This can be estimated consistently (Liang and Zeger, 1986) by 

(2.36) 

v',(iJo,,) ~ ( ~x;x.) _, ( ~x;(x,- P,)(X,- p,)'x,) 

X (~x;X;r 
the so-called "sandwich" or "robust" variance estimator. 

For the milk protein data from Diggle et al. (1994), if all the animals had all 19 
weeks of data, we could view the data as multivariate of dimension 19. A straight
forward estimate of the covariance matrix would then be the sample variance
covariance matrix using the estimated means. In this example, as in many, there is 
incomplete, or missing, data. In such a case, the sample variance-covariance matrix 
is not as attractive to use, but (2.36) is still applicable. 

The sandwich estimator has the significant advantage and is robust in the sense 
that it gives consistent estimates of the variance-covariance matrix, even when the 
variance-covariance structure is misspecified. However, Carroll et al. (1995) object 
to the term "robust" since that usually implies little loss of efficiency when the 
model is incorrect. They note that the loss of efficiency can be substantial. See 
Kauermann and Carroll (2001) and Drum and McCullagh (1993) for details. 

2.9 Summary 

This chapter has introduced the important idea of a random effect and its use to 
incorporate correlation into a model in a tangible and easily-understood manner. 
Once random effects are incorporated, the model is a correlated data model and 
it is not too surprising that estimation becomes more complicated. It also raises 
two new inferential goals. First, testing whether the random effect distribution is 
degenerate (so that it can be treated as a fixed effect). That is, is the source of 
correlation in the model represented by the random effect statistically insignificant? 
Second, prediction of the realized values of the random effects. Closely tied to the 
prediction of random effects is the idea of a shrinkage estimator. The chapter closed 
with a brief look at the idea of generalized estimation equations and the notion of 
a sandwich estimator of the variance. 
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