
Chapter 4 

Genetic Linkage 

4.1 Linkage and recombination: genetic distance 

Contrary to Mendel's second law (Mendel, 1866), there is dependence in the 
inheritance of genes at syntenic loci (that is, loci on the same chromosome pair). 
Such loci arc said to be linked. Where the data are affected by the alleles at more 
than one locus on a chromosome pair, it is no longer sufficient to consider the 
inheritance of genes at each locus separately. 

Recall the meiosis indicators of (equation ( 1. 2)): 

Si,j 0 if copied gene at meiosis i locus j is parenes maternal gene 

= 1 if copied gene at meiosis i locus j is parent's paternal gene. 

Here i = 1, ... , m indexes the meioses of the pedigree, and j = 1, ... , L indexes the 
genetic loci. The marginal distribution of each Si,j is as before (section 1.2): 

Pr(Si,j = 0) = Pr(Si,j = 1) 
1 
-
2 

For different meioses i, the Si,j are independent. 
We say that, in a given meiosis, recombination has occurred between two loci j 

and l, if the genes segregating to the gamete at these two loci are from different 
parental chromosomes. That is, they derive from different grandparents. For two 
loci, we do not need a full model for the vector Si,. (equation 1.3). The pairwise 
distribution of ( Si,j, Si,i) is determined by the recombination frequency, which is a 
measure of the dependence in inheritance between the two loci. For two given loci 
(l and j) the recombination frequency p between them is 

(4.1) p = Pr(Si,l =f. Si,j) for each i, 
1 

0 < p < -. - - 2 

For loci that are close together on a chromosome, p is close to 0. For independently 
segregating loci, p = ~- Note that, although e is the notation often used for the 
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recombination parameter in genetic analysis, we here use p and reserve () for the 
more general set of all parameters of the genetic model. 

A point on a gamete chromosome at which the DNA switches from being a copy 
of the parent's maternal [paternal] chromosome to being a copy of the parent's 
paternal [maternal] chromosome is known as a cm.ssover. Haldane (1919) defined 
genet·ic map distance between any two loci as the expected number of crossovers 
occurring between them on a gamete. The unit of genetic distance is the Morgan, 
but it is often more convenient to use centiMorgans (eM). Since expectations are 
additive, regardless of dependence of random variables, genetic map distances are 
always additive. They also subsume any positional variation in recombination rates 
such as recombination hot-spots: they say nothing about the relationship between 
physical and genetic distances. A recombination occurs between two loci, if, in that 
meiosis, there are an odd number of crossovers between them. 

In equation ( 4.1), we assume that the recombination frequency p does not vary 
with the meiosis i. In practice, recombination frequencies vary among meioses, a 
major factor in this variation being the sex of the parent. The expected number of 
crossovers between two locations can be quite different for a gamete from a male 
than for a gamete from a female. Thus genetic maps are sex-specific, where the sex 
in question is that of the parent producing the gamete. For ease of presentation, 
sex-differences in genetic maps will be ignored in this monograph. Computationally, 
such variation can be easily accommodated. 

Haldane's original meiosis model, and other early models, were two-str-and 
models. That is, the locations of crossovers between the two parental 
chromosomes were modeled. This is sufficient to determine the joint probabilities 
Pr(S;,J, ... , S;,L), hence, in principle, probabilities of L-locus gene ibd patterns 
among a set of observed related individuals, and hence probabilities of observed 
data. In Haldane's model, these crossovers were assumed to occur as a Poisson 
process, rate 1 (per Morgan). Thus there is no interference. The number of 
crossovers in a given genetic distance has a Poisson distribution, the numbers of 
crossovers in disjoint intervals are independent, and, conditionally on the number 
occurring, their locations are uniformly and independently distributed, all measures 
being, of course, with respect to genetic (not physical) distance. The recombination 
frequency at genetic distance d Morgans, p( d), as a function of d is known as the map 
function. Under the no-interference model, p(d) is the probability that a Poisson 
random variable with mean d is odd: 

p(d) -dd" 1 ~d <Xl (d" (-d)") L c kT ::: 2c L kf - -k! 
k odd A:=O 

(4.2) 
1 
2(1- exp( -2d)). 

Note that, under this model, p(d) is an increasing function of d, p(d) --+ ~as d--+ oo, 
and p( d) ::::::! d as d --+ 0. These are basic properties of map functions under most 
models for meiosis (sec Chapter 5). 

In modeling crossovers Fisher (1922) went to the other extreme: he assumed 
complete interference in the region of Drosophila willistoni chromosome he 
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considered. That is, at most one crossover in this chromosome region can occur 
in any meiosis. In this case, genetic distance and recombination frequency are 
equivalent. Although this model does not make sense over large chromosomal 
segments, current mouse data (King et a!., 1991) suggest almost complete 
interference over regions of about 10cM. 

4.2 Haplotypes, linkage, and association 

The vector of alleles at loci on a chromosome is a haplotype, and a multilocus 
genotype is a pair of haplotypes. Note that the set of single-locus genotypes 
do not determine the multilocus genotype. The multilocus genotype includes a 
specification of phase; that is, which alleles (one at each locus) are on the same 
chromosome. Some modern literature does refer to the set of single-locus genotypes 
(without phase) as the rnultilocus genotype, but this terminology is confusing. For 
clarity, we refer to the potentially observable set of (single-locus) genotypes at 
any set of DNA marker loci as marker phenotypes, even when these loci do not 
correspond to functional genes. 

