
Chapter 6 

Likelihoods on Pedigrees 

6.1 The Baum algorithm and "Peeling" 

We review here the algorithm given by Baum (1972) for the computation of the 
likelihood in a hidden Markov model. The procedure is general to any stochastic 
system with discrete-valued latent variables S.,1 with a first-order Markov structure, 
and outputs Y.,1 depending only on S.,J" However, for convenience, we retain the 
notation of section 4. 7 with meiosis indicators S.,1 and phenotypic data Y.,; for locus 
j, with loci ordered j = 1, ... , L along a chromosome. The dependence structure is 
shown in Figure 6.1. The Baum algorithm can proceed in either direction, and both 
formulations will be given. For closer analogy with pedigree peeling (section 6.3), 
we consider first the backwards computation, which is less natural for time series. 
On a pedigree, data are usually on the final generations. In time series or signal 
processing, on the other hand, data are observed forwards in time and prediction 
is often the question of interest. 

I?or data observations Y = (Y. ,1 , j = 1, ... , L), we want to compute Pr(Y). Due 
to the first-order Markov dependence of the S.,1 , equation (4.10) can be written 

Pr(Y) L Pr(S, Y) = L Pr(Y I S) Pr(S) 
s s 

(6.1) ( 
L L ) 

~ Pr(S.,1) }] Pr(S.,J I s.,J-1) }1 Pr(Y.,J I s.,J) . 

Now define 

RJ(s) Pr(Y.,k, k = (j + 1), ... 'L I s.,j = s) 

with RL(s) = 1 for all s. The conditional independence structure (Figure 6.1), 
provides that {Y.,k, k = (j + 1), ... , L}, Y.,1 , and S.,1-1 are mutually independent 
given s.,J. 
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s.,1 s.,j-1 s.,j s.,L 

r r I 
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FIGURE 6.1. The conditional independence structure of data, in the absence of genetic 
interference 

Thus, 

Rj-l (s) 2: [Pr(S.,j = s* I s.,j-1 = s) 
s• 

(6.2) Pr(Y.,j I s.,j = s*) Rj(s*)] 

for j = 2, ... , L, while at the final step 

Pr(Y) = 2: [Pr(S.,l = s*) Pr(Y.,l I s.,l = s*)Rl (s*)] .. 
Thus the L-dimensional sum (6.1) may be computed as a telescoping series of one­
dimensional sums over the possible values s* of each S.,j in turn, computed for 
each possible values of S.,j-t· Where each S.,j can take only a small number of 
possible values, this makes practical and feasible the computation, even for very 
large values of L. In fact, the computation is linear in L. 

In the case of meiosis indicators, the direction along a chromosome is irrelevant 
and 

Pr(S.,j = s* I s.,j-1 = s) = Pr(S.,j-1 = s* I s.,j = s) 

However, in general only the forward transitions Pr(S.,j = s* I s.,j-1 = s) may 
be readily available. Even in this case, peeling in the direction from 1 to L is 
also possible. For convenience, we define y(j) = (Y.,1 , ... , Y.,j), the data along 
the chromosome up to and including locus j. Note Y = y(L). Instead of the 
conditional probability 

Rj(s) = Pr(Y.,k, k = (j + 1), ... 'L) I s.,j = s) 
it is now more convenient to define the joint probability 

Rj(s) Pr(Y.,k, k = 1, ... ,j- 1, S.,i = s) 

Pr(Y(j- 1) S · = s) 
' • ,J ~ 
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with Ri(s) = Pr(S.,1 = s). Now equation (6.2) is replaced by 

Rj+l (s) = L [Pr(S.,j+l = s I s.,j = s*) 
s• 

(6.3) Pr(Y.,j I s.,j = s*) Rj(s*)] 

for j = 1, 2, ... , L- 1, with 

Pr(Y) L Pr(Y.,L I s.,L = s*) R£(s*). 
s' 

We return to these equations in sections 6.2 and 6.4 in the context of likelihood 
computations on the basis of data observed on members of a pedigree. We note 
here only that efficient computation of the penetrance probabilities Pr(Y.,j I s.,j) 
(section 3.6) is key to the implementation. 