For simplicity in this section we restrict attention to two diallelic loci, one with 
codominant alleles A1 and A2, and the other with codominant alleles B1 and 
B2. There are then four haplotypes A1B1, A 1B2, A2B1 and A2B2. Suppose the 
haplotype frequencies are q 1 , q2, q3 and q4. There are 10 two-locus genotypes, 
but only 9 phenotypes. Genotypes A 1BifA2 B 2 and A 1B2/A2 B 1 both have the 
double-heterozygote phenotype A1A2, B1B2. The notation A1BI/A2B2 denotes 
that alleles A1 and B1 are on a single haplotype, and alleles A2 and B2 are on 
the other. Just as for the single-locus ABO blood type example (section 2.5), 
haplotype frequencies can be estimated from phenotype frequencies via the EM 
algorithm, under the general model of unconstrained patterns of association among 
the loci. Each phenotypic observation on an individual consists of a set of single
locus genotypes. 

For the case of two loci, haplotypes are unobservable only for the double
heterozygote phenotype A1A2, B1B2. Each individual who is A1A2, B1B2 is 
of genotype A1BI/A2B2 with probability QlQ4/(qlQ4 + Q2Q3) and of genotype 
A 1B 2/A2 B 1 with probability q2 q3 f(q1q4 + q2q3). Thus, given a set of current 
haplotype frequency estimates q;, i = 1, ... , 4 and the phenotypic counts, the 
conditional expected genotypic counts are easily obtained. New haplotype estimates 
then are the expected multinomial proportions of each haplotype. 

Clearly, this method can be extended to any number of loci. Thus, for example, 
population data can be used to estimate haplotype frequencies at a set of tightly 
linked SNP markers (section 1.1). However, an individual heterozygous at l loci 
can have any of 21- 1 multilocus genotypes (pairs of haplotypes). The observation 
is partitioned among the 21- 1 possible pairs, in accordance with current haplotype 
frequency estimates. Performance of the EM algorithm can be poor when there are 
many linked polymorphic marker loci, particularly when many haplotypes may not 
occur in the sample. Thus, for microsatellite markers with many alleles or for many 
tightly linked SNP markers (section 1.1), population marker phenotype data alone 
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may not serve to provide accurate haplotype frequencies. Better performance of 
the EM algorithm is obtained by constraining some haplotype frequencies to zero, 
when the estimates of their frequencies appear to be approaching zero. 

An individual who is homozygous at both loci can pass on only one haplotype 
to an offspring; for example an A1 A1, B2B2 individual must pass on an A1 B2 
haplotype. An individual who is homozygous at one locus can pass either of two 
haplotypes. Each possibility has probability 1/2 regardless of the recombination 
frequency p between the two loci; for example, an A1 A1, B1 B 2 individual passes on 
A1B1 or A1B2 each with probability 1/2. Only the double heterozygote A1 A2, B1 B2 
provides meioses which are mformative for linkage. That is, this individual passes 
each of the four haplotypes A1B1, A1B2, A2B1 and A2B2, with probabilities (1-
p)/2, p/2, p/2 and (1- p)/2 if his genotype is A1BI/A2B2, and with probabilities 
p/2, (1- p)/2, (1- p)/2, and p/2 if his genotype is A1B2 /A2B1• 

A measure of allelic association between the two loci is 

~ Pr(A1BI) - Pr(A1) Pr(Bl) 

= Ql - ( Ql + Q2) ( Ql + Q3) 

= (qlQ4 - Q2Q3) 

since Q1 + Qz + Q3 + Q4 = 1. This measure is due to Robbins (1918) and is known as 
the coefficient of linkage disequzlibrium. This name is confusing, but the term is too 
well established to change. In the absence of selection, allelic associations between 
loci arise from population structure, admixture and history. They are, however, 
maintained by tight linkage. Suppose the current haplotype frequencies are q1 , qz, 
Q3 and Q4, as above. In expectation, in the absence of selection, allele frequencies 
are unchanged at the next generation. Suppose the haplotype frequencies arc q;, q2, 
q3 and q4'. Now, for example, an A1 B1 haplotype in an offspring can arise in three 
ways. It can be transmitted from a parental A1 B1 without recombination. It can 
also be transmitted from a parental A1B1 with recombination, if the second parental 
haplotype is A1B1, A1B2, or A2B1. Finally, with recombination, an A1B2/AzB1 
parent may transmit an A1 B1 haplotype. Thus 

q; (1-p)ql + PQ1(q1+q2+qa) + pqzq3 

= Ql - p(Q1Q4- Q2Q3) = Ql - p~. 

Analogously, q2 = Q2 +pD., q3 = Q3 + p~ and q4' = Q4 - p~. Thus 

~· = q;q~- q~q; 

(ql - pD.)(q4 -pD.) - (qz + pD.)(q3 + p~) 
= D.- p~(ql + Q2 + Q3 + Q4) + p2 (~- D.) 

(1- p)~. 

In the absence of any maintaining force, such as selection, or continuing population 
subdivision and admixture, allelic associations decay in expectation over the 
generations, by a factor (1 - p). For unlinked loci (p = ~) this decay is rapid, 
but for tightly linked loci (p ~ 0) allelic associations may be maintained over 
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hundreds of generations. Actual population are finite, and mating is non-random; 
allelic associations are often seen in small natural populations. For a more detailed 
discussion, see Weir (1996). 

4.3 Lod scores for two-locus linkage analysis 

In the absence of genetic interference (equation ( 4.2)), and in fact under most 
models for meiosis (Chapter 5), the recombination frequency, p, is an increasing 
function of genetic distance. Genetic mapping involves the ordering of loci on 
a chromosome, the detection of linkage, and the estimation of recombination 
frequencies. Some loci determine traits: others are DNA markers. Typically, a 
map constructed of DNA markers is then used to map the loci controlling a trait 
of interest. For unlinked loci, p = !· For loci that are genetically linked, p < ~· 
Lznkage analysis is concerned with estimating p and with testing the null hypothesis 
H0 : p = ~ against the alternative H1 : p < ~· Estimates and tests are based on 
likelihoods and likelihood ratios (Chapter 2). 

If the genes (one at each of two loci) descending from given parent to a given 
offspring derive from different parental chromosomes, and hence from different 
grandparents, the offspring is said to be recombznant with respect to these two 
loci. In the simplest cases, whether an offspring i is a recombinant (X, = 1) or not 
(X, = 0) is observable. Then P(X, = 1) = p and the number of recombinants Tin 
n independent meioses has the binomial B(n, p) distribution. 

FIGURE 4 l. Example of recombmatzon m a three-generation family 

For example, at a DNA marker locus, suppose two grandparents have types 
A 1 A 2 and A 3 A4 , and their daughter has type A1 A3. Suppose she marries someone 
of type A2A2 and their three children are of types A1A2, A1A2 and A2A3. Suppose 
also the grandparent of type A1 A2 , the daughter, and the first of the three children 
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(b) 

A1Bl/A2B2 A1B2/A2B2 
A2B2/A2B2 A2Bl/A2B2 

A1B1/A2B2 A1B2/A2JJ2 
A2B2/A2B2 A2Br/A2B2 

recombinant non-recombinant type 1 type 2 

FIGURE 4.2. Bxamples of (a) phase-known and {b) phase-unknown backcross linkage designs 

all carry an allele D causing some trait of interest, and the other individuals carry 
only normal alleles, denoted + (Figure 4.1). Then we know the trait allele D 
segregates with the A1 marker allele from the grandparent to his daughter, and 
that the normal allele + segregates with A3 from her other parent. To the three 
children from their mother, we have segregation of A1 with D, of A1 with +,and of 
A3 with +. Thus children 1 and 3 are non-recombinant (X1 = X:l = 0) and child 2 
is recombinant (X2 = 1). Son= 3, the number of recombinants T,...., B(3,p), and 
in this example T takes the value t ::::: 1. 

In the case where we can classify each offspring as recombinant or non
recombinant, as above, the number of recombinants in n observed offspring is 
T,...., B(n, p). This type of data arises in a backcmss experiment, where two inbred 
lines are crossed, and the hybrid is crossed back to either of the two lines. An 
example of this linkage design is shown in Figure 4.2(a). Suppose one line has 
only alleles A1 at one locus and B1 at the other (genotype A1BJ/A1BI), while the 
other line has only A2 and B2 (genotype A2B2/A2 B2). Then the cross will produce 
hybrid individuals who have genotype A1 BJ/ A2B2 • If we then cross back to the 
A2B2/A2B2 line, all the offspring will get A2B2 from that parent, and we can tell 
which combination A1B1 , A2B2, A1B2 or A2B1 they get from their hybrid parent, 
and so whether or not they are rceombinant. 

Suppose n offspring of such matings are scored, and t are recombinant. To test 
for linkage, we compare the likelihood to its value in the absence of linkage (p ::::: t). 
The log-likelihood difference is 

1 
(4.3) lod(p) = f(p)- £( 2) t log(p) + (n- t) log( I - p) + n log(2). 

In linkage analysis it is traditional to use logs to base 10, and to refer to ( 4.3) 
as the lod score (Morton, 1955). In our numerical examples we shall use natural 
logarithms except where specified, for easier comparison with standard statistical 
results. 



4.4. POWER, INFORMATION AND ELODS 55 

The maximum likelihood estimate of p is p = t/n, provided 2t ::; n: note only 
values of p ::; ~ have meaning under the model (4.2). Then to test p = ~ against 
p < ~, we may consider the maximized value of the Joel score: 

( 4.4) lod(ji) tlogt + (n-t)log(n-t)-nlog(n/2) 

provided 2t ::; n, and 0 otherwise. This maximized lod score is a decreasing function 
oft, and we reject the null hypothesis p = ~ if t < t0 . The critical value t0 may be 
chosen to give a specified siz-;e of the test (type I error). 

In many linkage experiments, however, or in human genetics where we do not 
have designed crosses, we often cannot classify all individuals as recombinant and 
non-recombinant. There are many possibilities, but a typical one is the phase
unknown backcross. This arises if one parent is A1 A2 , B1 B2 and the other is 
A2A2, B2B2 as above, but now we do not know whether the first parent received 
A1 B1 and A2B2 (type 1 combinations) from her parents, or A1B2 and A2B1 (type 
2 combinations). This design is shown in Figure 4.2(b). Suppose we have families 
of this kind, and in each family we type just two offspring. Since each offspring 
gets A2 B2 from the father, we can, as before, determine what each got from the 
mother. Either both offspring get the same "type" of combination (type 1 or type 
2), or there is one of each. If there is one of each, then one offspring must be a 
recombinant and the other not; so this event has probability p* = 2p(1- p). If they 
get the same "type" of combination, then either both are recombinant, or neither 
is, so this event has probability 1- p* = p2 + (1- p) 2 . So instead of aT"' B(n,p) 
count of recombinants, we have a W "' B(n, p*) count of families. 

Note however, that for 0 ::; p ::; t, p* is a 1-1 monotone increasing function of 
p, and when p = ~ p* = 2 · ~ · ~ = 2. So testing H0 : p = ~ against the one-sided 
alternative H1 : p < ~' is exactly equivalent to testing H0 : p* = ~ against the 
one-sided alternative Ht : p* < ~-Thus the test follows exactly as before; we reject 
p* = ~ and conclude there is linkage if W < w0 , where again the critical value w0 

is determined by the desired size of the test. 

4.4 Power, information and Elods 

For simplicity, consider the case of the phase-known backcross, where T"' B(n, p). 
Now when n is large, Tis approximately N(np,np(1- p)), and under H 0 : p = ~ 
it is a good approximation to take T"' N(¥, ~). So }n(T- ¥) "'N(O, 1) and for 

a test size a we reject H0 in favor of H 1 : p <~if }n.(T- ~)::; cf>- 1 (a) where cf> is 
the standard Normal cumulative distribution function. For example, for a = 0.025, 
cf>- 1(a) = -1.96 i-:::j -2, so H 0 is rejected if T::; ¥-·Vii= k* (Table 4.1). 