6.2 Exact likelihoods for multiple markers 

Exact likelihood computations on pedigrees rely on algorithms analogous to the 
Baum-type peeling algorithms of the previous section. One form in which the 
approach applies quite directly is the methods of Lander and Green (1987). The 
likelihood of equation (3.9) of section 3.6 is 

L = Pr(Y) = L Pr(Y I J(S)) Pr(S) 
s 

where J(S) is the gene ibd pattern among observed individuals determined by 
meiosis indicators (inheritance vectors), S. Since the inheritance vectors S = { S.,j} 
(equation (1.2)) are first-order Markov over loci j, and the data Y typically partition 
into data Yj relating to each locus j (see section 4. 7), the likelihood takes the form 
equivalent to equation (4.11): 

( Pr(S.,l) IT Pr(S.,j I s.,j-1)) ' 
J=2 

which is directly analogous to equation (6.1) of section 6.1. Thus, either the 
forwards (equation (6.3)) or backwards (equation (6.2)) computation method can 
be applied. 

Note however that this exact computation is limited to very small pedigrees. If 
there are m meioses on the pedigree, then S.,j can take 2m values, and in moving 
along the chromosome, we must consider transitions from the 2m values of S.,j to 
the 2m values of S.,i+l· For a pedigree with n individuals, f of whom are founders, 
m = 2n - 3f. In practice we are limited to pedigrees where m is no more than 
16. Additionally, for each locus j, and for each value of S.,1, we must compute 
Pr(Y.,j I J(S.,j)). For marker loci, eomputation is straightforward for given s.,j, 
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but again this limits the number of S.,j that can be considered, and hence the size 
of the pedigree. 

With data increasingly available at multiple linked marker loci, calculation 
of likelihoods using such data is desirable. While there may be uncertainties 
about marker locations, or other aspects of the marker model such as allele 
frequencies, these are normally assumed known. Rather than the linkage lod-scores 
of section 4.3, a location score curve is computed (Lathrop et al., 1984; Lange, 1997). 
This is equivalent to the curve of lod scores for linkage of the trait plotted 
as a function of hypothesized trait-locus location d against a fixed map of 
markers. Specifically, the map-specific lod score is logw(L(d) I L( oo) ), where d is 
the hypothesized chromosomal location measured in genetic distance, and d = oo 
corresponds to p = ~, or absence of linkage. The location score is defined as 
2loge (L(d) I L( oo)). Under appropriate conditions, this statistic has approximately 
a chi-squared distribution in the absence of linkage (see section 2.2). Clearly, the 
location score is simply 2loge(10) or about 4.6 times the map-specific lod score. 
In this book, we shall consider lod scores for gene location, rather than location 
scores. The location lod score curve differs from the linkage detection lod scores of 
section 4.3 in that the likelihood is considered as a function of trait locus position, 
and not maximized over this parameter. Other parameters of the trait model, sueh 
as penetrances or allele frequencies, may be assumed known, or may be maximized 
over to obtain a profile log-likelihood curve for the trait locus location. We return to 
location lod score curves in later chapters, noting here only that fast computation 
of many multipoint linkage likelihoods is needed to obtain such a curve. 

Efficient methods using the algorithm of this section have been developed over 
the last few years by Kruglyak and co-workers. Kruglyak et a!. (1995) show how to 
use the dependencies in the Markov transitions to reduce the computational burden 
from order 2m x 2m to order m2m, almost doubling the size of pedigree that can be 
considered. Kruglyak et al. (1996) give an algorithm for the efficient computation of 
the penetrance probabilities Pr(Y.,j I s.,j ): see section 3.6. Most recently, Kruglyak 
and Lander (1998) have used a discrete Fourier transform representation to achieve 
greater efficiencies. While these methods have greatly increased applicability of 
the algorithm, procedures are intrinsically exponential in pedigree size, and thus 
limited to pedigrees of moderate size. Moreover, increased efficiency comes at the 
expense of decreased flexibility. Use of parental symmetries restricts the programs 
to equal male and female genetic maps, and efficient computation is possible only 
where single-locus marker genotypes are observed without ambiguity or error. 

6.3 Computations on large but simple pedigrees 

In section 1.3, equation (1.5) gave the form of the probability of data observations 
on a pedigree: 



6.3. COMPUTATIONS ON LARGE BUT SIMPLE PEDIGREES 85 

This probability is the likelihood for the genetic model underlying the phenotypic 
data Y. How is this likelihood to be computed? While each term of the product 
can be easily evaluated, the difficulty is in the sum over G. On a very small 
pedigree it may be possible to enumerate all possible genotypic configurations G, 
and to compute the sum directly. In other special cases it may be possible to 
use a recursive algorithm to compute the gene identity pattern probabilities in the 
observed individuals, and hence to compute the marginal probability P(G) for these 
individuals alone. However, in general this is impractical. Independently, Hilden 
(1970), Elston and Stewart (1971), and Hench and Li (1972) laid the foundations 
of the approach that has been widely used over the last 20 years, and has made it 
possible to compute likelihoods of genetic models given data on large pedigrees. 