Using equation (4.4), we find that the (base 10) lod score is around 1 for a number 
of recombinants at the critical value for a test of size a = 0.025 of Ho : p = ~ 
(Table 4.1). Traditionally, a base-10 lod score of 3 is required to infer linkage 
(Morton, 1955). This is a more stringent test, the idea being that if two arbitrary 
locations in the genome are chosen the prior probability of linkage is small. Also 
given in the table is the upper bound on the number of recombinants that will 
provide a Jod score of 3. 
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offspring critical recombinant lod score recombinants 
sampled value proportion lod10 (k* /n) for lod 
n k* k* /n score 3 
25 ;::::,7 ;::::, 0.3 1.088 :53 
100 ;::::, 40 ;::::, 0.4 0.874 ::; 31 
625 ;::::, 287 ;::::, 0.46 0.905 ::; 267 
1024 ;::::, 480 ;::::, 0.48 0.869 < 452 

TABLE 4.1. Critical values for a test size a= 0.025 and base-10 lod scores for binomial samples 

Type genotypes number each prob 
I AtAt,B2B2, A2A2,BtBt 2 p'l./4 
II AtAt,BtB2 1 l(p2 + (1- p)2) 

2 t 
III At At, Bt B2 etc. 4 2p(1- p) 
IV AtAt,BtBt, A2A2,B2B2 2 (1-p) 2 /4 

TABLE 4.2. The groups of offspring genotypes in an intercross design. Note the A tAl, Bt Bz 
type includes both double-heterozygote two-locus genotypes A1BJ/AzB2 and A1B2/AzB1. The 
third group includes the four types heterozygous at one of the two loci: A1A1, B1 Bz, A1 Az, B1 B1, 
AzAz,BtB2 and A1Az,BzBz 

Now if pis the true value, the probability H0 is rejected is 

Pr(T < k*; p) = Pr ( T - np < k* - np ) 
Jnp(I - p) Jnp(I - p) 

(4.5) ;::::, q, ( k*- np ) = q, (<P- 1(a) + yn(1- 2p)) 
Jnp(I- p) 2y' p(1- p) 

again using the Normal approximation to the Binomial distribution. This is the 
power function of the test, and decreases over 0 :5 p ::; ~. Clearly, for a given 
sample size, linkage is more easily detected when p is small. Conversely, for given 
p, one may use (4.5) to determine the sample size n required for given power. The 
case of the phase-unknown backcross is analogous, with p being replaced by p*, and 
n now denoting the number of two-child families. 

In order to get more information, an intercross experiment may be performed, 
instead of a backcross. In this case two phase-known hybrid parents, each of type 
AtBt/A2B2 are mated. There are nine types of offspring, but these fall into four 
groups, shown in Table 4.2. Each type within a group has the same probability, as 
a function of p, and hence the total count of offspring in each group contains all the 
available information for linkage. (These total counts are the sufficient statistics 
for p.) 

Consider a sample of size n, with ni in class j, j = 1, 2, 3, 4. As in equation (2.5), 
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Types Hz : general H1 :total prob Ho: p = ~ 
I ql ~p2 0.125 
II qz ~(pZ + (1- p)Z) 0.25 
III q3 2p(1- p) 0.5 
IV Q4 ~(1- p)z 0.125 

TABLE 4 :{. Probabilztzes of data observatzons m an zntercross deszgn. Gzven are the total 
probabzlzties of each group of types shown zn Table 4.2, under the three alternatzve hypotheses 

the log-likelihood for these multinomial data is, up to an additive constant, 

4 

en(q) = 2:: n} loge q} (p). 
J=l 

The probabilities of each phenotype group are shown in Table 4.3, under the general 
multinomial model Hz, the general linkage model H 1 , and in the absence of linkage 
Ho. 
For example, suppose n = (1, 72, 42, 85). 
Under H2: general q1 , 2:;= 1 q1 = 1, ii; = n1 /n, 
or q = (0.005, 0.36, 0.21, 0.425). The dimension of Hz is 3. 
Under H1 : general p, for these data we find, by evaluating the log-likelihood, that 
p = 0.12 giving q(p) = (0.007, 0.394, 0.211, 0.387). The dimension of H1 is 1. 
The null hypothesis is of no linkage; H0 : p = i· This has dimension 0, and the 
fixed probabilities q( & ) = (0.125, 0.25, 0.5, 0.125) of the four classes of types. 

We see that the estimated cell probabilities under H 1 and Hz are in good 
agreement, but quite different from those under H 0 . Computing the maximized 
log-likelihoods for H,, i = 0,1,2, we find that they are -307.76,-217.87, and-
217.14 respectively. For testing null Ho against alternative H1 , the (base e) lod 
score is 89.9. Twice this value (179.8) has approximately a XI if H0 is true. So 
clearly H0 is rejected. 
For testing null H 1 against alternative Hz, the lod score is 0.73, and twice this 
value (1.46) is X~ if H1 is true. So H1 is not rejected. 

For multinomial data in general, we can find the form of the Kullback-Leibler 
information (section 2.2). Suppose q is the true value of q, and q0 is some 
hypothesized value. 

So for a sample size n 

4 

en(q) 2:: nJ loge qJ. 
J=l 

4 

n L q1 loge qo1 

J=l 
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True p 0.0 0.1 0.2 0.3 0.4 0.5 
Intercross data 1.04 0.479 0.226 0.089 0.021 0.0 
Backcross (phase known) 0.69 0.368 0.193 0.082 0.021 0.0 
Backcross (phase unknown) 0.35 0.111 0.033 0.006 0.0004 0.0 

TABLE 4 4. Companson of the mformation zn lznkage deszgns per offsprmg mdzvzdual sampled: 
Kullback Lezbler znformatwn for testzng p = 1/2 as a functzon of the true value of p 

or, for a single observation, 

(Note the notation is reversed from section 2.2. Here q is the true parameter value, 
and q0 is the hypothesized value.) In the ca.'le of linkage analysis data, q1 = qi(P) 
and the null hypothesis is H0 : p = ~ : q01 = q1 ( ~). Evaluating K1 for the above 
phase-known zntercross experiment, and for the previous binomial phase-known and 
phase unknown backcross experiments, we obtain the measures of information per 
offspring individual shown in Table 4.4. 

This is a measure of information, per offspring sampled, for detecting linkage 
when pis the true value. We sec that the more p differs from ~ the more information 
there is, as expected. Also each phase-known offspring contributes at least twiee as 
much as each of the two offspring in the phase-unknown ease. Particularly when 
p is close to 1/2, the phase-unknown two-offspring design has low power. We see 
that each zntercross offspring contains more information than a backcr·oss offspring, 
also as expected. However, note that there is not twice as much information in 
the intercross offspring, as there would be if we eould tell the difference between 
the A1BdA2B2 and A1B2/A2B1 offspring (see Table 4.3). As p gets eloser to ~ 
there is almost no additional information in doing an intercross design rather than 
a baekcross. 

Note that for p = ~' the Kulback-Leiblcr information is the expected base
e lod score at the true value PT of the recombination frequency. This measure 
of information is very widely used in linkage analysis, and is known as the 
Elod (Thompson et al., 1978). Note that we expect the base-e lod score to be 
approximately nK1 when n is large. For our previous data with n = 200, we had 
p = 0.12; in fact, the data were simulated at p = 0.1. Then 200 x 0.479 is about 95, 
in good agreement with the lod score value of 90 which we obtained. This also tells 
us that if we had realized that p might be around 0.1, it was very wasteful to breed 
200 mice. When p = 0.1, about 20 mice are expected to give a lod score (base e) 
of more than 9; this is plenty to detect that p -:j:. ~· (Note again that we have used 
natural logarithms in these examples, contrary to standard praetice in genetics.) 

The material of sections 4.3 and 4.4 extends readily to the estimation and 
testing of two recombination frequencies Pm in males, and P! in females. Similar 
likelihood ratio tests may be used to test equality of male and female recombination 
frequencies. For a much more detailed account of classical linkage analysis and more 
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modern developments, the reader may consult the excellent text of Ott (1999). 

4.5 Two-locus kinship and gene identity 

The recursive equations for multiple kinship coefficients of section 3.4 (equations 
(3.6) and (3. 7)) extend to multiple loci, conditioning on the meiosis indicators 
in a given meiosis, over the loci in question. Consider, for example, the case 
of '¢2(L1 (B(l), C), L2(B(l), E)). This expression denotes the two locus kinship 
probability, that, in a single gamete segregating from B, the gene at locus £ 1 is 
ibd to that on a gamete segregating from individual C, while the gene at locus 
£2 is ibd to that on a gamete segregating from individual E. The identical 
superscript "(1)" on the individual B indicates that we are considering here a 
single meiosis i from B, rather than two separate meioses to different offspring. 
Now if B is not an ancestor of C or E, we may condition on the four events 
(Si,1, Si,2) = (0, 0), (0, 1), (1, 1), (1, 0) with probabilities ~(1 - p), ~p, ~(1 -
p), ~p respeetively, where p is the recombination frequency between locus 1 and 
locus 2. Thus we obtain 

(1) (1) 1 ( (B) (B) '¢2(L1(B , C),L2(B , E)) 2 1- p)'¢2(L1(MB ,C),L2(M8 ,E)) + 
1 1 (B) (B) 
2P'I/J2(L1 (MB, C), L2(Fn, E))+ 2(1- p)'ljJ2(L1 (F8 , C), L2(FB , E)) 

+ ~P'¢2(£1 (FB, C), L2(Mn, E)). 

Again, the superscript specifies which meiosis from an individual is considered
here the ones from Mn and Fn to B. In the case of two loci it is necessary 
to distinguish the meioses from a given parent. The full set of equations for 
determining two-loeus gene identity probabilities between genes segregating from 
up to four individuals are given by (Thompson, 1988). These equations ean be 
used to determine two-loeus ibd state probabilities, even on a large and complex 
pedigree. 

At two linked loci, there are also many more possible gene identity patterns 
(Denniston, 1975). Some relationships whieh have identieal gene ibd probabilities 
at a single loeus can, in principle, be distinguished by data at linked loci. The 
simplest example is for the three unilineal (1\:2 = 0) pairwise relationships of 
grandmother-granddaughter (G), half-sisters (H), and aunt-niece (N). Each of 
these relationships has "' = ( ~, ~, 0), and hence they are indistinguishable on the 
basis of data at independently segregating loci. For such relationships, gene identity 
at two linked loci is summarized by 

l\:1 ,1 (p) = ?(share 1 gene ibd at each of 2 loci at recombination p). 

For the three relationships above, we have 
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H 

N 

11:1,1 (p) 

11:1,1 (p) 
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= ~(p2 + (1- p)2) = ~R 
1 
"2((1- p)R + p/2). 

say 

Thus the relationships are identifiable of the basis of data at two linked loci (0 < 
p < t), but not on the basis of data at unlinked loci. All the three relationships 
have 11:1,1(0) =~and 11:1,1(~) = t· 

Note that, although t1:1,1(p) is sufficient to specify pairwise genotype and 
phenotype distributions, it does not determine the two-locus kinship of the 
individuals, unlike at a single locus where '1/J = (~~:1 + 2~~:2)/4. The shared genes at 
the two loci may be on the same haplotype in the individual, or on different ones. In 
fact, in H they are necessarily on the same (maternal) haplotype in the two half-sibs, 
while in G they may be on either haplotype of the grandmother. For N, for the first 
term they are on the same haplotype in the aunt, while the last term corresponds 
to the case where the genes at the two loci are on two different haplotypes in the 
aunt. In fact, G and H have the same two-locus kinship, (1/8)(1 - p) 2 R. 