The approach formalized by Elston and Stewart (1971), for simple pedigrees, was 
a generalization of the backwards Baum algorithm (equation 6.2). The approach 
uses the approach of section 6.1 but generalized to pedigree structures, using 
individual genotypes as the latent variables. The summation proposed by Elston 
and Stewart (1971) was sequential, and used only the functions R(·), so that 
pedigree structures were limited to those where summation can proceed always up 
a pedigree. Hilden (1970) used joint probabilities, analogous to the functions R*(·), 
and identified individual genes, so his procedure was, in principle, more general. 
The program of Heuch and Li (1972) was recursive, using functions both analogous 
toR(·) and toR*(·), but was limited to simpler genetic models. The approach was 
generalized to arbitrary pedigree structures by Cannings et al. (1978), who gave 
it the name "peeling" and the functions R(·) and R*(·) the name "R-functions". 
However, the idea of eonditioning in this way when computing probabilities on 
pedigrees can be traced at least to Haldane and Smith (1947). 

The basic: idea is simply one of effieient sequential summation. The number of 
terms in whieh a specific G;, the genotype of individual i, appears is limited to the 
penetrancc term for that individual, and to segregation terms from the parents and 
to the offspring of individual i. Thus performing a summation over the possible 
values of G; results in a function of (at worst) the genotypes of i's parents, spouses 
and offspring. Of course, this is only useful if implemented sensibly. By starting at 
the edges (top/bottom/side) of the pedigree, one limits the number of individuals 
whose genotypes must be considered jointly. For a pedigree without loops, there 
are (many) sequences of nuclear families such that each is connected to the as 
yet unprocessed part of the pedigree via a single individual, the pivot. In this 
case, summation over the non-pivot members of each family leads to a function of 
only the pivot genotypes, which may be incorporated into the summation for that 
individual in due course. This sequential summation process has come to be known 
as "peeling", and the speeification of the order of individuals (normally of nuclear 
families) in which summation will be carried out as the "peeling sequence". We 
work through an example in detail in the following section. 

The procedure is just the same for linked loci. The (multilocus) genotype of an 
individual is an unordered pair of multilocus haplotypes. That is, it is a specification 
of not only the single-locus genotypes, but also phase information. The segregation 
probabilities Pr( G; IG M,, G F,) are functions of the recombination fractions. If there 
are two diallelic loci, there are 4 haplotypes, and hence 10 genotypes; computation 
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is quite possible for a pedigree without loops. With more loci, or more alleles, 
computation rapidly becomes infeasible. The programs using this approach have 
greatly improved (Cottingham et al., 1993), and computer speed increases also. 
However, the algorithm is intrinsically constrained by the number of multilocus 
segregation probabilities Pr( Gi IG M., G p.), and hence depends on the cube of the 
number of possible genotypes per individual, which is exponential in the number 
of loci to be considered jointly. 

6.4 Example of peeling a zero-loop pedigree 

As an example of the peeling method of section 6.3, consider the pedigree of 
figure 6.2. This pedigree is a general zero-loop pedigree, in that it contains multiple 
founder couples and an individual with two spouses. 

21 22 12 13 

FIGURE 6.2. Pedigree without loops. Shaded individuals are those for whom phenotypic data are 
assumed to be available 

Starting with the family to the right, we may compute 

R1(g) = Pr(Y2,Y3IG1=g) 

= 2:Pr(G4 =g*) (2:Pr(Y2IG2 =g')Pr(G2 =g'!G1 =g,G4 =g*)) 
g• ~ 

( LPr(Y3IG3 = g")Pr(Gz = g"IG1 = g,G4 = g*)) 
g" 



6.4. EXAMPLE OF PEELING A ZERO-LOOP PEDIGREE 87 

This is a generalized version of equation (6.2), where now there are two offspring 
nodes (2 and 3) and one parent node (4) to be summed over, whereas previously 
the structure was linear. Here the individual 1 is the pivot connecting this nuclear 
family to the remainder of the pedigree. Note that we do not need to include a term 
for the phenotypes of individual 4, since this individual is unobserved. Similarly 
for the family { 5, 6, 7}, 6 is the pivot and 

Pr(Ys, Y1 I G6 =g) 

L Pr(Y5IG5 = g*)Pr(G5 = g*) 
g• 

The other two peripheral families with a parent pivot may be handled similarly: 

and 

Ru (g) = Pr(Ys, Yg I Gu =g) 

= L Pr(G1o = g*) 
g• 

( ~Pc(Y,IGs = g')P,(G, = u'IGu = g,Gw = u·)) 

(L Pr(YgiGg = g")Pr(Gg = g"IGu = g, G10 = g*)) 
g" 

R;~Jcg) = P(YigiG11 =g) 

= L Pr(G2o = g*) 
g• 

Note that for this last family, this is only a part of the information connecting to 
individual 17 via her offspring. The superscript indicates that only her first family 
(spouse 20 and offspring 19) is included. Individual 17's other family is not yet 
a peripheral family; it will be considered below. Where an individual is a parent 
in multiple families, the families may be considered separately; appropriate book­
keeping must ensure that every term in equations (1.4) and (1.5) is entered once 
and once only. 

Now no remaining peripheral family has a parent pivot. Thus, to proceed further 
across the pedigree, we must consider an R* -function. For example, since R1 (9) 
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has been computed, the family {1, 12, 13, 14} is now peripheral, and has pivot 14. 
First, summing conditionally upon the parents' genotypes, 

Pr(Y2, Y3IG12 = g*,G13 = g') = LPr(G1 = giG12 = g*,G13 = g')Rl(g). 
g 

Then we may sum over these parental genotypes (G12,G13 ) to obtain 

R;4 (g) = Pr(Y2, Y3,G14 =g) 

L (Pr(G12 = g*)Pr(G13 = g') 
g* ,g' 

(6.4) 

Because this function is the probability of data connected to individuals 14 via his 
parents, we now have a joint probability of G 14 rather than one conditional on G11 . 
However, the transition probabilities are still the downwards transition probabilities 
of offspring conditional upon parents. The terms are simply the relevant terms of 
equations (1.4) and (1.5). Note also that the data on this part of the pedigree 
remains (Y2, Y3); these are the only observed individuals in this part. Finally, note 
that, although the segment of pedigree is "above 14" in the sense of being connected 
to him through his parents, it includes his nephew and niece, 2 and 3. 

At the next step, we combine the data on 2 and 3, with that on 5 and 7. First, 
conditional on parental genotypes (G14, G1s) 

Pr(Ys,Y71 G14 =g*,Gls =g') = LPr(G6 =giG14 =g*,G15 =g')RB(g). 
g 

Then, summing over (G14 , G15 ) and including the probabilities computed in 
equation (6.4), 

Pr(Y2, Y3, Ys, Y1, G16 =g) 

L (R;4 (g*)Pr(Gls =g')Pr(Ys,Y71 G14 =g*,Gls =g')). 
g* ,g' 

At this point, we again have a peripheral family, with a parent pivot, and we may 
include the data on 16 and 18 to obtain 

Pr(Y2, Y3, Ys, Y1, Y16, Y1s I G11 =g) 

L (R;6(g*)Pr(Y16IG16 = g*) 
g• 

l:Pr(Y1siG1s = g')Pr(Gls = g'IG11 = g,G1s = g*)). 
g' 

The penetrance probability Pr(Y16 IG16 = g*) is included only when individual 16 
is to be summed out of the expression. This is just the convention we employ; the 
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important thing is that this term is included once and once only for each possible 
genotype of 16. In programming, where there are many zero penetrances, it may 
be desirable to incorporate the penetrance where an individual such as 16 is first 
encountered, since this will reduce the number of non-zero terms that must be 
carried forward. Note also that the individuals 2 and 3, who are not biologically 
related to 17 are "below" her, in the sense that the information their phenotypes 
provide on the genotype of 17, is through her offspring, 18. We may now combine 
the information from 17's two families: 

Pr(Y2, Y3, Y5, Y7, Yt6, Yts, Y19 I G11 =g) 

R~~) (g )Rg) (g) 

Now finally there is only one remaining family; any member of this family may 
serve as the final pivot. For example, with a parent pivot 