FIGURE 4.3. Multi-locus genetic marker data are available 011 a pair of sibs, and on a third 
related individual, who may be an aunt, niece, or half-sister of the pair 

Returning again to the example of section 3.6, consider three individuals 
consisting of a pair of individuals who are putative full sibs, and a third who may be 
the aunt, niece, or half-sib of the sib pair (Figure 4.3). This example arose in a real 
example of inference of relationships considered by Browning (1999). Only with 
joint analysis of the data at linked loci on all three individuals are the alternative 
three relationships identifiable (Table 4.5). In the real-data example, the most likely 
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Individuals 
Pairwise Joint 

Loci unlinked H = N - A H = N -
Loci linked N - A H, N, A identifiable 

TABLE 4.5. Distinguishing relationships among three individuals who are putatively a pair of 
sisters with an aunt, niece, or half-sib 

relationship is that the third individual is a niece of the sib pair (Browning and 
Thompson, 1999). Due to one member of the sib pair having data at relatively few 
markers, the inference is not conclusive. However, with data on a lOcM genome 
scan, for example, there would be no difficulty in distinguishing the relationships 
provided analysis is performed jointly both over individuals and over loci. 

Some pairwise relationships which provide identical two-locus kinship coefficients 
have different three-locus kinship coefficients (Thompson, 1988). Thus, there are 
relationships that arc non-identifiable on the basis of gametes observed at pairs of 
loci (whatever the values of the recombination frequencies between them), but that 
are identifiable on the basis of gametes observed at trios of loci. One may conjecture 
that there are relationships non-identifiable on the basis of L-locus kinship, but 
identifiable on the basis of L + 1-loeus kinship. 

4.6 Homozygosity mapping with a single marker 

We introduce the ideas both of linkage analysis for linkage detection and of 
association analysis for the fine-scale loealization of trait genes via homozygosity 
mapping using the ideas of two-locus gene ibd already eneountered. Homozygosity 
mapping was developed by Lander and Botstein (1987) to deteet linkage for the loci 
determining rare reeessive disease traits, but as noted by Smith (1953) the principle 
is the same as in any linkage analysis: a likelihood for the recombination frequency 
p, or more generally for the trait locus location, is computed. With a single marker 
locus, the maximized likelihood under the hypothesis of linkage p < ~ is compared 
with the likelihood under the hypothesis that the trait locus is not linked to the 
marker locus or loci p = ~. In the case of homozygosity mapping, the linkage 
inference is based on data on unrelated affected inbred individuals. It relies on 
the fact that an inbred affected individual has high probability of carrying two ibd 
genes at the the trait (disease) locus (section 3.3), and hence also at any closely 
linked marker locus. Since ibd genes are necessarily of the same allelic type, such 
individuals will show a patch of homozygosity in the neighborhood of the trait locus; 
where the same markers are homozygous across multiple inbred affected individuals, 
the evidence for linkage accumulates. 

Suppose the frequency of the recessive disease allele is q, and at the marker locus 
alleles A; have frequencies p;. Suppose that the affected individual has inbreeding 
coefficient f, and probability h (p) of carrying genes ibd at both of two loci between 
which the recombination frequency is p. Then the probability the individual is 
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autozygous at a specific one of the two loci but not the other is f- f2(p), and the 
probability he is autozygous at neither is (1 - 2f + h(p)). If the individual has 
marker phenotype AiAt, he cannot be autozygous at the marker locus, and we have 
likelihood ratio 

(4.6) 

L(p) 

L(p = t) = 
Pr(data; p) 

Pr(data; p = ~) 
2PiPt(q(J- h(p)) + q2 (1- 2f + f2(p))) 

2pip1(q(J- J2) + q2(1 _ !)2) 

(J- h(p)) + q(1- 2f + h(p))) 
(1- f)(f + q(1- f)) 

Sinee sampling is through an affected individual, the data probabilities required here 
arc those of the marker phenotypes, conditional on the affected trait phenotype. 
However, sinee the marginal probability of an affeeted individual, qf + q2 (1 -f), 
does not depend on p, the likelihood ratio is also the ratio of the joint probabilities 
of marker and trait phenotypes. The joint probabilities are slightly more easily 
eonsidered. 

Since h(p) is a decreasing funetion of p, with value P at p = ~' the likelihood 
ratio ( 4.6) is always less than one. A heterozygous marker phenotype provides 
evidence against linkage. However, even at p = 0, where the value is q(1- f)j(J + 
q(1 - f)) the evidence against linkage is not strong unless q is very small. Affected 
individuals may not carry ibd genes at the trait locus. 

If the individual has homozygous marker phenotype AiAi the likelihood ratio is 

L(p) Pr(data; p) 

L(p = ~) Pr(data; p = ~) 

(4.7) 

QPif2(p) + q2pj(J- f2(p)) + qp](J- h(p)) + q2pJ(1 - 2f + h(p)) 
QPJJ2 + q2pJf(1- f) + qp]f(1- f) + q2pJ(1- /) 2 

h(p) + q(f- h(p)) + PJU- h(p)) + qpi(1- 2j + h(p)) 
J2 + qf(l- f) + PJf(l- f) + QPJ(l- f) 2 

The coefficient of the decreasing function of p, h (p), is ( 1- q) ( 1 -Pi), and thus this 
likelihood ratio is maximized at p = 0. At this value, h (p) = f, so the likelihood 
ratio is 

f + (1- f)qpj 
(f + (1- f)q)(f + (1- f)pj). 

This is always greater than one, and is larger if q or Pi is small. 
Likelihood ratios are multiplicative over unrelated pedigrees i, or log-likelihoods 

are additive. The base-10 log-likelihood ratio, or lod score is 
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where L;(·) is the likelihood contributed by pedigree i. The maximized lod score is 

max (lod(p)). 
O~p~! 