Pr(Y2, Y3, Y5, Y7, Ys, Yg, Yt6, Yts, Y19, Y23, Y24 I G21 =g) 

L (Pr(G22 = g*) 
g• 

( ~Pc(Y,,Ia, ~ g')h(a, ~ g'lan ~ g,a, ~ g•)) 

( ~ Pc(Y,. Ia,. ~ g' )Pc( a,. = g" I an = g' a, = g•)) 

( ~ Rn(g')Pc( a, = g' 1a, = g, a, = g•)) 

( ~ Rn (g')Pc(an = Y'IG21 = g, a, = g•))) 

and finally the overall likelihood is 

Pr(Y2,Y3,Y5,Y7,Ys,Yg,Yta,Yts,Yt9,Y23,Y24) LJb(g)Pr(G21 =g). 
g 

Into this final sum, all founder probabilities, all parent-pair to offspring transmission 
probabilities, and all penetrance probabilities for observed individuals have been 
included once and only once. Also, all R-functions computed in the course of 
the procedure have been included at a subsequent stage. Note also that each 
summation is over the genotypes of a single individual, and the maximum number 
of terms that must be computed at an intermediate stage is the number of possible 
ordered genotype pairs for a pair of parents. Even for simple pedigrees, peeling 
becomes infeasible if there are multiple loci with multiple alleles. The number of 
ordered pairs of genotypes to be considered can be too large, each genotype being 
an unordered pair of multilocus haplotypes. 
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6.5 Computations on complex pedigrees 

The Elston-Stewart approach was generalized to complex pedigrees and more 
complex genetic models by Cannings et al. (1978; 1980). The Hilden (1970) 
approach also dealt, in principle, with arbitrarily complex pedigrees. For a pedigree 
with loops, functions on the genotypes of a cutset of individuals may have to be 
considered. This is a set of individuals who divide a processed segment of pedigree, 
from the unprocessed part. The processing therefore results in a function over the 
set of all possible genotype combinations for the individuals in the cutset. Even for 
a single autosomal diallelic locus, with 3 possible genotypes for each individuals, 
there are 3n potential genotype combinations for n individuals. (In general, Kn, for 
K genotypes.) In this case, the objective of a good peeling sequence is to limit the 
cutset sizes as much as possible. Even so, on very complex pedigrees, with multiple 
intersecting loops, peeling becomes infeasible, particularly if there are more alleles, 
or more loci. 

As an example, we outline a sequence of peeling operations to compute a 
likelihood on our standard example pedigree (figure 3.1), using the labeling of 
individuals of that figure. As in the ease of a zero-loop pedigree, there are many 
alternative ways to work through a pedigree. Indeed, in principle summations may 
be done in any desired order. The order we give here is straightforward in that 
terms relating to a single whole marriage node are dealt with at each step. It is 
complicated, in that we traverse the pedigree partly upward and partly downward, 
to show the range of possibilities. For greater generality, we assume phenotypic 
data may be available on any of the individuals. We give the sequence of functions 
computed, but not the details of the equations. Within a given family the equations 
are of similar form to those of the previous section. 

First we peel the final individual 531: 

Next we might sum over the genotypes of individual 431 to obtain 

and then over 334 and her founder parent 235 to obtain 

R432,331,233(9I,92,93) = 

Pr(Y531, Y431, Y334, Y235 / G 432 = 91, G331 = 92, G233 = 93). 

At this point, there is no way to avoid a cutset of size four after the next step. The 
current members { 432,331, 233} are offspring of three different nuclear families. To 
show the method, we choose to deal next with the founding family of the pedigree, 
so that 233 is replaced by her two siblings 231 and 232 in the cutset. The resulting 
function is in part conditional, and in part joint, since the section of the pedigree 
whose contribution to the likelihood has been computed connects to 432 and 331 
through their offspring, but to 231 and 232 through their parents. Finally, since 
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the segment of pedigree analyzed is growing unwieldy, we introduce the notation 
Y v for the phenotypic data on a set of individuals V. Then we have 

R:32,331 ,232,231 (91, 92, 93, 94) 

Pr(Yv1,G232 = 93,G231 = 94 I G432 = 9r,G331 = 92) 

where V1 = {531, 431,334,235,233,131, 132}. Now since both 231 and 331 are in 
the cutset, we can reduce the cutset size by peeling the nuclear family of which 
they are both members, to obtain 

R132,332,232 (91, 92, 93) 

where v2 = v1 U{231, 331, 236}. Then 

R:32,332,333(91,92,93) = Pr(Yva,G332 = 92,G333 = 93 I G432 = 91) 

where v3 = v2 U{234, 232}. Finally, incorporating the genotypic transmissions 
and phenotypic data on this 3-member nuclear family, and summing, we have the 
overall probability of all the data observed on the pedigree. 

The scheme presented here, of peeling one nuclear family at a time, is a special 
case of more general procedures. Clearly, summations may be carried out in any 
order. Sometimes, it is more effective to peel several nuclear families simultaneously. 
Sometimes, some of the parent-pair offspring relationships within a family may 
be incorporated, leaving the others for later. Generally, whenever there is an R­
function on two or more offspring of a nuclear family, it is efficient peel them, 
replacing them in the cutset by their two parents. It is also not necessary to peel by 
genotypes. Instead it can be more efficient to distinguish the maternal and paternal 
genes of individuals, and sum separately over these. This increases the number of 
genotypes, but can simplify the dependence structure of the data. Methods of gene­
peeling were considered by Harbron and Thomas (1994) and by Harbron (1995). 
The simplification of the neighborhood structure due to considering genes rather 
than genotypes was shown in Figure 1.3. 

6.6 Models with Gaussian random effects 

We return briefly to the polygenic model of equations (2.15) and (2.16), introduced 
in section 2.6. Elston and Stewart (1971) noted that, since for a multivariate 
Gaussian distribution all marginal and conditional distributions are also Gaussian, 
and since a Gaussian form is specified by its mean and variance, the peeling process 
can also be used to compute the likelihood for a~, and for other parameters, such 
as an environmental variance a;. In this case, the sequential summation is just 
successive integration of latent additive genetic effects. Also, the inverse of the 
variance-covariance matrix A -l of effects z is sparse, involving only terms for 
members within a nuclear family. 

Additional Gaussian latent effects can be incorporated, for example effects 
of shared environment (Cannings et a!., 1980). Also complex pedigrees are no 
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problem, in principle. In fact, the computational process is simpler than for discrete 
genotypes. In place of Kn discrete genotype combinations for n cutset individuals 
each of whom may have any of K genotypes, we now have a n-variate Gaussian 
distribution, specified by n means, and n(n+ 1)/2 covariance terms. The sequential 
Elston-Stewart summation method becomes a sequential integration of Gaussian 
densities. 

A more general model for a quantitative trait is the mixed model (Morton 
and MacLean., 1974), which combines the Mendelian and polygenic models of 
section 2.6. The model for the quantitative phenotype, Yi of individual i becomes 

(6.5) Yi = 1-L(Gi) + Z; + f; 

where G; is the genotype, and Z; is the polygenic value (see equations (2.14) 
and (2.16)). The transmission model for Zi is as in equation (2.15). Even for 
this simplest version of the mixed model, without other Gaussian or discrete 
components, peeling is infeasible. The overall likelihood is a mixture of multivariate 
Gaussian components, the number being the number of possible configurations of 
major genotypes G on the pedigree: 

L = Pr(Y) = ~ ( Pr(G) 1 Pr(Yiz, G)dPu~ (z)) 

(6.6) = 1 ( ~ Pr(Yiz, G)Pr(G)) dP"~ (z) 

where Pu2 (z) is the multivariate Gaussian distribution of z (equation (2.15) ). These 
forms for athe likelihood show that for given G it is possible to integrate over z for the 
Gaussian form Pr(Yiz, G), and that for given zit is possible to sum over G using the 
Elston-Stewart algorithm or its generalizations. A general discussion of propagation 
of probabilities on graphs, for both continuous and discrete latent variables, is given 
by Lauritzen (1992). It is of interest that the dependence structure of discrete 
and continuous variables of the genetic mixed model falls within the framework of 
Lauritzen (1992) for full exact computation of a likelihood. However, the pattern 
of dependence among the components of Y, G and z means that, wherever data 
are observed on the pedigree, it may be necessary to compute separately the 
contribution from each component of the mixture of Gaussian distributions, one 
for each value of G. Generally, in the context of data on extended pedigrees, it is 
impossible both to integrate over z and sum over G to obtain an exact value for 
the likelihood L. We return to this in section 9.4, where Monte Carlo methods of 
estimation of mixed model likelihoods are presented. 
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