Of course, in combining over pedigrees, the maximiz.ing p may be neither 0 nor ~. 
In this case, the form of h(p) is also relevant, not merely the value of f. Again, a 
useful measure of information for linkage analysis is the expected lod score or Elod 
(section 4.4): 

( 4.8) Elod(p) Ep(lod(p)). 

The Elod is additive over independent pedigrees. Each affected individual with 
inbreeding coefficient f has probability f /(! + (1- f)q) of having two ibd genes at 
the disease locus. Hence, at p = 0, the contribution of each such affected individual 
to the Elod is 

f '"' I ( f + (1 - f)qpi ) f +(I- f)q LPJ og (f + (1- f)q)(f + (1- f)p1) 
J 

As q --t 0, this has limiting value 

(1 - f)q I ( (1 - f)q ) 
+ f + (1 - f)q og f + (1 - f)q · 

- LPJ log(!+ (1- f)pJ)· 
j 

For example, for the affected offspring of first-cousin marriages (f = 1/16), and a 
polymorphic marker locus (for example, Pi = 0.1 for each of 10 alleles) the value is 
log(6.4). A small number of unrelated affected individuals all homozygous at the 
same polymorphic marker locus provides strong evidence for linkage. 

Homoz.ygosity mapping, and linkage analysis in general, can provide good 
evidence for linkage. With sufficient data, the loci determining simple Mendelian 
traits can be localized down to 1 eM (p = 0.01) (Boehnke, 1994). However, even 
with data at multiple linked loci, finer localization is normally impossible; there 
are insufficient informative meioses in the set of pedigrees to resolve loci that are 
too tightly linked. The above development of homozygosity mapping assumed, 
as do most linkage analyses, absence of allelic association between the trait and 
marker loci. However, most current copies of a rare recessive disease allele may 
trace to a single mutation, say on a haplotype carrying marker allele A1. Then, as 
seen in section 4.2, at tight linkage, the allelic association between the loci decays 
slowly. In this case, not only will the majority of affected inbred individuals be 
homor.ygous at the marker locus, but most "unrelated" affected inbred individuals 
will be homozygous A1 A1, due to remote coancestry of the disease alleles, not 
modeled by the analysis of the separate pedigrees. In effect, the analysis makes 
use of the absence of recombination at a large number of ancestral meioses from 
the original disease mutation to the current affected individuals. Such allelic 
associations have been used to assist in the fine-scale mapping of many rare recessive 
disca .. <;es including cystic fibrosis (Cox eta!., 1989) and Werner's syndrome (Goddard 
eta!., 1996). 
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4. 7 Meiosis at multiple linked loci 
We now introduce notation for a chromosome with L ordered loci, 1, ... , L. For ease 
of notation, we assume that the loci are ordered 1, ... , L along the chromosome. 
We consider again the meiosis indicators of equation (1.2), and the vector notation 
of equation (1.3). Different meioses are independent, but the components of the 
meiosis indicator vector for meiosis i, S;,. = (S;, 1 , ... , S;,L), are dependent. Recall 
also the notation s.,j = (Sl,j' . .. 's M,j) for the set of all meiosis indicators on the 
pedigree, at locus j (equation (1.3)). Let the intervals between successive loci be 
h, ... , h-1. Let Rj = 1 if a gamete is recombinant on interval Ij, and Rj = 0 
otherwise (j = 1, ... , L- 1). Then, in a given meiosis i, 

Rj 1 if S;,j =J: Si,j+1, and 

(4.9) Rj = 0 if S;,J = S;,J+ 1 , j = 1, ... , L- 1. 

Each vector (R1 , •.• , RL-l) determines two equiprobable vectors S;,. = 
(8;,1, ... ,S;,L). A model for S;,. is equivalent to a model for (R1, ... ,RL- 1 ). One 
simple model for the distributions of S;,. over more than two loci is considered in this 
section. More general models for (R1 , •.. , RL-l) will be considered in Chapter 5. 

In considering the probability of data on related individuals in a pedigree 
(equation (3.9)): 

(4.10) L = Pr(Y) = :2:.: Pr(Y I S) Pr(S). 
s 

Often (although not always), data observations will be specific to a given locus. 
For example, for DNA marker loci we observe phenotypes of individuals at given 
loci. Let Y.,j denote the all data pertaining to locus j, so the full data pertaining 
to this chromosomal region is Y = (Y.,1, ... , Y.,L), and 

Pr(Y I S) = IT Pr(Y.,j I J(S.,j)) 
j 

where J (S.,j) is the pattern of gene identity by descent among observed individuals, 
at locus j, which is determined by S.,j. Since meioses i are independent, equation 
(4.10) becomes 

(4.11) L = Pc(Y) = ~ ( l} Pc(Y.,; I J(S.,;))) ( IJ Pr(S,,.)) 

To proceed further, we need a model for the vector S;,.. Such models may 
derive from our model for the process of meiosis (Chapter 5) or may be based on 
computationally convenient assumptions. In either case, it is the binary meiosis 
indicators (1.2) which provide a means to trace the descent and ancestry of genes, 
at multiple linked loci. Just as for a single locus (section 3.6), they determine 
patterns of gene-identity-by-descent (gene ibd), which in turn determine patterns 
of phenotypic similarity among relatives. 
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The simplest models for meiosis assume no interference: this implies that the 
R1 are independent. Under this model, the dependence structure of the S;,j takes 
a simple form, with a first-order Markov property over loci j, and with meioses i 
being independent. The probability of any given indicator S;,j conditional on all 
the others, S-(i,j) = {Sk,ti (k,l) -j. (i,j)}, depends only on the indicators for the 
same meiosis and the two neighboring loci: 

Pr(Si,j = s I s-(i,j)) Pr(Si,j = s I Si,J+1, Si,i-d 

Pl.s-Si,J-11(1- p· )1-ls-Si,;-d 
J-1 J-1 

( 4.12) pj•-Si,J+ll(1 _ Pi)1-ls-S;,J+ll 

for s = 0, 1, where P1 = Pr(Rj = 1) = Pr(S;,j =j:. Si,J+d is the recombination 
frequency between locus j and locus j +1. Note that equation (4.12), is just counting 
the recombination/non-recombination events in intervals /1_ 1 and 11 , implied by 
the three indicators (Si,j-1, Si,j = s, Si,i+l). 

4.8 Multi-locus kinship and gene identity 

Under the assumptions of conditional independence or absence of genetic 
interference, computation and Monte Carlo arc, in principle, straightforward. The 
meiosis indicators, S = { Si,j}, are independent over meioses i, and are Markov 
over a sequence of loci j along a chromosome. The recursive equations for two
locus kinship generalize to the multilocus case, although becoming progressively 
more complicated. The probability of a recombination pattern in the intervals 
between marker loci is straightforward, being the product of the probabilities of 
recombination or non-recombination in successive intervals (equation ( 4.12)). 

However, it is the resulting patterns of gene identity by descent among 
observed individuals that determine probabilities of observed data (equation 
( 4.11)). Although the component 8;,1 are Markov over loci j, this is not usually so 
for the resulting patterns of gene ibd, J (S. ,j), among observed individuals. Different 
values of S.,1 may give rise to the same ibd pattern. Along the chromosome, the ibd 
process is an agglomeration of the S.,1 process. Grouping the states of a Markov 
chain does not, in general, produce a Markov chain. 

As a specific example, consider again the pedigree of Figure 3.1, and suppose 
we are interested only in autozygosity of the final individual. Marginally at each 
locus the autozygosity probability is 7/64 or 0.1094 (section 3.2). Consider three 
loci, separated by a recombination frequencies of P1 = P2 = 0.1. The two
locus inbreeding coefficient of the final individual at recombination frequency 0.1 
is 0.0566. This may be computed exactly by the recursive method outlined in 
section 4.5. Between the outer loei, in the absence of interference, the recombination 
frequency is 

p P1(l- P2) + P2(1- pi) 

0.1 X 0.9 + 0.1 X 0.9 = 0.18. 
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ibd state Exact True Markov 
N N N 0.8915- 0 0.7901 0.7881 
N N I 0.0183 + 0 0.0478 0.0497 
N I N J- 0.0038 0.0257 0.0255 
N I I 0.0566- 0 0.0271 0.0273 
I N N 0.0183 + 0 0.0478 0.0497 
I N I 0.0345- J 0.0050 0.0031 
I I N 0.0566- J 0.0271 0.0273 
I I I 0 0.0295 0.0293 

•... 

TABLE 4.6. Prior autozygosity probabilities over thTce linked loci for the final individual of the 
pedigree of Figure .'J.J 

At recombination frequency 0.18, the two-locus inbreeding coefficient of the final 
individual is 0.0345. These one- and two-locus values determine the three-locus 
probabilities up to one degree of freedom. We have 

Pr(I) 0.1094 

Pr(J) = 0.1094 

Pr(I N N) + Pr(I N I) + Pr(I I N) + Pr(I I I) 

Pr(N IN)+ Pr(N I I)+ Pr(I IN)+ Pr(I I I) 

Pr(N N I) + Pr(J N I) + Pr(N I I) + Pr(I I I) = Pr(J) 0.1094. 

Also, by symmetry, since PI = P2, 

Then also 

Pr(I I N) = Pr(N I I) and Pr(N N I) = Pr(I IN). 

Pr(J I N) + Pr(I I I) Pr(I I N) + Pr(I I I) 

= Pr(I I; p = 0.1) 

Pr(I N I)+ Pr(I I I) Pr(I I; p = 0.18) 

0.0566 

0.345. 

Fixing Pr(I I I) = o, these equations determine all the probabilities, as given 
in the first column of Table 4.6, under the heading "exact". The values in the 
column labeled "true" are in fact obtained by Monte Carlo (section 3.7), using 
108 independent realizations of genes on the pedigree, and are accurate to w-4 • 

They arc fully consistent with the exact probabilities. These probabilities may also 
be estimated using Markov chain Monte Carlo (Chapter 8). A comparison of the 
alternative Monte Carlo procedures in this example is given by Thompson (1994a). 

The final column of Table 4.6 shows the probabilities that would be obtained, 
using the two-locus transition probabilities, and assuming the process to be first
order Markov. For this (assumed) Markov process of identity (I) and non
identity (N) the transition probabilities, and henec the three-locus probabilities, 
are determined as follows: 

Pr(I--+ I) 0.0566/0.1094 0.5174, 
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Pr(I ---+ N) 

Pr(N ---+ I) 

and Pr(N ---+ N) 
= 

1 - 0.5174 = 0.4826, 

(0.1094- 0.0566)/(1.0- 0.1094) 

1 - 0.0593 = 0.9407. 

67 

0.0593, 

The resulting probabilities patterns of I and N over the three loci are shown in the 
final column of Table 4.6, labeled "Markov". None of the probabilities computed 
using the Markov assumption is completely accurate, but those having I at the 
second locus are close to Markov. The state I acts approximately (but not exactly) 
as a renewal state of the process. Proportionately, the probability that under the 
Markov assumption deviates most from the true value is that for the trio of states 
(I, N, I). Conditional on non-ibd at the center locus, the probability of I at the 
third locus is substantially increased by knowledge of state I at the first. The 
reason for this is that the states of S resulting in I are few and clustered in the 
total space of S-valucs. For a fuller discussion of this see Thompson (1994a). The 
non-Markovian nature of I and N holds even for simpler pedigrees. It may seem 
that the differences in the probabilities are small, and substantial only for the 
state of very small prohability. However, depending on the phenotypic data, states 
of low prior (pedigree l probability may have high probability conditional on the 
phenotypic data. 
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